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Abstract

Chemical enhanced oil recovery by surfactant-polymer (SP) flooding has been studied in two space
dimensions. A new global pressure for incompressible, immiscible, multicomponent two-phase porous
media flow has been derived in the context of SP flooding. This has been used to formulate a system
of flow equations that incorporates the effect of capillary pressure and also the effect of polymer and
surfactant on viscosity, interfacial tension and relative permeabilities of the two phases. The coupled
system of equations for pressure, water saturation, polymer concentration and surfactant concentration
has been solved using a new hybrid method in which the elliptic global pressure equation is solved using a
discontinuous finite element method and the transport equations for water saturation and concentrations
of the components are solved by a Modified Method Of Characteristics (MMOC) in the multicompo-
nent setting. Numerical simulations have been performed to validate the method, both qualitatively
and quantitatively, and to evaluate the relative performance of the various flooding schemes for several
different heterogeneous reservoirs.

Keywords: surfactant-polymer flooding, global pressure, capillary pressure, finite element method,
method of characteristics, numerical simulations, heterogeneous permeability

1 Introduction

One of the effective methods of tertiary oil recovery is Surfactant-Polymer (SP) flooding which involves
injection of polymer and surfactant laden aqueous phase in oil reservoirs. Polymer in the displacing fluid
improves oil recovery by inhibiting the growth rate of the fingering instability and by increasing the water
saturation level behind the displacing front. See Daripa et al. [1] for a study of these phenomena during
polymer flooding which in general is a less effective method of tertiary oil recovery than the SP flooding, a
subject of present study. In the SP flooding, the use of surfactant further improves oil recovery by reducing
the capillary pressure between the aqueous and the oil phases and by reducing the residual saturation limits
of the rock matrix. ASP flooding in which Alkali is also used in the SP-laden aqueous phase, is supposed to
be even more effective since the alkali produces surfactant in-situ thereby replenishing surfactant lost due to
adsorption by the porous matrix during the transport of these chemical components by the flow through the
porous matrix. In recent years, surfactant-polymer flooding has been shown to be preferable to even ASP
flooding in highly heterogeneous reservoirs as the elimination of alkali removes undesirable inorganic scale

∗Author for correspondence (email:daripa@math.tamu.edu)
†email:sdutta@math.tamu.edu

1

srvdu
Text Box
© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



formation, incompatibility with some polymers and demulsification difficulties [2, 3]. Therefore, SP flooding
is of significant current interest and is drawing a lot of attention [4, 5, 6, 7, 8].

Multiphase flow in porous media is modeled mainly using two different approaches. The first approach is
based on mass conservation laws for each of the fluids [9]. In the second approach, known as the fractional
flow approach, these conservation laws are combined to obtain a new set of equations with the introduction
of the total velocity, the global pressure and other ancillary functions. The global pressure was introduced
by Chavent and Jaffré [10] for immiscible, incompressible two-phase flow without any components and was
later revisited by several others (see for instance [11]). The fractional flow approach which is computationally
more efficient than the two-pressure approach, has been adopted for numerical simulations in hydrology and
petroleum reservoir problems. Recently the concept of global pressure has been extended to immiscible,
compressible two-phase flows under the assumption of no mass transfer between the phases and taking into
account the effects of gravity, capillary pressure and heterogeneity [12, 13]. Some existence results for this
new formulation have been presented [14] and its effectiveness in numerical simulations has been demon-
strated [15]. This has been further extended to a global pressure formulation for the case of compositional,
compressible two-phase flows with mass exchange between the phases [16]. A fully equivalent global pressure
formulation for three-phase compressible flows has been established [17] and numerically validated [18]. In
this paper, a global pressure formulation has been formally derived for immiscible, incompressible two-phase
flows in the presence of dissolved components (polymer and surfactant). Unlike the two-phase flow models
discussed above, the fractional flow formulation for multicomponent two-phase flow has a system of transport
equations for the non-wetting phase saturation and the component concentrations which are coupled to the
global pressure equation.

Classical finite difference and finite element methods often give rise to nonphysical oscillations in the
numerical solution while classical upwind methods tend to generate excessive numerical diffusion that smears
out the fronts. To avoid these issues, various high-order accurate finite difference methods [1, 19, 20, 21, 22]
and locally mass conservative finite volume methods [23, 24] have been developed for constructing numerical
solutions of these multiphase multicomponent flows through heterogeneous porous media. Different types
of finite element methods(FE) such as control volume FE (CVFE -[25, 26]), discontinuous Galerkin (DG
-[27, 28, 29, 30]) and mixed FE [31, 32] methods have also become methods of choice for the reservoir
simulation because these methods do not suffer from much grid orientation effects, allow local grid refinement
and have high order of accuracy. These methods are also versatile and have been applied to other problems
such as simulation of faults and fractures [33, 34, 35]. In the recent past, several multiscale FE and FV
methods have also been proposed to better account for the variation in the reservoir properties over a large
range of computational scales [36, 37, 38]. In problems where advection dominates diffusion, finite element
methods have been found to exhibit excessive nonphysical oscillations for non-smooth solutions [39]. When
standard upstream weighting approaches are applied to these FE methods to eliminate the nonphysical
oscillations, they tend to smear out sharp fronts and suffer from grid orientation problems. While extremely
fine mesh refinement can alleviate some of these problems, it has prohibitively high computational expense.

An alternative approach to solve time dependent advection-diffusion problems is given by the class of
Eulerian-Lagrangian methods. In these methods, the advection part is treated in Lagrangian coordinates
by propagating the solution along the characteristics for the advection part, while a Eulerian fixed mesh
is used for the diffusion part [40, 41]. In such a Lagrangian formulation, only the effect of the diffusion
and the source terms are observed while the effect of the advection and/or the moving steep fronts are not
seen. Hence, the solutions of the advection diffusion PDEs are much smoother along the characteristics
than they are in the time direction and hence these methods usually allow larger time steps to be used in
a numerical simulation while still maintaining its stability and accuracy. Also, these methods significantly
reduce numerical diffusion and grid-orientation effects observed in upwind schemes, and are very competitive
in terms of accuracy and efficiency [42, 43, 44].

The Modified Method Of Characteristics (MMOC) is one of the earliest methods (see [45]) in the class
of Eulerian-Lagrangian methods to be widely accepted for numerical simulation of miscible and immiscible
displacement problems [46]. Some of the significant subsequent improvements on this method include the
modified method of characteristics with adjusted advection (MMOCAA, [42, 47]), the Eulerian-Lagrangian
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localized adjoint method (ELLAM, [48]), the characteristic mixed finite element method (CMFEM, [49]), the
locally conservative Eulerian-Lagrangian method (LCELM, [50]), the characteristic finite volume element
method (CFVEM, [51]) and the Eulerian-Lagrangian discontinuous Galerkin method (ELDG, [52]). The
MMOCAA is a mass-conserving time discretization procedure which inherits the competitiveness of the
MMOC. The conservative modified method of characteristics (CMMOC, [53]) is a variant of the MMOCAA
which adjusts the convection implicitly and minimizes the error of the mass balance problem. The ELLAM
and CMFEM are some of the other variants of the characteristics based method which also conserve mass.
So far, the MMOC and its variants have only been studied in the context of miscible and immiscible, purely
two-phase flow problems that lead to a system of coupled equations for solving one of the phase saturations
and one of the phase pressures. In this paper, the MMOC approach has been applied to solve the system of
transport equations arising in the context of multicomponent two-phase flows with one phase saturation and
two component concentrations as the primary transport variables. Towards this end, it is worth mentioning
here that the front tracking method has been applied to solve a similar system as ours but of less complexity
when the surfactant is not present and the effect of capillary pressure is neglected. We direct the readers to
Daripa et al. [20] and the papers cited therein.

