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When doing divide-and-conquer algorithms, we frequently divide an n-
vertex graph into two parts A and B and then repeat the argument. Then the
running time 7'(n) satisfies the recurrence relation T'(n) = T'(|A|) +T(|B|) +
f(n) for some function f. And usually the running time is better when we
can ensure that both |A| and | B| are significantly smaller than n. In addition,
sometimes the term f(n) in the running time can be replaced by f(|AN B)
if (A, B) is a separation (i.e. no edge is between A — B and B — A).

Let G be a graph. Let € be a real number with 0 < € < 1. An e-balanced
separator of G is a separation (A, B) of G such that |A — B| < ¢|V(G)| and
|B—A| < ¢|V(G)]|. Note that it implies that max{|A|,|B|} < €|V (G)|+|AN
B, so we also want |AN B| is small. This implies that we should consider the
case € > 1/2 only. Moreover, as we would like to repeatedly apply the divide-
and-conquer argument, we also want G[A] and G[B] has balanced separators.
For a function f, we say that G admits e-balanced separators of size f if for
every induced subgraph H of G, there exists an e-balanced separator of H
of order at most f(|V(H)|).

For a function f, we say that G' admits balanced separators of size f if
G admits %—balanced separators of size f. Note that we choose % here is for
convenience. Later (Proposition 8) we will show that actually choosing any
constant between 1/2 and 1 is more or less equivalent.

1 Balanced separators and tree-width

Theorem 1 Let w be a positive integer. If G is a graph with tree-width at
most w, then G has a balanced separator of order at most w + 1.
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Proof. Let (T, X) be a tree-decomposition of G with width w. If there exists
an edge tt' € E(T') with X; = Xy, then we can contract ¢’ into a vertex and
keep the same bag to obtain a tree-decomposition with the same width. So
we may assume that for every edge tt’ € E(T), X; # Xy. Hence every edge
of T" gives a separation of GG of order at most w.

If there exists an edge e of T such that the separation given by e is a
balanced separator, then we are done. So we may assume that for every edge
xy of T', exactly one side of the separation (A, B,,) given by xy, say given
by the side containing X, contains at least 2|V (G)| 4 [Azy N Byy| vertices,
and we can direct xy from z to y. Hence T" becomes a directed graph. Since
D tev(r) degr(t) = |E(T)| = |V(T)| — 1, there exists a vertex t, of T with
degt(to) = 0. So for every component C' of T — tg, | Urevioy Xt — Xi| <
sVl

If there exists a component C' of T' — to such that |U,cy (o) Xe — Xi| =
V@), then [V(G) ~ (Xiy UUseviey X0l < V(@) — V(G| < HV(@)].
80 (Urev (o) X6, V(G) = (X4 U Usey () X+)) is a balanced separator of order
| X4,| < w+ 1. Hence we may assume that for every component C' of T — t,
|Ut€V(C) Xy — Xl < %‘V(Gﬂ

If [V(G)—X,,| < 3|V(G)], then the separation (Xy,, V(G)) is a separation
of G of order | X;,| < w + 1 and satisfying |X;, — V(G)| = 0 < 2|V(G)| and
V(G) — X4| < 3|V(G)], so (X4, V(G)) is a balanced separator of order at
most w + 1. So we may assume |[V(G) — Xy > 3|V (G)].

Let Cy,Cy,...,Cy be the components of T — ty. Since |V(G) — Xy)| >
$|V(G)|, there exists a smallest integer ¢ such that 7, | Usevie,) Xt =Xl =
3/V(G)|. Note that ¢ > 2. So 37, | Usev ey Xe—=Xio| = S Useven Xi—
Xiol + Ureviey Xt — Xl < 3IV(G) + 3IV(G)] = 5IV(G)]. Moreover,
U Uncren X = Xaol = IV(G) = Xl = X0, [Usevien Xo — Kol <

V(&) = 5IV(G)] = 3IV(G)|. Hence (UL, Urevcy Xo Ugir Ureviey X0)
is a balanced separator of order | X;,| <w+1. =

Using Theorem 1, we can show that some graph has large tree-width.

Proposition 2 Let k be a positive integer with k > 4. Let G be the k x k-
grid. Then G has tree-width at least | k/4].

Proof. Suppose that G has tree-width at most |k/4] — 1. By Theorem 1,
there exists a balanced separation (A, B) of G of order at most |k/4].
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Since |A N B| < k/4, at most k/4 rows intersect both A and B. So
there are at least 3k/4 rows each contained in A or contained in B. If
there exist a row contained in A and another row contained in B, then
there are k disjoint paths from A to B, contradiction. So we may assume
that there are at least 3k/4 rows contained in B. Hence |B| > 3k*/4. So
|B— Al = |B|— |[ANB| > 3k?/4 — k/4 > 2k*/3 = 2|V(G)] since k > 4, a

contradiction. m

Note that it is not very hard to show that the bound k/4 can be improved
to k, but it requires other notions and we will not do it here. The important
message from the above proposition is that if a graph has small tree-width,
then it cannot contain a large grid as a minor. The converse statement is
also true, but we will not prove it here.

Theorem 3 (Grid Minor Theorem (Robertson, Seymour)) There ex-
ists a function f such that for every positive integer w, if a graph G has
tree-width at least w, then it contains a f(w) X f(w)-grid as a minor.

