Lecture notes for May 1, 2023
 Balanced separators

Chun-Hung Liu

May 1, 2023

When doing divide-and-conquer algorithms, we frequently divide an n vertex graph into two parts A and B and then repeat the argument. Then the running time $T(n)$ satisfies the recurrence relation $T(n)=T(|A|)+T(|B|)+$ $f(n)$ for some function f. And usually the running time is better when we can ensure that both $|A|$ and $|B|$ are significantly smaller than n. In addition, sometimes the term $f(n)$ in the running time can be replaced by $f(|A \cap B|)$ if (A, B) is a separation (i.e. no edge is between $A-B$ and $B-A$).

Let G be a graph. Let ϵ be a real number with $0<\epsilon<1$. An ϵ-balanced separator of G is a separation (A, B) of G such that $|A-B| \leq \epsilon|V(G)|$ and $|B-A| \leq \epsilon|V(G)|$. Note that it implies that $\max \{|A|,|B|\} \leq \epsilon|V(G)|+\mid A \cap$ $B \mid$, so we also want $|A \cap B|$ is small. This implies that we should consider the case $\epsilon \geq 1 / 2$ only. Moreover, as we would like to repeatedly apply the divide-and-conquer argument, we also want $G[A]$ and $G[B]$ has balanced separators. For a function f, we say that G admits ϵ-balanced separators of size f if for every induced subgraph H of G, there exists an ϵ-balanced separator of H of order at most $f(|V(H)|)$.

For a function f, we say that G admits balanced separators of size f if G admits $\frac{2}{3}$-balanced separators of size f. Note that we choose $\frac{2}{3}$ here is for convenience. Later (Proposition 8) we will show that actually choosing any constant between $1 / 2$ and 1 is more or less equivalent.

1 Balanced separators and tree-width

Theorem 1 Let w be a positive integer. If G is a graph with tree-width at most w, then G has a balanced separator of order at most $w+1$.

Proof. Let (T, \mathcal{X}) be a tree-decomposition of G with width w. If there exists an edge $t t^{\prime} \in E(T)$ with $X_{t}=X_{t^{\prime}}$, then we can contract $t t^{\prime}$ into a vertex and keep the same bag to obtain a tree-decomposition with the same width. So we may assume that for every edge $t t^{\prime} \in E(T), X_{t} \neq X_{t^{\prime}}$. Hence every edge of T gives a separation of G of order at most w.

If there exists an edge e of T such that the separation given by e is a balanced separator, then we are done. So we may assume that for every edge $x y$ of T, exactly one side of the separation $\left(A_{x y}, B_{x y}\right)$ given by $x y$, say given by the side containing X_{y}, contains at least $\frac{2}{3}|V(G)|+\left|A_{x y} \cap B_{x y}\right|$ vertices, and we can direct $x y$ from x to y. Hence T becomes a directed graph. Since $\sum_{t \in V(T)} \operatorname{deg}_{T}^{+}(t)=|E(T)|=|V(T)|-1$, there exists a vertex t_{0} of T with $\operatorname{deg}_{T}^{+}\left(t_{0}\right)=0$. So for every component C of $T-t_{0},\left|\bigcup_{t \in V(C)} X_{t}-X_{t_{0}}\right|<$ $\frac{2}{3}|V(G)|$.

If there exists a component C of $T-t_{0}$ such that $\left|\bigcup_{t \in V(C)} X_{t}-X_{t_{0}}\right| \geq$ $\frac{1}{3}|V(G)|$, then $\left|V(G)-\left(X_{t_{0}} \cup \bigcup_{t \in V(C)} X_{t}\right)\right| \leq|V(G)|-\frac{1}{3}|V(G)| \leq \frac{2}{3}|V(G)|$, so $\left(\bigcup_{t \in V(C)} X_{t}, V(G)-\left(X_{t_{0}} \cup \bigcup_{t \in V(C)} X_{t}\right)\right)$ is a balanced separator of order $\left|X_{t_{0}}\right| \leq w+1$. Hence we may assume that for every component C of $T-t_{0}$, $\left|\bigcup_{t \in V(C)} X_{t}-X_{t_{0}}\right|<\frac{1}{3}|V(G)|$.