In this paper, we propose a model that describes the displacement processes during the SP flooding in the
form of a new global pressure formulation. The model is numerically solved using a hybrid methodology that
uses a non-traditional discontinuous finite element method for the global pressure, in combination with the
modified method of characteristics (MMOC) and time implicit methods to solve the system of the advection-
diffusion equations for the phase saturations and the concentrations of various chemical components. To
validate and demonstrate the accuracy and performance of the method, we use numerical simulations of wa-
terflooding and polymer flooding in different heterogeneous permeability fields and flow geometries. Then,
results from numerical simulation studies comparing various flooding schemes for the SP flooding in het-
erogeneous permeability fields are presented. In a sequel which is in progress, we prove convergence of this
method.

This paper is laid out as follows. In section 2, the global pressure formulation of the governing equations
for SP flooding is derived and presented along with the various models of relative permeability and their
dependence on the water saturation and the concentrations of the polymer and the surfactant. In section 3,
we present the numerical method: the computational grids, the non-traditional discontinuous finite element
method for the pressure equation, the MMOC for the transport equations of the SP flooding, the construction
of multiscale heterogeneity, and the computational algorithm along with a pseudocode and a flowchart. We
present and discuss the numerical results in section 4. Finally we conclude in section 5.

2 Mathematical model: Surfactant-polymer flood

SP flooding is the process where the reservoir is flooded with the SP laden aqueous solution. This new
aqueous phase displaces the oil during this flooding process. This can achieve a higher level of oil recovery
than the polymer flood and become more economical if an appropriate combination of surfactant and polymer
is used. Polymer is used to increase the viscosity of the displacing aqueous phase, which in turn stabilizes
the oil-water interface and partially inhibits the growth of unwanted finger patterns. Surfactants have at
least one hydrophobic group (non-polar tail) and one hydrophilic group (polar head) in the same molecule,
as shown in Fig. 1(a). This dual character allows them to sufficiently lower the interfacial tension and also
remarkably alter the wetting properties. These factors contribute towards lowering the capillary pressure
barrier and increasing the relative permeability of the rock, thereby improving oil recovery. However, the
dual character of the surfactant also causes the spontaneous formation of clusters known as micelles. These
micelles may interact with the polymer chains to form more complicated aggregates. Depending on the pH
level of the system, the polymer can sometimes be lost due to adsorption on the rock surface. Moreover,
the thin capillary structure of the rock pores causes the polymer chains to stretch or coil, thus changing the
nature of the SP laden aqueous phase. Some of these effects are illustrated in Fig. 1(b). For the purpose of
the current work, some simplifying assumptions have been made that enable us to study the impact of the

3



(a) Surfactant molecules arranged on an in-
terface

adsorbed surfactant monolayer adsorbed polymer

polymer

micelle

monomer

polymer micelle 
aggregate

stretched

polymer
coiled

(b) Dynamics of a surfactant polymer solution

Figure 1: Pictorial representation of the rheology and behavior of surfactant molecules (a) near an interface
and (b) in a solution containing dissolved polymer. The left diagram has been taken from the Wikipedia
link - https://commons.wikimedia.org/wiki/File:Surfactant.jpg

components on the aqueous phase viscosity, interfacial tension and capillary pressure.
SP flooding is modeled here as an incompressible, immiscible, multicomponent two-phase flow through

porous media. Let Ω be a finite domain representing the porous reservoir with boundary ∂Ω. Let the
non-wetting phase (oil) and the wetting phase (water or an aqueous solution of polymer and surfactant) be
denoted by the subscripts “o” and “a” respectively. Let sj denote the saturation (volume fraction), vj the
velocity, pj the pressure, qj the appropriate source/sink term, krj the relative permeability, μj the viscosity
and λj = krj/μj denote the mobility of phase j where j = o or a. Also, let K(x) be the absolute permeability
tensor, φ be the porosity of the medium, λ = λa + λo be the total mobility and v = va + vo be the total
velocity. Then considering the hypothesis of capillary pressure and relative permeability we can write the
following equations arising from the conservation of mass of each phase

φ
∂sa
∂t

+∇ · va = qa, (x, t) ∈ Ω× (0, T ], (1a)

φ
∂so
∂t

+∇ · vo = qo, (x, t) ∈ Ω× (0, T ]. (1b)

The equations for conservation of mass of the polymer and the surfactant dissolved in the aqueous phase are
given by

φ
∂(csa)

∂t
+∇ · (cva) = ciqaδ(x− xi) + cqaδ(x− xp), (x, t) ∈ Ω× (0, T ], (2)

φ
∂(Γsa)

∂t
+∇ · (Γva) = Γiqaδ(x− xi) + Γqaδ(x− xp), (x, t) ∈ Ω× (0, T ], (3)

where c is the concentration (volume fraction in the aqueous phase) of the dissolved polymer and Γ is the
concentration of the surfactant while ci and Γi are the concentrations of polymer and surfactant in the
injected fluid, respectively. It is assumed that both the components are getting only passively advected with
negligible diffusion and no adsorption losses. Also, xi is the location of the injection well and xp is the
location of the production well, both of which are treated as point source/sink terms and δ is the Dirac-delta
function. The conservation of momentum is given by the Darcy-Muskat law for each phase

va = −K(x)λa∇pa, x ∈ Ω, (4a)

vo = −K(x)λo∇po, x ∈ Ω. (4b)
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We consider the porous medium to be initially saturated with the two phases and hence we have

so + sa = 1. (5)

Henceforth we use the notation s for sa. The capillary pressure, pc, is given by

pc(s) = po − pa. (6)

The following initial and boundary conditions are prescribed.

s(x) = s0(x), c(x) = c0(x), Γ(x) = Γ0(x); x ∈ Ω, t = 0, (7a)

∇s · n̂ = 0, ∇c · n̂ = 0, ∇Γ · n̂ = 0 & vj · n̂ = 0; x ∈ ∂Ω, t > 0, (j = a, o), (7b)

where n̂ is a unit vector normal to ∂Ω. The source/sink terms in eqs. (1a) and (1b) are given by

qa =

⎧⎪⎨
⎪⎩
Q

−(λa/λ)Q ;

0

qo =

⎧⎪⎨
⎪⎩
0

−(λo/λ)Q

0

at

⎧⎪⎨
⎪⎩
xi = (0, 0) (Source)

xp = (1, 1) (Sink)

x ∈ Ω \ {(0, 0) ∪ (1, 1)} (Elsewhere)

, (8)

where Q is the volumetric injection/production rate. In the above, we have made the physically relevant
assumption that oil is never injected and the fluid mixture obtained at the production well is proportional
to the resident fluid at that point.

Above equations describe the flow and transport problem in the phase pressure formulation, which is
a system of strongly coupled non-linear equations. This system is also degenerate because only eq. (4b)
(eq. (4a)) will survive at s = 0(1) where the phase pressure pa(po) has no meaning. For these and many
other reasons, mathematical and numerical studies of this problem including numerical simulations are very
challenging. In order to avoid this difficulty, we propose a new global pressure formulation for incompressible,
immiscible two-phase flows with dissolved components. A formal derivation is given below in brief.