Theorem 3 tells us exactly when a graph has large tree-width.
On the other hand, the converse of Theorem 1 holds approximately.

Theorem 4 (Dvorak, Norin) Let w be a positive integer. If G admits
balanced separators of order w, then the tree-width of G is at most 15w.

2 Strongly sublinear balanced separators

Recall that we show that if G' has tree-width at most w, then we can find
a maximum stable set in G in time O(w4"|V(G)|). It implies that if G has
sublinear tree-width (in |V (G)|), then a maximum stable set can be found
in subexponential time. So it is reasonable to consider what kind of graphs
have sublinear tree-width. By Theorem 4, it is equivalent to consider what
kind of graphs have balanced separators with sublinear size.

The following is a famous example.

Theorem 5 (Lipton, Tarjan) Every planar graph admits balanced separa-
tors of size f, where f is the function f(z) = 2v/2\/.

It is strengthened to another famous theorem.



Theorem 6 (Alon, Seymour, Thomas) For every proper minor-closed fam-
ily F, there exists a constant ¢ such that every graph in F admits balanced
separators of size f, where f is the function f(x) = c\/x.

We usually want a bit more than just being sublinear. That is, we want
the order of the separators is “polynomially better than linear”, like the
above two examples. For a class F of graphs, we say that F admits strongly
sublinear balanced separators if there exists a function f(x) := cx? for some
constants ¢ > 0 and 0 < < 1 such that every graph in F admits balanced
separators with size f.

The following theorem characterizes the existence of strongly sublinear
balanced separators, via graph expansion.

Theorem 7 (Dvoidak, Norin) Let F be a set of graphs. Then F admits
strongly sublinear balanced separators if and only if F has expansion g for
some polynomial g.

3 Choices of constants
Now we show that the choice of € for e-separators does not matter.

Proposition 8 Let f be a nondecreasing function. Let € be a real number
with % < e < 1. If G admits e-balanced separators of size [, then for every
% <0 <1, G admits §-balanced separators of size g, where g is the function

Lt ISR
such that g(x) = Z!E(‘?E( )17 2'f(e'x) for every x.

In particular, if there exist constants ¢ > 0 and 0 < [ < 1 such that
f(x) < caP, then there exists a constant ¢ > 0 such that g(z) < /2P.
Proof. Since 3 <4 < 1,0 < % < 1. Since 3 <e<1, ﬂog&%ﬂ >2. In
particular, g > f. So there is nothing to prove if § > .

Hence we may assume § < €. And it suffices to prove that there exists a
separation (A*, B*) of G of order at most f(|V(G)|) such that |A* — B*| <
O|V(G)] and |B* — A*| < 0|V(G)|, as we can apply the same argument to
any induced subgraph of G.

Let (A, B) be an e-balanced separator of G of order f(|V(G)]). Since G[A]
is an induced subgraph of G, there exists an e-separator (A4, Ba) of G[A]
of order f(|A]) < f(e|]V(G)|). Similarly, G[B] has an e-balanced separator
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(Ap, Bp) of G[B] of order f(|B]) < f(e|V(G)]). Let Z; = (AN B)U (AsN
B.4)U (A1 By). Then |74 < F(V(G)) + F(IAD + F(B]) < F(V(G))) +
2f(e[V(G)])-

We can repeat this process to obtain a set Zp C V(G) with |Z;| <
S L2 F(€V(G)]) and 28! induced subgraphs Hy, Hy, ..., Hywer of G such
that each H; is a union of components of G — Z; and contains at most
"LV (G)| vertices.

Choose k = [logg(é_2
function such that g(z) = Y25, 2! f(¢’x) for every x.

I VUL H)| < 36+ )IV(G)], then since § > 3, 56+ H)V(G)] <
S|V (G)], so (V(U?:l H;) U Zy, Z)) is a 6-balanced separator of G of order
|Zi| < g(JV(G)]). So we may assume |V(U12:1 H;)| > (64 3)|V(G)|. Hence
there exists a minimum integer ¢ € [k] such that |V (UL, H;)| > 3(6 +
DIV(G)]. Let A* = V(UL, H;) and B* = V(U2 ., Hy)|. By the minimality
of ¢, | A% = V(UL H)l = [V(ULZ Hi)l + IV(H)| < 506 +3)[V(G)| +
V(H,)| < 56+ 3)V(G)|+ V(G < 500+ 3)[VIG)+ (50— PIV(G)] <
0|V(G)|. Note that |A*| > 1(0 + 3)|V(G)| > 3|V(G)| since 6 > 3. So
|B*| < [V(G)| — |A*| < 3{V(G)| < 8|V(G)|. Hence (A*U Zy, B* U Z) is a
d-balanced separator of G of order |Z| < g(|V(G)]).

Now we assume there exist constants ¢ > 0 and 0 < [ < 1 such that
f(x) < caP. We want to show that there exists a constant ¢ > 0 such that
g(z) < da”.

Recall that g(z) = 3¢, 2 f(€'z) for every 2. So g(z) < ¢S or, 2i(c'x)? <
cxﬁ~2f:0(2€ﬁ)i < cx?(k+1)(1+(26°)%) = 2P, where ¢ = c(k+1)(1+(26%)).
Note that k& only depends on € and . m

SIS

o —

)] —1. So € < 1(6—1) < 16— 1. Let g be the



