Lecture notes for May 1, 2023 Balanced separators

Chun-Hung Liu

May 1, 2023

When doing divide-and-conquer algorithms, we frequently divide an *n*-vertex graph into two parts A and B and then repeat the argument. Then the running time T(n) satisfies the recurrence relation T(n) = T(|A|) + T(|B|) + f(n) for some function f. And usually the running time is better when we can ensure that both |A| and |B| are significantly smaller than n. In addition, sometimes the term f(n) in the running time can be replaced by $f(|A \cap B|)$ if (A, B) is a separation (i.e. no edge is between A - B and B - A).

Let G be a graph. Let ϵ be a real number with $0 < \epsilon < 1$. An ϵ -balanced separator of G is a separation (A, B) of G such that $|A - B| \leq \epsilon |V(G)|$ and $|B - A| \leq \epsilon |V(G)|$. Note that it implies that $\max\{|A|, |B|\} \leq \epsilon |V(G)| + |A \cap B|$, so we also want $|A \cap B|$ is small. This implies that we should consider the case $\epsilon \geq 1/2$ only. Moreover, as we would like to repeatedly apply the divideand-conquer argument, we also want G[A] and G[B] has balanced separators. For a function f, we say that G admits ϵ -balanced separators of size f if for every induced subgraph H of G, there exists an ϵ -balanced separator of H of order at most f(|V(H)|).

For a function f, we say that G admits balanced separators of size f if G admits $\frac{2}{3}$ -balanced separators of size f. Note that we choose $\frac{2}{3}$ here is for convenience. Later (Proposition 8) we will show that actually choosing any constant between 1/2 and 1 is more or less equivalent.

1 Balanced separators and tree-width

Theorem 1 Let w be a positive integer. If G is a graph with tree-width at most w, then G has a balanced separator of order at most w + 1.

Proof. Let (T, \mathcal{X}) be a tree-decomposition of G with width w. If there exists an edge $tt' \in E(T)$ with $X_t = X_{t'}$, then we can contract tt' into a vertex and keep the same bag to obtain a tree-decomposition with the same width. So we may assume that for every edge $tt' \in E(T)$, $X_t \neq X_{t'}$. Hence every edge of T gives a separation of G of order at most w.

If there exists an edge e of T such that the separation given by e is a balanced separator, then we are done. So we may assume that for every edge xy of T, exactly one side of the separation (A_{xy}, B_{xy}) given by xy, say given by the side containing X_y , contains at least $\frac{2}{3}|V(G)| + |A_{xy} \cap B_{xy}|$ vertices, and we can direct xy from x to y. Hence T becomes a directed graph. Since $\sum_{t \in V(T)} \deg_T^+(t) = |E(T)| = |V(T)| - 1$, there exists a vertex t_0 of T with $\deg_T^+(t_0) = 0$. So for every component C of $T - t_0$, $|\bigcup_{t \in V(C)} X_t - X_{t_0}| < \frac{2}{3}|V(G)|$.

If there exists a component C of $T - t_0$ such that $|\bigcup_{t \in V(C)} X_t - X_{t_0}| \geq \frac{1}{3}|V(G)|$, then $|V(G) - (X_{t_0} \cup \bigcup_{t \in V(C)} X_t)| \leq |V(G)| - \frac{1}{3}|V(G)| \leq \frac{2}{3}|V(G)|$, so $(\bigcup_{t \in V(C)} X_t, V(G) - (X_{t_0} \cup \bigcup_{t \in V(C)} X_t))$ is a balanced separator of order $|X_{t_0}| \leq w + 1$. Hence we may assume that for every component C of $T - t_0$, $|\bigcup_{t \in V(C)} X_t - X_{t_0}| < \frac{1}{3}|V(G)|$.

If $|V(G) - X_{t_0}| < \frac{1}{3}|V(G)|$, then the separation $(X_{t_0}, V(G))$ is a separation of G of order $|X_{t_0}| \le w + 1$ and satisfying $|X_{t_0} - V(G)| = 0 \le \frac{2}{3}|V(G)|$ and $|V(G) - X_{t_0}| \le \frac{1}{3}|V(G)|$, so $(X_{t_0}, V(G))$ is a balanced separator of order at most w + 1. So we may assume $|V(G) - X_{t_0}| \ge \frac{1}{3}|V(G)|$.