If $\left|V(G)-X_{t_{0}}\right|<\frac{1}{3}|V(G)|$, then the separation $\left(X_{t_{0}}, V(G)\right)$ is a separation of G of order $\left|X_{t_{0}}\right| \leq w+1$ and satisfying $\left|X_{t_{0}}-V(G)\right|=0 \leq \frac{2}{3}|V(G)|$ and $\left|V(G)-X_{t_{0}}\right| \leq \frac{1}{3}|V(G)|$, so $\left(X_{t_{0}}, V(G)\right)$ is a balanced separator of order at most $w+1$. So we may assume $\left|V(G)-X_{t_{0}}\right| \geq \frac{1}{3}|V(G)|$.

Let $C_{1}, C_{2}, \ldots, C_{k}$ be the components of $T-t_{0}$. Since $\left|V(G)-X_{t_{0}}\right| \geq$ $\frac{1}{3}|V(G)|$, there exists a smallest integer q such that $\sum_{i=1}^{q}\left|\bigcup_{t \in V\left(C_{i}\right)} X_{t}-X_{t_{0}}\right| \geq$ $\frac{1}{3}|V(G)|$. Note that $q \geq 2$. So $\sum_{i=1}^{q}\left|\bigcup_{t \in V\left(C_{i}\right)} X_{t}-X_{t_{0}}\right|=\sum_{i=1}^{q-1} \mid \bigcup_{t \in V\left(C_{i}\right)} X_{t}-$ $\left.X_{t_{0}}\left|+\left|\bigcup_{t \in V\left(C_{q}\right)} X_{t}-X_{t_{0}}\right| \leq \frac{1}{3}\right| V(G)\left|+\frac{1}{3}\right| V(G)\left|=\frac{2}{3}\right| V(G) \right\rvert\,$. Moreover, $\left|\bigcup_{i=q+1}^{k} \bigcup_{t \in V\left(C_{i}\right)} X_{t}-X_{t_{0}}\right|=\left|V(G)-X_{t_{0}}\right|-\sum_{i=1}^{q}\left|\bigcup_{t \in V\left(C_{i}\right)} X_{t}-X_{t_{0}}\right| \leq$ $|V(G)|-\frac{1}{3}|V(G)|=\frac{2}{3}|V(G)|$. Hence $\left(\bigcup_{i=1}^{q} \bigcup_{t \in V\left(C_{i}\right)} X_{t}, \bigcup_{i=q+1}^{k} \bigcup_{t \in V\left(C_{i}\right)} X_{t}\right)$ is a balanced separator of order $\left|X_{t_{0}}\right| \leq w+1$.

Using Theorem 1, we can show that some graph has large tree-width.
Proposition 2 Let k be a positive integer with $k \geq 4$. Let G be the $k \times k$ grid. Then G has tree-width at least $\lfloor k / 4\rfloor$.

Proof. Suppose that G has tree-width at most $\lfloor k / 4\rfloor-1$. By Theorem 1, there exists a balanced separation (A, B) of G of order at most $\lfloor k / 4\rfloor$.

Since $|A \cap B| \leq k / 4$, at most $k / 4$ rows intersect both A and B. So there are at least $3 k / 4$ rows each contained in A or contained in B. If there exist a row contained in A and another row contained in B, then there are k disjoint paths from A to B, contradiction. So we may assume that there are at least $3 k / 4$ rows contained in B. Hence $|B| \geq 3 k^{2} / 4$. So $|B-A|=|B|-|A \cap B| \geq 3 k^{2} / 4-k / 4>2 k^{2} / 3=\frac{2}{3}|V(G)|$ since $k \geq 4$, a contradiction.

Note that it is not very hard to show that the bound $k / 4$ can be improved to k, but it requires other notions and we will not do it here. The important message from the above proposition is that if a graph has small tree-width, then it cannot contain a large grid as a minor. The converse statement is also true, but we will not prove it here.

Theorem 3 (Grid Minor Theorem (Robertson, Seymour)) There exists a function f such that for every positive integer w, if a graph G has tree-width at least w, then it contains a $f(w) \times f(w)$-grid as a minor.

Theorem 3 tells us exactly when a graph has large tree-width.
On the other hand, the converse of Theorem 1 holds approximately.
Theorem 4 (Dvořák, Norin) Let w be a positive integer. If G admits balanced separators of order w, then the tree-width of G is at most $15 w$.

