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When doing divide-and-conquer algorithms, we frequently divide an n-
vertex graph into two parts A and B and then repeat the argument. Then the
running time T (n) satisfies the recurrence relation T (n) = T (|A|) +T (|B|) +
f(n) for some function f . And usually the running time is better when we
can ensure that both |A| and |B| are significantly smaller than n. In addition,
sometimes the term f(n) in the running time can be replaced by f(|A ∩B|)
if (A,B) is a separation (i.e. no edge is between A−B and B − A).

Let G be a graph. Let ε be a real number with 0 < ε < 1. An ε-balanced
separator of G is a separation (A,B) of G such that |A− B| ≤ ε|V (G)| and
|B−A| ≤ ε|V (G)|. Note that it implies that max{|A|, |B|} ≤ ε|V (G)|+ |A∩
B|, so we also want |A∩B| is small. This implies that we should consider the
case ε ≥ 1/2 only. Moreover, as we would like to repeatedly apply the divide-
and-conquer argument, we also want G[A] and G[B] has balanced separators.
For a function f , we say that G admits ε-balanced separators of size f if for
every induced subgraph H of G, there exists an ε-balanced separator of H
of order at most f(|V (H)|).

For a function f , we say that G admits balanced separators of size f if
G admits 2

3
-balanced separators of size f . Note that we choose 2

3
here is for

convenience. Later (Proposition 8) we will show that actually choosing any
constant between 1/2 and 1 is more or less equivalent.

1 Balanced separators and tree-width

Theorem 1 Let w be a positive integer. If G is a graph with tree-width at
most w, then G has a balanced separator of order at most w + 1.
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Proof. Let (T,X ) be a tree-decomposition of G with width w. If there exists
an edge tt′ ∈ E(T ) with Xt = Xt′ , then we can contract tt′ into a vertex and
keep the same bag to obtain a tree-decomposition with the same width. So
we may assume that for every edge tt′ ∈ E(T ), Xt 6= Xt′ . Hence every edge
of T gives a separation of G of order at most w.

If there exists an edge e of T such that the separation given by e is a
balanced separator, then we are done. So we may assume that for every edge
xy of T , exactly one side of the separation (Axy, Bxy) given by xy, say given
by the side containing Xy, contains at least 2

3
|V (G)| + |Axy ∩ Bxy| vertices,

and we can direct xy from x to y. Hence T becomes a directed graph. Since∑
t∈V (T ) deg+

T (t) = |E(T )| = |V (T )| − 1, there exists a vertex t0 of T with

deg+
T (t0) = 0. So for every component C of T − t0, |

⋃
t∈V (C)Xt − Xt0| <

2
3
|V (G)|.

If there exists a component C of T − t0 such that |
⋃
t∈V (C)Xt − Xt0| ≥

1
3
|V (G)|, then |V (G) − (Xt0 ∪

⋃
t∈V (C)Xt)| ≤ |V (G)| − 1

3
|V (G)| ≤ 2

3
|V (G)|,

so (
⋃
t∈V (C)Xt, V (G) − (Xt0 ∪

⋃
t∈V (C)Xt)) is a balanced separator of order

|Xt0 | ≤ w+ 1. Hence we may assume that for every component C of T − t0,
|
⋃
t∈V (C)Xt −Xt0| < 1

3
|V (G)|.

If |V (G)−Xt0| < 1
3
|V (G)|, then the separation (Xt0 , V (G)) is a separation

of G of order |Xt0| ≤ w + 1 and satisfying |Xt0 − V (G)| = 0 ≤ 2
3
|V (G)| and

|V (G) −Xt0| ≤ 1
3
|V (G)|, so (Xt0 , V (G)) is a balanced separator of order at

most w + 1. So we may assume |V (G)−Xt0 | ≥ 1
3
|V (G)|.