Let $C_1, C_2, ..., C_k$ be the components of $T - t_0$. Since $|V(G) - X_{t_0}| \ge \frac{1}{3}|V(G)|$, there exists a smallest integer q such that $\sum_{i=1}^{q} |\bigcup_{t \in V(C_i)} X_t - X_{t_0}| \ge \frac{1}{3}|V(G)|$. Note that $q \ge 2$. So $\sum_{i=1}^{q} |\bigcup_{t \in V(C_i)} X_t - X_{t_0}| = \sum_{i=1}^{q-1} |\bigcup_{t \in V(C_i)} X_t - X_{t_0}| + |\bigcup_{t \in V(C_i)} X_t - X_{t_0}| \le \frac{1}{3}|V(G)| + \frac{1}{3}|V(G)| = \frac{2}{3}|V(G)|$. Moreover, $|\bigcup_{i=q+1}^{k} \bigcup_{t \in V(C_i)} X_t - X_{t_0}| = |V(G) - X_{t_0}| - \sum_{i=1}^{q} |\bigcup_{t \in V(C_i)} X_t - X_{t_0}| \le |V(G)| - \frac{1}{3}|V(G)| = \frac{2}{3}|V(G)|$. Hence $(\bigcup_{i=1}^{q} \bigcup_{t \in V(C_i)} X_t, \bigcup_{i=q+1}^{k} \bigcup_{t \in V(C_i)} X_t)$ is a balanced separator of order $|X_{t_0}| \le w + 1$.

Using Theorem 1, we can show that some graph has large tree-width.

Proposition 2 Let k be a positive integer with $k \ge 4$. Let G be the $k \times k$ -grid. Then G has tree-width at least $\lfloor k/4 \rfloor$.

Proof. Suppose that G has tree-width at most $\lfloor k/4 \rfloor - 1$. By Theorem 1, there exists a balanced separation (A, B) of G of order at most $\lfloor k/4 \rfloor$.

Since $|A \cap B| \leq k/4$, at most k/4 rows intersect both A and B. So there are at least 3k/4 rows each contained in A or contained in B. If there exist a row contained in A and another row contained in B, then there are k disjoint paths from A to B, contradiction. So we may assume that there are at least 3k/4 rows contained in B. Hence $|B| \geq 3k^2/4$. So $|B - A| = |B| - |A \cap B| \geq 3k^2/4 - k/4 > 2k^2/3 = \frac{2}{3}|V(G)|$ since $k \geq 4$, a contradiction.

Note that it is not very hard to show that the bound k/4 can be improved to k, but it requires other notions and we will not do it here. The important message from the above proposition is that if a graph has small tree-width, then it cannot contain a large grid as a minor. The converse statement is also true, but we will not prove it here.

Theorem 3 (Grid Minor Theorem (Robertson, Seymour)) There exists a function f such that for every positive integer w, if a graph G has tree-width at least w, then it contains a $f(w) \times f(w)$ -grid as a minor.

Theorem 3 tells us exactly when a graph has large tree-width. On the other hand, the converse of Theorem 1 holds approximately.

Theorem 4 (Dvořák, Norin) Let w be a positive integer. If G admits balanced separators of order w, then the tree-width of G is at most 15w.

2 Strongly sublinear balanced separators

Recall that we show that if G has tree-width at most w, then we can find a maximum stable set in G in time $O(w4^w|V(G)|)$. It implies that if G has sublinear tree-width (in |V(G)|), then a maximum stable set can be found in subexponential time. So it is reasonable to consider what kind of graphs have sublinear tree-width. By Theorem 4, it is equivalent to consider what kind of graphs have balanced separators with sublinear size.

The following is a famous example.

Theorem 5 (Lipton, Tarjan) Every planar graph admits balanced separators of size f, where f is the function $f(x) = 2\sqrt{2}\sqrt{x}$.

It is strengthened to another famous theorem.

Theorem 6 (Alon, Seymour, Thomas) For every proper minor-closed family \mathcal{F} , there exists a constant c such that every graph in \mathcal{F} admits balanced separators of size f, where f is the function $f(x) = c\sqrt{x}$.

We usually want a bit more than just being sublinear. That is, we want the order of the separators is "polynomially better than linear", like the above two examples. For a class \mathcal{F} of graphs, we say that \mathcal{F} admits strongly sublinear balanced separators if there exists a function $f(x) := cx^{\beta}$ for some constants c > 0 and $0 \le \beta < 1$ such that every graph in \mathcal{F} admits balanced separators with size f.

The following theorem characterizes the existence of strongly sublinear balanced separators, via graph expansion.

Theorem 7 (Dvořák, Norin) Let \mathcal{F} be a set of graphs. Then \mathcal{F} admits strongly sublinear balanced separators if and only if \mathcal{F} has expansion g for some polynomial g.

3 Choices of constants

Now we show that the choice of ϵ for ϵ -separators does not matter.

Proposition 8 Let f be a nondecreasing function. Let ϵ be a real number with $\frac{1}{2} < \epsilon < 1$. If G admits ϵ -balanced separators of size f, then for every $\frac{1}{2} < \delta < 1$, G admits δ -balanced separators of size g, where g is the function

such that $g(x) = \sum_{i=0}^{\lceil \log_{\epsilon}(\frac{\delta-\frac{1}{2}}{2})\rceil-1} 2^{i} f(\epsilon^{i} x)$ for every x.

In particular, if there exist constants c > 0 and $0 \le \beta < 1$ such that $f(x) \le cx^{\beta}$, then there exists a constant c' > 0 such that $g(x) \le c'x^{\beta}$.