2 Strongly sublinear balanced separators

Recall that we show that if G has tree-width at most w, then we can find a maximum stable set in G in time $O\left(w 4^{w}|V(G)|\right)$. It implies that if G has sublinear tree-width (in $|V(G)|$), then a maximum stable set can be found in subexponential time. So it is reasonable to consider what kind of graphs have sublinear tree-width. By Theorem 4, it is equivalent to consider what kind of graphs have balanced separators with sublinear size.

The following is a famous example.
Theorem 5 (Lipton, Tarjan) Every planar graph admits balanced separators of size f, where f is the function $f(x)=2 \sqrt{2} \sqrt{x}$.

It is strengthened to another famous theorem.

Theorem 6 (Alon, Seymour, Thomas) For every proper minor-closed family \mathcal{F}, there exists a constant c such that every graph in \mathcal{F} admits balanced separators of size f, where f is the function $f(x)=c \sqrt{x}$.

We usually want a bit more than just being sublinear. That is, we want the order of the separators is "polynomially better than linear", like the above two examples. For a class \mathcal{F} of graphs, we say that \mathcal{F} admits strongly sublinear balanced separators if there exists a function $f(x):=c x^{\beta}$ for some constants $c>0$ and $0 \leq \beta<1$ such that every graph in \mathcal{F} admits balanced separators with size f.

The following theorem characterizes the existence of strongly sublinear balanced separators, via graph expansion.

Theorem 7 (Dvořák, Norin) Let \mathcal{F} be a set of graphs. Then \mathcal{F} admits strongly sublinear balanced separators if and only if \mathcal{F} has expansion g for some polynomial g.

3 Choices of constants

Now we show that the choice of ϵ for ϵ-separators does not matter.
Proposition 8 Let f be a nondecreasing function. Let ϵ be a real number with $\frac{1}{2}<\epsilon<1$. If G admits ϵ-balanced separators of size f, then for every $\frac{1}{2}<\delta<1, G$ admits δ-balanced separators of size g, where g is the function such that $g(x)=\sum_{i=0}^{\left[\log _{\epsilon}\left(\frac{\delta-\frac{1}{2}}{2}\right)\right]-1} 2^{i} f\left(\epsilon^{i} x\right)$ for every x.

In particular, if there exist constants $c>0$ and $0 \leq \beta<1$ such that $f(x) \leq c x^{\beta}$, then there exists a constant $c^{\prime}>0$ such that $g(x) \leq c^{\prime} x^{\beta}$.

Proof. Since $\frac{1}{2}<\delta<1,0<\frac{\delta-\frac{1}{2}}{2}<\frac{1}{4}$. Since $\frac{1}{2}<\epsilon<1,\left\lceil\log _{\epsilon}\left(\frac{\delta-\frac{1}{2}}{2}\right)\right\rceil \geq 2$. In particular, $g \geq f$. So there is nothing to prove if $\delta \geq \epsilon$.

Hence we may assume $\delta<\epsilon$. And it suffices to prove that there exists a separation $\left(A^{*}, B^{*}\right)$ of G of order at most $f(|V(G)|)$ such that $\left|A^{*}-B^{*}\right| \leq$ $\delta|V(G)|$ and $\left|B^{*}-A^{*}\right| \leq \delta|V(G)|$, as we can apply the same argument to any induced subgraph of G.

Let (A, B) be an ϵ-balanced separator of G of order $f(|V(G)|)$. Since $G[A]$ is an induced subgraph of G, there exists an ϵ-separator $\left(A_{A}, B_{A}\right)$ of $G[A]$ of order $f(|A|) \leq f(\epsilon|V(G)|)$. Similarly, $G[B]$ has an ϵ-balanced separator
$\left(A_{B}, B_{B}\right)$ of $G[B]$ of order $f(|B|) \leq f(\epsilon|V(G)|)$. Let $Z_{1}=(A \cap B) \cup\left(A_{A} \cap\right.$ $\left.B_{A}\right) \cup\left(A_{B} \cap B_{B}\right)$. Then $\left|Z_{1}\right| \leq f(|V(G)|)+f(|A|)+f(|B|) \leq f(|V(G)|)+$ $2 f(\epsilon|V(G)|)$.

We can repeat this process to obtain a set $Z_{k} \subseteq V(G)$ with $\left|Z_{k}\right| \leq$ $\sum_{i=0}^{k} 2^{i} f\left(\epsilon^{i}|V(G)|\right)$ and 2^{k+1} induced subgraphs $H_{1}, H_{2}, \ldots, H_{2^{k+1}}$ of G such that each H_{i} is a union of components of $G-Z_{k}$ and contains at most $\epsilon^{k+1}|V(G)|$ vertices.