We observe the following identity

va =
λo

λ
va − λa

λ
vo +

λa

λ
v. (9)

Substituting eq. (9) in eq. (1a) and then using eq. (4a) and eq. (4b), we obtain

φ
∂s

∂t
−∇ ·

{
K(x)

λo

λ
λa∇pa −K(x)

λa

λ
λo∇po

}
+∇ ·

{
λa

λ
v

}
= qa,

or equivalently,

φ
∂s

∂t
+∇ · {K(x)fa(s, c,Γ)λo∇ (pc(s,Γ))}+∇ · (fa(s, c,Γ)v) = qa. (10)

Here fj(s, c,Γ) = λj(s, c,Γ)/λ(s, c,Γ) is the fractional flow function of the phase j. Equation (10) is called
the saturation equation. For purposes below, we define

ηc(s, c,Γ) =

∫ s

sc

∂

∂c
(fo − fa) (ζ, c,Γ)

dpc
dζ

(ζ,Γ)dζ +

∫ Γ

Γc

∂

∂c
(fo − fa) (s, c, ξ)

dpc
dξ

(s, ξ)dξ, (11a)

ηs(s, c,Γ) =

∫ Γ

Γc

∂

∂s
(fo − fa) (s, c, ξ)

dpc
dξ

(s, ξ)dξ, (11b)

ηΓ(s, c,Γ) =

∫ s

sc

∂

∂Γ
(fo − fa) (ζ, c,Γ)

dpc
dζ

(ζ,Γ)dζ, (11c)

5



where sc is the value of the aqueous phase saturation at which pc(sc,Γ) = 0 and Γc is the surfactant
concentration value defined similarly by pc(s,Γc) = 0. Using the above relations, we define a function p,
called the global pressure, as follows.

p =
1

2
(po + pa) +

1

2

∫ s

sc

(fo − fa)(ζ, c,Γ)
dpc
dζ

(ζ,Γ)dζ +
1

2

∫ Γ

Γc

(fo − fa)(s, c, ξ)
dpc
dξ

(s, ξ)dξ

− 1

2

∫
ηc(s, c,Γ)

(
∂c

∂x
dx+

∂c

∂y
dy

)
− 1

2

∫
ηs(s, c,Γ)

(
∂s

∂x
dx+

∂s

∂y
dy

)

− 1

2

∫
ηΓ(s, c,Γ)

(
∂Γ

∂x
dx+

∂Γ

∂y
dy

)
+ C, (12)

where C is a reference pressure which takes the place of an integration constant in the calculations. Taking
gradients on both sides of eq. (12) and simplifying we obtain

∇p =
1

2
∇(po + pa) +

1

2
(fo − fa) (s, c,Γ)∇pc(s,Γ). (13)

In the absence of the polymer and the surfactant, eq. (12) reduces to the global pressure function for
incompressible, immiscible two-phase flows (see [10]). Multiplying both sides of eq. (13) with K(x)λ and
simplifying we get

−K(x)λ∇p = v. (14)

Due to the incompressibility of the phases, we have

∇ · v = qa + qo. (15)

Using eq. (14) in eq. (15) we finally get

−∇ · (K(x)λ(s, c,Γ)∇p) = qa + qo. (16)

Equation (16) is the global pressure equation. Solving this equation (see below) yields the global pressure
p from which the phase pressures pa and po are easily recovered using the definition (6) for the capillary
pressure and the definition (12) for the global pressure. In this formal derivation of the global pressure
variable, we have only assumed the following physically realistic functional dependencies, fa = fa(s, c,Γ),
fo = fo(s, c,Γ) and pc = pc(s,Γ) and not specific functional forms. However, a similar procedure can be
adopted to derive a more general form of global pressure for any multicomponent two-phase flow system.

Hence the new system of equations for the SP model in non-conservative form is given by

−∇ · (K(x)λ(s, c,Γ)∇p) = qa + qo, (17a)

φ
∂s

∂t
+

∂fa
∂s

v ·∇s+∇·
(
D
∂pc
∂s

∇s

)
= gs − ∂fa

∂c
v ·∇c− ∂fa

∂Γ
v ·∇Γ−∇·

(
D
∂pc
∂Γ

∇Γ

)
, (17b)

φ
∂c

∂t
+

(
fa
s
v+

D

s

∂pc
∂s

∇s+
D

s

∂pc
∂Γ

∇Γ

)
·∇c = gc, (17c)

φ
∂Γ

∂t
+

(
fa
s
v+

D

s

∂pc
∂s

∇s+
D

s

∂pc
∂Γ

∇Γ

)
·∇Γ = gΓ, (17d)

where D(s, c,Γ) = K(x)λo(s,Γ)fa(s, c,Γ) and

gs =

{
(1− fa)Q

0
gc =

{
(ci − c)Q/s

0
gΓ =

{
(Γi − Γ)Q/s

0
at x =

{
xi (source)

Ω \ {xi} (elsewhere)
.
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In this paper, potential degeneracies in the capillary term of eq. (17b) has been avoided in the numerical
simulations. Please refer to section 3.2 for a more detailed discussion. In order to solve the system of
eqs. (17a)–(17d), we need the viscosity relations, and the constitutive relations for the capillary pressure and
the relative permeabilities. These relations are given below.

The aqueous phase viscosity is modeled by a linear function of polymer concentration.

μa = μw(1 + γc). (18)

Here μw is the viscosity of pure water and the coefficient γ characterizes the particular polymer. In the
numerical simulations, we vary the viscosity ratio Mμ = μo/μw for waterflooding and Mμ = μo/μa for
polymer flooding between the values of 1.25 and 10.

Capillary pressure is strongly dependent on the surfactant concentration. It reduces steadily with in-
creasing surfactant concentration up to the CMC (Critical Micelle Concentration) due to the reduction in
interfacial tension (IFT). The relationship of IFT with surfactant concentration has been extensively studied
experimentally and is known to be inversely proportional (Fig. 2). In order to model this complex depen-
dence of capillary pressure on s as well as on Γ, we adopt the approach (see [54]) that is often followed in
SEAR (Surfactant Enhanced Aquifer Remediation) processes. It is given by the following empirical relation.(

pb
pc

)ω1

=

(
1− s− sσra

1− sσra − sσro

)
. (19)

In the above, sσra and sσro are the residual saturations for the aqueous and oleic phases respectively at
interfacial tension σ, ω1 is a curve fitting parameter called the pore-size index and pb is called the entry
pressure. The entry pressure changes with the interfacial tension of the system. This effect is captured using
a Leverett function scaling procedure in which pb is replaced by σω2(φ/K)1/2 where ω2 is a proportionality
constant and K is the geometric mean of the horizontal permeabilities in the x and y directions. Thus pb
implicitly captures the relationship between capillary pressure pc and surfactant concentration Γ via the
interfacial tension σ = σ(Γ). Hence the capillary pressure is modeled as a function of porosity, permeability,
the aqueous phase saturation and the surfactant concentration.

From surface chemistry we know that surfactants improve the mobilization of trapped oil by reducing
the interfacial tension forces which in turn leads to the reduction of the capillary pressure between oil and
water. But this also leads to a reduction of the residual saturations and hence an increase in the relative
permeabilities of the two phases. In fact, for IFT values below 0.1 mN/m (milliNewton per meter) the
relative permeabilities of both the phases increase substantially due to a decrease of the residual saturations
of the two phases with an increase in IFT (captured through the capillary number, Nc). This effect on the
relative permeabilities and the residual saturations can be captured through the relative permeability curves.
The relative permeability curves are modeled following the approach of Amaefule and Handy [55] as

kσra =

(
s− sσra
1− sσra

){
2.5sσra

[(
s− sσra
1− sσra

)2

− 1

]
+ 1

}
,

kσro =

(
1− s− sσra

1− sσra − sσro

){
5sσro

[(
1− s− sσra

1− sσra − sσro

)
− 1

]
+ 1

}
.