Let C1, C2, ..., Ck be the components of T − t0. Since |V (G) − Xt0 | ≥
1
3
|V (G)|, there exists a smallest integer q such that

∑q
i=1 |

⋃
t∈V (Ci)

Xt−Xt0| ≥
1
3
|V (G)|. Note that q ≥ 2. So

∑q
i=1 |

⋃
t∈V (Ci)

Xt−Xt0| =
∑q−1

i=1 |
⋃
t∈V (Ci)

Xt−
Xt0| + |

⋃
t∈V (Cq)

Xt − Xt0 | ≤ 1
3
|V (G)| + 1

3
|V (G)| = 2

3
|V (G)|. Moreover,

|
⋃k
i=q+1

⋃
t∈V (Ci)

Xt − Xt0| = |V (G) − Xt0| −
∑q

i=1 |
⋃
t∈V (Ci)

Xt − Xt0 | ≤
|V (G)| − 1

3
|V (G)| = 2

3
|V (G)|. Hence (

⋃q
i=1

⋃
t∈V (Ci)

Xt,
⋃k
i=q+1

⋃
t∈V (Ci)

Xt)

is a balanced separator of order |Xt0| ≤ w + 1.

Using Theorem 1, we can show that some graph has large tree-width.

Proposition 2 Let k be a positive integer with k ≥ 4. Let G be the k × k-
grid. Then G has tree-width at least bk/4c.

Proof. Suppose that G has tree-width at most bk/4c − 1. By Theorem 1,
there exists a balanced separation (A,B) of G of order at most bk/4c.
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Since |A ∩ B| ≤ k/4, at most k/4 rows intersect both A and B. So
there are at least 3k/4 rows each contained in A or contained in B. If
there exist a row contained in A and another row contained in B, then
there are k disjoint paths from A to B, contradiction. So we may assume
that there are at least 3k/4 rows contained in B. Hence |B| ≥ 3k2/4. So
|B − A| = |B| − |A ∩ B| ≥ 3k2/4 − k/4 > 2k2/3 = 2

3
|V (G)| since k ≥ 4, a

contradiction.

Note that it is not very hard to show that the bound k/4 can be improved
to k, but it requires other notions and we will not do it here. The important
message from the above proposition is that if a graph has small tree-width,
then it cannot contain a large grid as a minor. The converse statement is
also true, but we will not prove it here.

Theorem 3 (Grid Minor Theorem (Robertson, Seymour)) There ex-
ists a function f such that for every positive integer w, if a graph G has
tree-width at least w, then it contains a f(w)× f(w)-grid as a minor.

Theorem 3 tells us exactly when a graph has large tree-width.
On the other hand, the converse of Theorem 1 holds approximately.

Theorem 4 (Dvořák, Norin) Let w be a positive integer. If G admits
balanced separators of order w, then the tree-width of G is at most 15w.

2 Strongly sublinear balanced separators

Recall that we show that if G has tree-width at most w, then we can find
a maximum stable set in G in time O(w4w|V (G)|). It implies that if G has
sublinear tree-width (in |V (G)|), then a maximum stable set can be found
in subexponential time. So it is reasonable to consider what kind of graphs
have sublinear tree-width. By Theorem 4, it is equivalent to consider what
kind of graphs have balanced separators with sublinear size.

The following is a famous example.

Theorem 5 (Lipton, Tarjan) Every planar graph admits balanced separa-
tors of size f , where f is the function f(x) = 2

√
2
√
x.

It is strengthened to another famous theorem.
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Theorem 6 (Alon, Seymour, Thomas) For every proper minor-closed fam-
ily F , there exists a constant c such that every graph in F admits balanced
separators of size f , where f is the function f(x) = c

√
x.

We usually want a bit more than just being sublinear. That is, we want
the order of the separators is “polynomially better than linear”, like the
above two examples. For a class F of graphs, we say that F admits strongly
sublinear balanced separators if there exists a function f(x) := cxβ for some
constants c > 0 and 0 ≤ β < 1 such that every graph in F admits balanced
separators with size f .

The following theorem characterizes the existence of strongly sublinear
balanced separators, via graph expansion.

Theorem 7 (Dvořák, Norin) Let F be a set of graphs. Then F admits
strongly sublinear balanced separators if and only if F has expansion g for
some polynomial g.

3 Choices of constants

Now we show that the choice of ε for ε-separators does not matter.

Proposition 8 Let f be a nondecreasing function. Let ε be a real number
with 1

2
< ε < 1. If G admits ε-balanced separators of size f , then for every

1
2
< δ < 1, G admits δ-balanced separators of size g, where g is the function

such that g(x) =
∑dlogε(

δ− 1
2

2
)e−1

i=0 2if(εix) for every x.
In particular, if there exist constants c > 0 and 0 ≤ β < 1 such that

f(x) ≤ cxβ, then there exists a constant c′ > 0 such that g(x) ≤ c′xβ.