Proof. Since $\frac{1}{2} < \delta < 1, 0 < \frac{\delta - \frac{1}{2}}{2} < \frac{1}{4}$. Since $\frac{1}{2} < \epsilon < 1, \lceil \log_{\epsilon}(\frac{\delta - \frac{1}{2}}{2}) \rceil \ge 2$. In particular, $g \ge f$. So there is nothing to prove if $\delta \ge \epsilon$.

Hence we may assume $\delta < \epsilon$. And it suffices to prove that there exists a separation (A^*, B^*) of G of order at most f(|V(G)|) such that $|A^* - B^*| \leq \delta |V(G)|$ and $|B^* - A^*| \leq \delta |V(G)|$, as we can apply the same argument to any induced subgraph of G.

Let (A, B) be an ϵ -balanced separator of G of order f(|V(G)|). Since G[A]is an induced subgraph of G, there exists an ϵ -separator (A_A, B_A) of G[A]of order $f(|A|) \leq f(\epsilon |V(G)|)$. Similarly, G[B] has an ϵ -balanced separator (A_B, B_B) of G[B] of order $f(|B|) \le f(\epsilon |V(G)|)$. Let $Z_1 = (A \cap B) \cup (A_A \cap B_A) \cup (A_B \cap B_B)$. Then $|Z_1| \le f(|V(G)|) + f(|A|) + f(|B|) \le f(|V(G)|) + 2f(\epsilon |V(G)|)$.

We can repeat this process to obtain a set $Z_k \subseteq V(G)$ with $|Z_k| \leq \sum_{i=0}^k 2^i f(\epsilon^i |V(G)|)$ and 2^{k+1} induced subgraphs $H_1, H_2, \dots, H_{2^{k+1}}$ of G such that each H_i is a union of components of $G - Z_k$ and contains at most $\epsilon^{k+1} |V(G)|$ vertices.

Choose $k = \lceil \log_{\epsilon}(\frac{\delta - \frac{1}{2}}{2}) \rceil - 1$. So $\epsilon^{k+1} \leq \frac{1}{2}(\delta - \frac{1}{2}) \leq \frac{1}{2}\delta - \frac{1}{4}$. Let g be the function such that $g(x) = \sum_{i=0}^{k} 2^{i} f(\epsilon^{i} x)$ for every x.

If $|V(\bigcup_{i=1}^{2^{k+1}} H_i)| \leq \frac{1}{2}(\delta + \frac{1}{2})|V(G)|$, then since $\delta \geq \frac{1}{2}, \frac{1}{2}(\delta + \frac{1}{2})|V(G)| \leq \delta |V(G)|$, so $(V(\bigcup_{i=1}^{2^{k+1}} H_i) \cup Z_k, Z_k)$ is a δ -balanced separator of G of order $|Z_k| \leq g(|V(G)|)$. So we may assume $|V(\bigcup_{i=1}^{2^{k+1}} H_i)| \geq \frac{1}{2}(\delta + \frac{1}{2})|V(G)|$. Hence there exists a minimum integer $q \in [k]$ such that $|V(\bigcup_{i=1}^{q} H_i)| \geq \frac{1}{2}(\delta + \frac{1}{2})|V(G)|$. Let $A^* = V(\bigcup_{i=1}^{q} H_i)$ and $B^* = V(\bigcup_{i=q+1}^{2^{k+1}} H_i)|$. By the minimality of q, $|A^*| = |V(\bigcup_{i=1}^{q} H_i)| = |V(\bigcup_{i=1}^{q-1} H_i)| + |V(H_q)| \leq \frac{1}{2}(\delta + \frac{1}{2})|V(G)| + |V(H_q)| \leq \frac{1}{2}(\delta + \frac{1}{2})|V(G)| + |V(H_q)| \leq \frac{1}{2}(\delta + \frac{1}{2})|V(G)| + \frac{1}{2}\delta|V(G)|$. Note that $|A^*| \geq \frac{1}{2}(\delta + \frac{1}{2})|V(G)| \geq \frac{1}{2}|V(G)|$ since $\delta \geq \frac{1}{2}$. So $|B^*| \leq |V(G)| - |A^*| \leq \frac{1}{2}|V(G)| \leq \delta|V(G)|$. Hence $(A^* \cup Z_k, B^* \cup Z_k)$ is a δ -balanced separator of G of order $|Z_k| \leq g(|V(G)|)$.

Now we assume there exist constants c > 0 and $0 \le \beta < 1$ such that $f(x) \le cx^{\beta}$. We want to show that there exists a constant c' > 0 such that $g(x) \le c'x^{\beta}$.

Recall that $g(x) = \sum_{i=0}^{k} 2^{i} f(\epsilon^{i} x)$ for every x. So $g(x) \leq c \sum_{i=0}^{k} 2^{i} (\epsilon^{i} x)^{\beta} \leq cx^{\beta} \cdot \sum_{i=0}^{k} (2\epsilon^{\beta})^{i} \leq cx^{\beta} (k+1)(1+(2\epsilon^{\beta})^{k}) = c'x^{\beta}$, where $c' = c(k+1)(1+(2\epsilon^{\beta})^{k})$. Note that k only depends on ϵ and δ .