(20)

Here kσra and kσro are the respective relative permeabilities of the aqueous and the oleic phases at an interfacial
tension of σ.
To use the above models for the capillary pressure, eq. (19), and the relative permeability, eq. (20), we need
to be able to determine the variation in the residual saturations of the phases with changes in the interfacial
tension. For this purpose, we use the empirical expressions that relate the IFT and the residual saturations
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using the capillary number (see [55]) given as follows

sσro =

⎧⎨
⎩
sσ0ro Nc < Nco

sσ0ro

(
Nco

Nc

)0.5213
Nc ≥ Nco

,

sσra =

⎧⎨
⎩
sσ0ra Nc < Ncao

sσ0ra

(
Ncao

Nc

)0.1534
Nc ≥ Ncao

.

(21)

0 100 200 300 400 500 600 700 800 900 1000

Surfactant concentration

10-2

10-1

100

101

IF
T

Figure 2: Interfacial tension of oil/brine as a function of surfactant concentration.

Here the exponents are obtained through curve fitting on experimental data. Nc = μ|v|
σ is the capillary

number calculated from the displacing fluid viscosity μ, Darcy velocity v and interfacial tension, σ. The oleic
and the aqueous phase capillary numbers at interfacial tension, σ0, are Nco and Ncao respectively. Also, sσ0ra
and sσ0ro are the residual saturations of the aqueous and oleic phases respectively at interfacial tension σ0.
Finally, to complete the model we use the following empirical relationship between the surfactant concentra-
tion and the interfacial tension that closely resembles the behavior observed in laboratory experiments (see
[56]),

σ =
10.001

Γ + 1
− 0.001. (22)

The flow and transport equations given by eqs. (17a)–(17d) combined with the constitutive relations given
by eqs. (18)–(22) form a complete mathematical model for the SP flooding.

A similar model for the polymer flooding is obtained by treating it as a simplified case of the above
system. One of the key differences will be in the definition of the global pressure, ppol, which is now given
by

ppol =
1

2
(po + pa) +

1

2

∫ s

sc

(
λ̂o(ζ, c)− λ̂a(ζ, c)

) dpc
dζ

(ζ)dζ

− 1

2

∫ (∫ s

sc

∂

∂c

(
λ̂o(ζ, c)− λ̂a(ζ, c)

) dpc
dζ

(ζ)dζ

)(
∂c

∂x
dx+

∂c

∂y
dy

)
+ Cpol. (23)

where Cpol is again some reference pressure which replaces the integration constant. The corresponding
constitutive relations for the relative permeabilities, kra(s, c) and kro(s), and the capillary pressure pc(s) are
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obtained from the Corey-type imbibition relations ([57] and [58]).

kra =

(
s− sσ0ra
1− sσ0ra

)3.5

, (24a)

kro =

(
1− s− sσ0ra

1− sσ0ra − sσ0ro

)2
[
1−

(
s− sσ0ra

1− sσ0ra − sσ0ro

)1.5
]
, (24b)

pc = pd

(
s− sσ0ra
1− sσ0ra

)−0.25

, (24c)

where kra and kro are the relative permeability functions of the aqueous phase and the oleic phase respectively
when the interfacial tension between the two phases is given by σ0. Also, pd is the displacement pressure or
entry pressure, as defined before in eq. (19). The exponents used in eqs. (24a)–(24c) and the value of pd are
usually determined by fitting curves to equilibrium experimental data.

Alternatively, the Van Genuchten model [59] and the subsequent generalization done by Parker et al. [60]
are also available

kra(s) = s1/2e

(
1− (1− s1/me )m

)2
, (25a)

kro(s) = (1− se)
1/2
(
1− s1/me

)2m
, (25b)

pc(s) =
1

α0

(
s−1/m
e − 1

)1−m

, (25c)

where se = (s−sσ0ra)/(1−sσ0ra) is called the effective saturation. For the sake of simplicity, in eqs. (25a)–(25c)
the residual wetting phase saturation, sσ0ra and the residual non-wetting phase saturation, sσ0ro may be taken
to be zero with the parameters m = 2/3 and α0 = 0.125 (see [61]). We have performed numerical simulations
of polymer flooding with both of these models and the results have been found to be qualitatively similar.

3 Numerical method

The governing eqs. (17a)–(17d) form a coupled system of nonlinear partial differential equations. The total
mobility λ(s, c,Γ) appearing in the pressure eq. (17a) depends on the solution of the transport equations.
Also, the transport eqs. (17b)–(17d) depend on the total velocity v, thus introducing a coupling with the
elliptic pressure equation. Additionally, since the phase mobilities (and so the fractional flow functions) are
nonlinear functions of the water saturation and the species concentrations, the equations are nonlinear. For
each time step, this coupled system of equations is solved using the following sequential procedure. First,
the initial values of s, c and Γ are used as input for solving the elliptic eq. (17a) for the global pressure p
and the total velocity v using a non-traditional finite element formulation which is described in section 3.2.
Next, v is used as an input in the transport eqs. (17b)–(17d) to advance the current values of triplet (s, c,Γ)
to the next time level by solving these equations using a combination of the MMOC and an implicit-time
finite difference scheme. This sequential time-stepping process repeats until a suitable stopping criterion is
reached. The numerical treatment of the nonlinearity has been discussed in section 3.3 on the finite difference
numerical scheme.

Below, section 3.1 describes two different computational grids that are used for solving the system of
equations. The transport equations are solved on a uniform Cartesian grid that is referred to as the FD
(finite difference) grid. The pressure equation is solved using a non-traditional finite element formulation on
a fixed mesh, composed of triangular elements, that is referred to as the FE (finite element) grid. Section 3.2
describes the finite element formulation in detail. The MMOC based finite difference method used for the
transport equations is presented in section 3.3. This is followed by section 3.4 on numerically generating
scalar absolute permeability fields to accurately model multiscale rock heterogeneity. Finally, the algorithm,
the pseudocode, and the flowchart of the method are presented in section 3.5.
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3.1 Computational grid

The numerical simulations have been performed in two types of domains: quarter five-spot and rectilinear.
The quarter five-spot domain Ω = [0, 1]2 has an injection well at (0, 0), a production well at (1, 1) and no
flow conditions on the rest of the boundary, as shown in Fig. 3(a). The rectilinear flow domain Ω = [0, 1]2

has a line source at x = 0 and a line sink at x = 1. No flow conditions are specified on the remaining top
and bottom horizontal boundaries, as shown in Fig. 3(b).