Choose $k=\left\lceil\log _{\epsilon}\left(\frac{\delta-\frac{1}{2}}{2}\right)\right\rceil-1$. So $\epsilon^{k+1} \leq \frac{1}{2}\left(\delta-\frac{1}{2}\right) \leq \frac{1}{2} \delta-\frac{1}{4}$. Let g be the function such that $g(x)=\sum_{i=0}^{k} 2^{i} f\left(\epsilon^{i} x\right)$ for every x.

If $\left|V\left(\bigcup_{i=1}^{2^{k+1}} H_{i}\right)\right| \leq \frac{1}{2}\left(\delta+\frac{1}{2}\right)|V(G)|$, then since $\delta \geq \frac{1}{2}, \frac{1}{2}\left(\delta+\frac{1}{2}\right)|V(G)| \leq$ $\delta|V(G)|$, so $\left(V\left(\bigcup_{i=1}^{2^{k+1}} H_{i}\right) \cup Z_{k}, Z_{k}\right)$ is a δ-balanced separator of G of order $\left|Z_{k}\right| \leq g(|V(G)|)$. So we may assume $\left|V\left(\bigcup_{i=1}^{2^{k+1}} H_{i}\right)\right| \geq \frac{1}{2}\left(\delta+\frac{1}{2}\right)|V(G)|$. Hence there exists a minimum integer $q \in[k]$ such that $\left|V\left(\bigcup_{i=1}^{q} H_{i}\right)\right| \geq \frac{1}{2}(\delta+$ $\left.\frac{1}{2}\right)|V(G)|$. Let $A^{*}=V\left(\bigcup_{i=1}^{q} H_{i}\right)$ and $B^{*}=V\left(\bigcup_{i=q+1}^{2^{k+1}} H_{i}\right) \mid$. By the minimality of $q,\left|A^{*}\right|=\left|V\left(\bigcup_{i=1}^{q} H_{i}\right)\right|=\left|V\left(\bigcup_{i=1}^{q-1} H_{i}\right)\right|+\left|V\left(H_{q}\right)\right| \leq \frac{1}{2}\left(\delta+\frac{1}{2}\right)|V(G)|+$ $\left|V\left(H_{q}\right)\right| \leq \frac{1}{2}\left(\delta+\frac{1}{2}\right)|V(G)|+\epsilon^{k+1}|V(G)| \leq \frac{1}{2}\left(\delta+\frac{1}{2}\right)|V(G)|+\left(\frac{1}{2} \delta-\frac{1}{4}\right)|V(G)| \leq$ $\delta|V(G)|$. Note that $\left|A^{*}\right| \geq \frac{1}{2}\left(\delta+\frac{1}{2}\right)|V(G)| \geq \frac{1}{2}|V(G)|$ since $\delta \geq \frac{1}{2}$. So $\left|B^{*}\right| \leq|V(G)|-\left|A^{*}\right| \leq \frac{1}{2}|V(G)| \leq \delta|V(G)|$. Hence $\left(A^{*} \cup Z_{k}, B^{*} \cup Z_{k}\right)$ is a δ-balanced separator of G of order $\left|Z_{k}\right| \leq g(|V(G)|)$.

Now we assume there exist constants $c>0$ and $0 \leq \beta<1$ such that $f(x) \leq c x^{\beta}$. We want to show that there exists a constant $c^{\prime}>0$ such that $g(x) \leq c^{\prime} x^{\beta}$.

Recall that $g(x)=\sum_{i=0}^{k} 2^{i} f\left(\epsilon^{i} x\right)$ for every x. So $g(x) \leq c \sum_{i=0}^{k} 2^{i}\left(\epsilon^{i} x\right)^{\beta} \leq$ $c x^{\beta} \cdot \sum_{i=0}^{k}\left(2 \epsilon^{\beta}\right)^{i} \leq c x^{\beta}(k+1)\left(1+\left(2 \epsilon^{\beta}\right)^{k}\right)=c^{\prime} x^{\beta}$, where $c^{\prime}=c(k+1)\left(1+\left(2 \epsilon^{\beta}\right)^{k}\right)$. Note that k only depends on ϵ and δ.