Proof. Since 1
2
< δ < 1, 0 <

δ− 1
2

2
< 1

4
. Since 1

2
< ε < 1, dlogε(

δ− 1
2

2
)e ≥ 2. In

particular, g ≥ f . So there is nothing to prove if δ ≥ ε.
Hence we may assume δ < ε. And it suffices to prove that there exists a

separation (A∗, B∗) of G of order at most f(|V (G)|) such that |A∗ − B∗| ≤
δ|V (G)| and |B∗ − A∗| ≤ δ|V (G)|, as we can apply the same argument to
any induced subgraph of G.

Let (A,B) be an ε-balanced separator of G of order f(|V (G)|). Since G[A]
is an induced subgraph of G, there exists an ε-separator (AA, BA) of G[A]
of order f(|A|) ≤ f(ε|V (G)|). Similarly, G[B] has an ε-balanced separator
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(AB, BB) of G[B] of order f(|B|) ≤ f(ε|V (G)|). Let Z1 = (A ∩ B) ∪ (AA ∩
BA) ∪ (AB ∩ BB). Then |Z1| ≤ f(|V (G)|) + f(|A|) + f(|B|) ≤ f(|V (G)|) +
2f(ε|V (G)|).

We can repeat this process to obtain a set Zk ⊆ V (G) with |Zk| ≤∑k
i=0 2if(εi|V (G)|) and 2k+1 induced subgraphs H1, H2, ..., H2k+1 of G such

that each Hi is a union of components of G − Zk and contains at most
εk+1|V (G)| vertices.

Choose k = dlogε(
δ− 1

2

2
)e − 1. So εk+1 ≤ 1

2
(δ − 1

2
) ≤ 1

2
δ − 1

4
. Let g be the

function such that g(x) =
∑k

i=0 2if(εix) for every x.

If |V (
⋃2k+1

i=1 Hi)| ≤ 1
2
(δ + 1

2
)|V (G)|, then since δ ≥ 1

2
, 1

2
(δ + 1

2
)|V (G)| ≤

δ|V (G)|, so (V (
⋃2k+1

i=1 Hi) ∪ Zk, Zk) is a δ-balanced separator of G of order

|Zk| ≤ g(|V (G)|). So we may assume |V (
⋃2k+1

i=1 Hi)| ≥ 1
2
(δ+ 1

2
)|V (G)|. Hence

there exists a minimum integer q ∈ [k] such that |V (
⋃q
i=1Hi)| ≥ 1

2
(δ +

1
2
)|V (G)|. Let A∗ = V (

⋃q
i=1Hi) and B∗ = V (

⋃2k+1

i=q+1Hi)|. By the minimality

of q, |A∗| = |V (
⋃q
i=1Hi)| = |V (

⋃q−1
i=1 Hi)| + |V (Hq)| ≤ 1

2
(δ + 1

2
)|V (G)| +

|V (Hq)| ≤ 1
2
(δ+ 1

2
)|V (G)|+ εk+1|V (G)| ≤ 1

2
(δ+ 1

2
)|V (G)|+ (1

2
δ− 1

4
)|V (G)| ≤

δ|V (G)|. Note that |A∗| ≥ 1
2
(δ + 1

2
)|V (G)| ≥ 1

2
|V (G)| since δ ≥ 1

2
. So

|B∗| ≤ |V (G)| − |A∗| ≤ 1
2
|V (G)| ≤ δ|V (G)|. Hence (A∗ ∪ Zk, B∗ ∪ Zk) is a

δ-balanced separator of G of order |Zk| ≤ g(|V (G)|).
Now we assume there exist constants c > 0 and 0 ≤ β < 1 such that

f(x) ≤ cxβ. We want to show that there exists a constant c′ > 0 such that
g(x) ≤ c′xβ.

Recall that g(x) =
∑k

i=0 2if(εix) for every x. So g(x) ≤ c
∑k

i=0 2i(εix)β ≤
cxβ ·

∑k
i=0(2ε

β)i ≤ cxβ(k+1)(1+(2εβ)k) = c′xβ, where c′ = c(k+1)(1+(2εβ)k).
Note that k only depends on ε and δ.
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