Q

−Q

(0, 0)− Source

(1, 1)− Sink

Water + Polymer

+ Surfactant

Oil + Water

+ Polymer + Surfactant

Ω−

Ω+

Σ

(a) Schematic of a quarter five-spot reservoir

Q −Q
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ta

n
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a
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+
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il

+
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r
+

S
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rf
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ta
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t

Ω−Ω+

Σ

(b) Schematic of a rectilinear flow reservoir

Figure 3: Schematic of two different types of simulation domains where Q is the injection/production rate

The FD grid used to solve the system of coupled transport eqs. (17b)–(17d) is constructed by partitioning
the domain Ω into uniform rectangular cells. Given positive integers I, J ∈ Z+, set Δx = (xmax−xmin)/I =
1/I and Δy = (ymax − ymin)/J = 1/J . We define a uniform Cartesian grid (xi, yj) = (iΔx, jΔy) for
i = 0, . . . , I and j = 0, . . . , J . Each (xi, yj) is called a grid point. For the case i = 0, I or j = 0, J , a
grid point is called a boundary point, otherwise it is called an interior point. The grid size is defined as
h = max(Δx,Δy) > 0, see Fig. 4(a). In our numerical simulations we have assumed Δx = Δy = h.

(0, 0)− Source

(1, 1)− Sink

Ω−Ω+

Σ

(xi, yj)

(a) Uniform FD grid for the transport equations

(0, 0)− Source

(1, 1)− Sink

Ω−Ω+

Σ

κ

(b) Uniform FE mesh for the pressure equation

Figure 4: Discretization of the computational domain for (a) the Transport Equations and (b) the Pressure
Equation.

The FE grid used to solve the elliptic flow eq. (17a) for the global pressure, is constructed by introducing
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triangulations within the FD grid. This means every rectangular region [xi, xi+1]× [yj , yj+1] is cut into two

pieces of right triangular regions: one is bounded by x = xi, y = yj and y =
yj+1−yj

xi−xi+1
(x − xi+1) + yj , the

other is bounded by x = xi+1, y = yj+1 and y =
yj+1−yj

xi−xi+1
(x−xi+1)+yj . Union of all those triangular regions

gives a uniform triangulation, Lh = {κ|κ is a triangular element}, see Fig. 4(b). We can also choose the
hypotenuse to be y =

yj+1−yj

xi+1−xi
(x−xi)+yj and get a different uniform triangulation from the same Cartesian

grid.

3.2 Pressure equation

The elliptic problem for the pressure is given by

−∇ · (K(x)λ(s, c,Γ)∇p) = q̃, x ∈ Ω\Σ, (26a)

(K(x)λ(s, c,Γ)∇p) · n̂ = 0, x ∈ ∂Ω, (26b)

where q̃ = qa + qo and Σ denotes the union of the interfaces that separate Ω into several subdomains. These
interfaces are a macroscopic averaged picture. Also, at any arbitrary time during the flooding process, there
might be many such interfaces in the domain generated dynamically due to the flow and hence there can
be several subdomains created inside Ω. However, for simplicity of exposition, we have taken only two
subdomains, Ω+ and Ω− separated by an interface Ω which also happens to be the initial configuration of
the domain for most of our injection policies in this paper as we will see later.

The above problem is solved using a non-traditional finite element formulation (see [62]) with a uniform
triangulated non-body-fitted grid, which is second order accurate in the L∞ norm for matrix coefficient
elliptic equations with discontinuities across interfaces. We prescribe the following kinematic condition at
the interface Σ

[K(x)λ(s, c,Γ)∇p · n̂]Σ = 0, (27)

where n̂ is the outward unit normal which points from Ω− to Ω+. We assume the boundary ∂Ω and the
interface Σ to be Lipschitz continuous. Hence a unit normal vector, n̂ can be defined a.e. on Σ. We generalize
the weak formulation for the elliptic equation in the usual Sobolev spaces H1(Ω) with ψ ∈ H1(Ω) as∫

Ω+

Kλ∇p∇ψ +

∫
Ω−

Kλ∇p∇ψ −
∫
∂Ω

Kλψ∇p.n̂ =

∫
Ω

q̃ψ. (28)

The rationale behind adopting this non-traditional finite element formulation is many-fold. The coefficient
of the capillary dissipation term in the water saturation equation, given by Kλofa

∂pc

∂s , vanishes at extreme
values of the water saturation s = sra and s = 1 − sro because fa(s = sra) = 0 and λo(s = 1 − sro) = 0.
This makes it a degenerate diffusion term and the corresponding transport equation becomes nonlinear
hyperbolic in nature at the points of degeneracy. It is well known that nonlinear hyperbolic equations can
spontaneously generate shocks or discontinuities in the solution. This discontinuity in s gets transmitted
to the coefficient Kλ(s, c,Γ) of the elliptic global pressure equation via the total mobility term. The non-
traditional finite element formulation has been adopted as it can efficiently handle such discontinuities in
the elliptic coefficient by incorporating it in the basis functions and redefining the weak formulation. In the
region where the coefficient has no discontinuity, the basis functions automatically reduce to the linear basis
functions of a traditional finite element formulation. Also, this formulation uses a fixed finite element mesh,
thus avoiding the expensive computation of generating a mesh every time step as would be necessary for a
traditional finite element method that uses a body-fitted grid. The method ensures that the resulting linear
system is positive definite and it achieves second order accuracy in the L∞ norm.

In the numerical results presented in this paper, the degeneracy in the capillary dissipation term has
been avoided because of the restriction 0 < sra < s < 1 − sro < 1. This is a realistic physical assumption
which means that the initial water saturation in the reservoir (connate water saturation) is not as low
as the residual water saturation and during the displacement process the water saturation does not get
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reduced to the residual water saturation in finite time. In other words, the water saturation is always
strictly bounded below and above by the water residual saturation and the complement of the oil residual
saturation respectively for that reservoir. However, the initial saturation profile s(x, 0) = s0(x) has a
discontinuity. The non-traditional formulation can treat this discontinuity efficiently and automatically
switch to a more traditional finite element formulation when the dissipation introduced by the capillary
pressure term smoothens out the the initial discontinuity in the water saturation. Additionally due to the
nonlinearity of the system and the heterogeneous permeability, if discontinuities were to arise in the solution
over time then the non-traditional finite element formulation is capable of handling them efficiently. The
method is explained in detail below.

The elements, κ of triangulation, Lh, introduced in section 3.1 are classified into regular cells and interface
cells. We call κ a regular cell if its vertices are in the same subdomain and an interface cell when its vertices
belong to different subdomains. For an interface cell, κ = κ+ ∪ κ− where κ+ and κ− are separated by a line
segment Σh

k , obtained by joining the two points where the interface Σ intersects the sides or the vertices of
that interface cell. A set of grid functions, H1,h = {ωh |ωh = ωi,j ; 0 ≤ i ≤ I, 0 ≤ j ≤ J} are defined on
the grid points of the mesh Lh. An extension operator Uh : H1,h → H1(κ) is constructed as follows. For
any φh ∈ H1,h, Uh(φh) is a piecewise linear function and matches φh on the grid points. In a regular cell,
it is a linear function that interpolates the values of φh at the grid points. In an interface cell, it consists
of two pieces of linear functions, one each defined on κ+ and κ−. The location of the discontinuity of the
extended function Uh(φh) in an interface cell is on the line segment Σh

k . Hence an interface jump condition
on the pressure, p, if there is one, can be imposed on the two end points of this line segment at {∂κ}∩ {Σh

k}
while the interface jump condition, eq. (27), is imposed at the middle point of Σh

k . The construction of such
extension operators and proof of their uniqueness can be found in the literature [63, 64, 62].

p1
(xi, yj)

p2
(xi +Δx, yj)

p3

(xi, yj +Δy)

Figure 5: Regular cell

For every φh ∈ H1,h, we can define a unique extension Uh(φh) from knowing the position of the interface Σ.
For a regular cell, as in Fig. 5 we construct Uh(φh) as

Uh(φh) = φ(p1) +
φ(p2)− φ(p1)

Δx
(x− xi) +

φ(p3)− φ(p1)

Δy
(y − yj). (29)

For an interface cell, κ there are two cases. Case 1 is when the interface cuts through two legs of κ (as in
Fig. 6), and Case 2 is when the interface cuts through one leg and the hypotenuse of κ (as in Fig. 7). As an
example, we construct the extension function for Case 1 and the construction for Case 2 follows similarly.
Then for Case 1,

Uh(φh) =

{
φ(p1) + φ+

x (x− xi) + φ+
y (y − yj) for (x, y) ∈ κ+,

φ(p2) + φ−
x (x− xi −Δx) + φ−

y (y − yj) for (x, y) ∈ κ−,
(30)

12



p1
(xi, yj)

p2
(xi +Δx, yj)

p3

(xi, yj +Δy)

p4

(xi + dx, yj)

p5
(xi, yj + dy)

dx

dy

κ
+

κ
−p6

(a) Formulation for κ+

pG
1
(xi, yj)

p2
(xi +Δx, yj)

p3

(xi, yj +Δy)

p4

(xi + dx, yj)

p5
(xi, yj + dy)

dx

dy

κ
+

κ
−p6

(b) Ghost point formulation for κ−

Figure 6: Case 1 - the interface cutting through two legs

where for (x, y) ∈ κ+ (as in Fig. 6(a)),

φ+
x =

φ(p4)− φ(p1)

dx
& φ+

y =
φ(p5)− φ(p1)

dy
, (31)

and for (x, y) ∈ κ− (as in Fig. 6(b)),

φ−
x =

φ(p2)− φ(p4)

Δx− dx
& φ−

y =
φ(p3)− φ(p5)

Δy − dy
. (32)

Above it is assumed that the extensions of p3p5 and p2p4 intersect at a ghost point, pG1 and hence

φ(pG1 )− φ(p4)

dx
=

φ(p4)− φ(p2)

Δx− dx
&

φ(pG1 )− φ(p5)

dy
=

φ(pG1 )− φ(p3)

Δy
. (33)

p1 p2

p3

(xi, yj) (xi +Δx, yj)

(xi, yj +Δy)

p4

(xi +Δx− dx, yj)

p5
(xi +Δx−

Δx

Δy
dy, yj + dy)

dx

dy

κ
−

κ
+

p6

Figure 7: Case 2 - the interface cutting through one leg and the hypotenuse

We note that φ+
x and φ−

x are linear functions of φ(p1), φ(p2), φ(p3) and φ(p4) from eq. (31) and eq. (32). We
rewrite eq. (33) as

φ(p5) = φ(pG1 )−
dy

Δy

(
φ(pG1 )− φ(p3)

)
, (34)

φ(pG1 ) = φ(p4) +
dx

Δx− dx
(φ(p4)− φ(p2)) . (35)
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Using eq. (34) and eq. (35) in eq. (31) and eq. (32), φ+
y and φ−

y respectively can be obtained as linear
functions of φ(p1), φ(p2), φ(p3) and φ(p4). The kinematic condition, eq. (27), is imposed as given below,

0 = K+λ+∇φ+ · n̂−K−λ−∇φ− · n̂. (36)

Given n̂ = (n1, n2) =

(
−dy√

dx2+dy2
, −dx√

dx2+dy2

)
and the permeability K =

(
k 0
0 k

)
for an isotropic porous

medium, eq. (36) reduces to

k+λ+φ+
x n1 + k+λ+φ+

y n2 = k−λ−φ−
x n1 + k−λ−φ−

y n2. (37)

Using eq. (37), φ(p4) is eliminated so that, φ+
x , φ

+
y , φ

−
x and φ−

y are obtained uniquely as linear combinations

of φ(p1), φ(p2) and φ(p3) in such a way that the coefficients are finite and independent of φh. Thus the
extension operator Uh, given by eq. (30), for Case 1 of an interface cell becomes well defined as in the case
of a regular cell given by eq. (29). Similarly, Uh(φh) can be defined for Case 2 of an interface cell (Fig. 7)
with finite and well defined coefficients in the following way,

Uh(φh) =

{
φ(p2) + φ+

x (x− xi −Δx) + φ+
y (y − yj) for (x, y) ∈ κ+,

φ(p1) + φ−
x (x− xi) +

φ(p3)−φ(p1)
Δy (y − yj) for (x, y) ∈ κ−,

(38)

where

φ+
x =

φ(p2)− φ(p4)

dx
& φ+

y =
φ(p5)− φ(p2)

dy
+

φ(p2)− φ(p4)

dx

Δx

Δy
, (39)

φ−
x =

φ(p4)− φ(p1)

Δx− dx
. (40)

Using the extension functions as defined above, the weak formulation eq. (28) reduces to finding a discrete
function φh ∈ H1,h such that it satisfies eq. (26b) on the boundary points and so that for all ψh ∈ H1,h,

∑
K∈Lh

⎛
⎝ ∫

K+

Kλ ∇Uh(φh)∇Uh(ψh) +

∫
K−

Kλ ∇Uh(φh)∇Uh(ψh)−
∫
∂K

Kλ Uh(ψh)∇Uh(φh) · n̂
⎞
⎠

=
∑

K∈Lh

⎛
⎝ ∫

K+

q̃ Uh(ψh) +

∫
K−

q̃ Uh(ψh)

⎞
⎠ .

(41)

It can be shown that if K(x) is positive definite, then the matrix obtained for the linear system of the
discretized weak form, eq. (41), is also positive definite and is therefore invertible.

3.3 Transport equations

As mentioned earlier, the transport eqs. (17b)–(17d), are solved using the MMOC. In convection dominated
diffusion problems like these, for any reasonable fluid injection rate and capillary dissipation strength, the
flow is essentially along the characteristics. The principal gain from using the MMOC procedure to solve
these problems is in the time truncation, as the solution changes much less rapidly in the characteristic
τ direction than in the t direction. Larger time steps can be used in these methods, thus improving the
efficiency without adversely affecting the accuracy. Additionally there is no stability limitation on the size of
Δt if an implicit time marching scheme is adopted as implicit matrix solvers are usually much less sensitive
to numerical instability. Next, we present the procedure of MMOC.
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The transport term, φst +
∂fa
∂s v · ∇s in eq. (17b) is replaced by a derivative along its characteristic

direction in the following way

∂

∂τs
=

1

ψs

(
φ
∂

∂t
+

∂fa
∂s

v ·∇
)
, (42)

where τs is used to parametrize the characteristics. Here ψs is a suitable normalization that simplifies the
numerical discretization of the characteristic derivative and is defined by

ψs =

[
φ2 +

(
∂fa
∂s

)2

|v|2
]1/2

. (43)

Then eq. (17b) is equivalently written in the form

ψs
∂s

∂τs
+∇·(D∂pc

∂s
∇s) = g̃s − ∂fa

∂c
v ·∇c− ∂fa

∂Γ
v ·∇Γ−∇·

(
D
∂pc
∂Γ

∇Γ

)
, (44)

where g̃s = (1− fa)Qδ(x− xi) is the point source term.

t

x
x̄ij xij

tn+1

tn

Figure 8: Discrete approximation of the characteristic curve from x̄ij to xij in 1D

For numerical computation, we use the spatial grid described in section 3.1 and the time interval [0, T ] is
uniformly divided into N subintervals of length Δt, such that tn = nΔt and T = NΔt. Then we denote the
grid values of the variables by wn

ij = w(xij , t
n) where xij = x(ih, jh). Consider that the solution is known

at some time tn and the solution at a subsequent time tn+1 needs to be computed. Then starting from any
point (xij , t

n+1) we trace backward along the characteristics to a point (x̄ij , t
n) where the solution is already

known.
Let the characteristics which originate from the point x̄ij at time tn reach the point xij at time tn+1 (see

Fig. 8). From the equation of the characteristic curves given by

dx

dτs
=

1

φ

∂fa
∂s

v,

we can use numerical discretization to obtain an approximate value of x̄ij in the following way

x̄ij = xij − ∂fa
∂s

(snij , c
n
ij ,Γ

n
ij)v

n
ijΔt/φ. (45)
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Using the above equation, the derivative in the characteristic direction, defined by eq. (42), is approximated
by

ψs
∂s

∂τs
≈ ψs

s(xij , t
n+1)− s(x̄ij , t

n)[
|xij − x̄ij |2 + (Δt)2

]1/2 = φ
sn+1
ij − s̄nij

Δt
, (46)

where s(x̄, tn) is evaluated via bilinear interpolation of the approximate solution values at the nearby grid

points, at time level tn = nΔt. Note that in eq. (45), ∂fa
∂s (s, c,Γ)v is evaluated approximately as

(
∂fa
∂s v

)n
which is essentially a linearization step that freezes the nonlinear coefficient at the previous time step. In
order to find a more accurate approximation of the characteristic curve passing through (xij , t

n+1), the
following predictor-corrector formulation can also be adopted.

x̄ij = xij − ∂fa
∂s

(
s(xij − ∂fa

∂s
(snij , c

n
ij ,Γ

n
ij)ṽ

n
ijΔt/φ), cnij ,Γ

n
ij

)
ṽn
ijΔt/φ,

ṽn
ij = 2vn

ij − vn−1
ij .

(47)

It has been shown that no essential improvement in accuracy can be expected over this alternative evaluation
of s(x̄, tn) even if the position x̄ij and the function s(x̄ij , t

n) are iterated to convergence (see [65]). In our
simulations, both the formulations given by eq. (45) and eq. (47) have been used interchangeably depending
on whether accuracy or speed of computation is desirable. Equation (46) leads to the following implicit-time
finite difference formulation for eq. (44)

φ
sn+1
ij − s̄nij

Δt
+∇h(D̄∇hs)

n+1
ij = (g̃s)

n
ij −

(
∂fa
∂c

)n

ij

(
vn
ij ·∇hc

n
ij

)− (∂fa
∂Γ

)n

ij

(
vn
ij ·∇hΓ

n
ij

)−∇h(D̄
n
ij∇hΓ

n
ij),

(48)

where

s̄nij = s(x̄ij , t
n) & D̄n

ij = D(s̄nij , c
n
ij), (49)

∇h(D̄∇hs)
n+1
ij = D̄i+1/2,j

sn+1
i+1,j − sn+1

i,j

Δx2
− D̄i−1/2,j

sn+1
i,j − sn+1

i−1,j

Δx2

+D̄i,j+1/2

sn+1
i,j+1 − sn+1

i,j

Δy2
− D̄i,j−1/2

sn+1
i,j − sn+1

i,j−1

Δy2
, (50)

D̄i±1/2,j =
D(s̄ni±1,j , c

n
i±1,j) +D(s̄ni,j , c

n
i,j)

2
& D̄i,j±1/2 =

D(s̄ni,j±1, c
n
i,j±1) +D(s̄ni,j , c

n
i,j)

2
. (51)

In eqs. (49) and (50), the nonlinearity in the coefficient of the capillary term is approximated in a quasilinear
manner by evaluating the coefficient at the previous time step. This is a standard approximation procedure
that is usually adopted in many Eulerian-Lagrangian methods (see [66]).

A similar procedure is followed for discretizing the transport equations for polymer and surfactant, given
by eqs. (17c) and (17d). Let us define the following

b =
f

s
v +

D

s

∂pc
∂s

∇s+
D

s

∂pc
∂Γ

∇Γ, ψ =
(
φ2 + |b|2

)1/2
. (52)

Also let the characteristic parameters, τc and τΓ respectively, be associated with the advection terms φct +
b ·∇c and φΓt + b ·∇Γ. Even though we use different notations, the characteristic derivatives for both the
parameters are defined by,

∂

∂τc
=

∂

∂τΓ
=

φ

ψ

∂

∂t
+

1

ψ
b ·∇. (53)
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Then using eqs. (52) and (53), the polymer and surfactant transport eqs. (17c) and (17d) are rewritten as

ψ
∂c

∂τc
+ cg̃ = g̃c, ψ

∂Γ

∂τΓ
+ Γg̃ = g̃Γ, (54)

where g̃c =
ciQ
s δ(x− xi), g̃Γ = ΓiQ

s δ(x− xi) and g̃ = Q
s δ(x− xi) are the source terms.

All of these lead to the following system of implicit-time finite difference formulations for the transport
eqs. (17b)–(17d)

φ
sn+1
ij − s̄nij

Δt
+∇h(D̄

n
ij∇hs

n+1
ij ) = (g̃s)

n
ij −

(
∂fa
∂c

)n

ij

(
vn
ij ·∇hc

n
ij

)

−
(
∂fa
∂Γ

)n

ij

(
vn
ij ·∇hΓ

n
ij

)−∇h(D̄
n
ij∇hΓ

n
ij), (55)

φ
cn+1
ij − c̄nij

Δt
+ (g̃)nij c

n+1
ij = (g̃c)

n
ij , (56)

φ
Γn+1
ij − Γ̄n

ij

Δt
+ (g̃)nij Γ

n+1
ij = (g̃Γ)

n
ij . (57)

3.4 Heterogeneity

Numerical simulations have been performed (see section 4) using several types of permeability fields to
study the effect of heterogeneity and also to test the capability of the numerical method to produce accurate
solutions. These include homogeneous fields, piecewise discontinuous fields and also sections of the well known
SPE10 permeability field data which model the Upper Ness type and the Tarbert type rock formations. In
addition to that, we also use a scalar log-normal absolute permeability field, K(x) as a model for multiscale
rock heterogeneity. First we generate a Gaussian random field, ξ(x) which we assume to be stationary
(translational invariance of covariance function), isotropic (rotational invariance of covariance function) and
fractal (self-similar). Hence, the distribution is characterized by a zero mean and a covariance function of
the form

cov(ξ(x1), ξ(x2)) = χ |x1 − x2|−β , 0 < β < ∞, (58)

where χ is an appropriate proportionality constant and the scaling exponent β, called the Hurst coefficient,
controls the nature of heterogeneity. With an increase in β the covariance function decays faster and hence
heterogeneities in the shorter length scales become pronounced. The LABTRAN-GEO methods, [67] are
computationally efficient methods to generate Gaussian fields with a covariance function given by the power
law, eq. (58). From this multiscale Gaussian field, we construct an absolute permeability field and a porosity
field as

K(x) = k0 exp (�ξ(x)), (59)

φ(x) = φ0 + ϕ̄ξ(x), ϕ̄ > 0, (60)

where k0 is a chosen threshold, 0 < � ≤ 1 is a chosen scaling exponent, φ0 is the cutoff value and ϕ̄ is a
normalizing factor that is chosen to ensure that the porosity lies in the following range, 0.05 ≤ φ(x) ≤ 0.35.
The mean 〈K〉 and variance σ2

k of the log-normal field K are set by the coefficients k0 and �. With change
in � we get different values for the Coefficient of Variation CV for permeability, (CVk), and porosity,
(CVφ). For the permeability field K, this is defined by CVk = σk/〈K〉. This dimensionless number CVk

can be thought of as a measure of the heterogeneity of the field. Similar formulations have been adopted in
[68, 69, 70].
In Fig. 9(a) we present an example of such a stationary, isotropic and multiscale Gaussian field calculated
with zero mean, β = 0.5 and χ = 1/(1 − 2−β). In Fig. 9(b) we present a lognormal permeability field
generated from this Gaussian field with k0 = 3.4253 and � = 1. In our studies here, uniform porosity has
been used.
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(a) Gaussian field (b) Log-normal permeability

Figure 9: Stationary, isotropic, fractal Gaussian field, ξ(x) [shown in (a)] used for generating a log-normal
permeability, K(x) [shown in (b)] using eq. (59). Both fields are of size 64 × 64. Higher values are plotted
in red and lower values in blue.

3.5 Algorithm

Here we outline the algorithm for the SP flood simulation. The algorithm for the polymer flood is essentially
a special case of the same. The step-by-step algorithm is given as follows:

1. Define the Cartesian grid in the domain using equal, uniform grid sizes in both the axes. Generate the
finite element mesh.

2. Generate a heterogeneity field on this grid.

3. Choose an initial interface separating the injected fluid from the resident fluid.

4. Set the model parameters: μo, μw, s
σ0
ro , s

σ0
ra .

5. Initialize the state variables s, c and Γ as

s(x, 0) =

{
1− sσ0ro x ∈ Ω+

sσ00 x ∈ Ω− , c(x, 0) =

{
c0 x ∈ Ω+

0 x ∈ Ω− , Γ(x, 0) =

{
Γ0 x ∈ Ω+

0 x ∈ Ω− .

6. Calculate σ(sn,Γn), μa(c
n), sra(s

n,Γn),sro(s
n,Γn), λa(s

n, cn,Γn), λo(s
n,Γn), λ(sn, cn,Γn) using sn,

cn, Γn which are values of s, c and Γ respectively at the nth time level.

7. Solve the global pressure equation to get pn and subsequently compute vn.

8. Use vn, sn, cn, Γn and the quantities calculated in Step 6, to solve for sn+1, cn+1 and Γn+1, thus
completing a full time step.

9. If breakthrough is achieved: then stop; else update n = n+ 1 and repeat from Step 6.

In order to speed up computation, sometimes a few iterations of Steps 6 and 8 are done before updating
the pressure in Step 7. The pseudocode (see Algorithm 1) and flow-chart (see Fig. 10) for the procedure are
given here.

18



Algorithm 1: SP flooding simulation

/* Set up Cartesian grid, FE Mesh, permeability field and model parameters */

1 Set i, j = 0, . . . ,M ; xij =

(
i

M
,
j

M

)
; /* (M ×M is the grid size ) */

2 Set Σ = Initial interface; /* Σ = ∂Ω+ ∩ ∂Ω− */

3 Set K(x) = block inclusion or SPE10 or log-normal ;

4 Set μo, μw, s
σ0
ro , s

σ0
ra , s

σ0
0 , q̃ = values from Table 3;

/* Initialization */

5 Set t = 0; Δt =
1

N
; Tstop = 100NΔt; /* N chosen for accuracy */

6 for i = 0, . . . , M do
7 for j = 0, . . . , M do

8 Set (s, c, Γ)(xij , 0) =

{
(1− sσ0ro , c0,Γ0) xij ∈ Ω+

(sσ00 , 0, 0) xij ∈ Ω− ;

9 end

10 end

/* Computation loop */

11 while
(
s(xM,M , t) ≤ 1− sσ00 and t < Tstop

)
do

12 Compute {σ, μa, sra, sro, λa, λo, λ, pc} using (sn, cn,Γn,vn−1);

13 Solve global pressure equation for pn,vn;

14 Recompute {sra, sro, λa, λo, λ} using (sn, cn,Γn,vn);

15 Solve transport equations for sn+1, cn+1 and Γn+1;

16 Set t = t+Δt;

17 end

Setup grid
Load K(x)

Set:
μo, μw,
sσ0ro , s

σ0
ra

Initialize:
s0, c0,Γ0

Compute
σ, μa, sra,
sro, λa, λo

Calculate
u, v

Compute
σ, pc

Solve for
s, c,Γ

update
model

Water
break-

through?

stop

no

yes

Figure 10: Flow-chart for SP flooding simulation

19



4 Results and discussion

In section 4.1 we validate the method as well as illustrate the efficiency and accuracy of the method against
an exact solution. In section 4.2, waterflooding simulation results are presented to qualitatively validate the
method against some known results in the literature and also with physically expected flow behavior. For all
these waterflooding simulations the viscosity ratio, Mμ = μo/μw is kept fixed at Mμ = 10. In section 4.3 and
section 4.4, we present simulation studies of polymer flood and surfactant-polymer flood respectively. These
simulations are designed to explore and identify the favorable aspects of various complex chemical enhanced
flooding strategies and have been carried out by varying either the viscosity ratio, Mμ or the mobility ratio,
Mλ = λa(s

σ
ro, c0,Γ0)/λo(s

σ0
0 ,Γ0) of the flooding schemes. This distinction between the viscosity ratio and

the mobility ratio has been made here because the polymer in the aqueous phase exclusively affects the
viscosity of the displacing phase while the surfactant in SP flood also affects the relative permeabilities.
Hence in the presence of surfactant, it makes sense to compare the effective change in the mobility of the
phases, while polymer floods can be studied by simply comparing the change in viscosities. The simulations
in sections 4.2–4.4 have been performed on a variety of homogeneous and heterogeneous spatial permeability
field data that have been either generated numerically or imported from the SPE10 benchmark problem and
all other input parameters are listed in Table 3. We use two different sets of values for injection rates Q and
time step sizes Δt while running simulations in a quarter five-spot geometry and in a rectilinear geometry. As
reported in Table 3, Q = 200 and Δt = 1/50 for a quarter five-spot geometry and Q = 1/50 and Δt = 1/100
for a rectilinear geometry.

The simulations have been carried out in MATLAB 2015b on a desktop computer with an Intel(R)
Core(TM)2 Quad (Q9650) CPU with a clock speed of 3.00GHz, 4 GB of RAM, a GeForce GT 430/PCIe/SSE2
graphics card and running Linux Mint 13 Maya. A typical quarter five-spot flooding simulation on a 30× 30
heterogeneous permeability field (SPE10) has a runtime of about 48 minutes until water breakthrough.

4.1 Exact solution

We consider the waterflooding problem in Ω = [0, 1]2 and we impose the following analytical solutions

p(x, y, t) =

(
C +

x3 + y3

3
− x2 + y2

2

)
eπt/2, (61a)

s(x, y, t) = 0.3 + 0.7 sin2
(
πt

2

)(
sin2 (2πx) + cos2 (2πy)

2

)
, (61b)

with K(x) = I, φ(x) = 1, μw = μo = 1 and C is an arbitrary constant. We take pc(s) =
1

s−0.2 , krw = s2e,

and kro = se(1 − se) where se is the normalized saturation defined by se = s−0.2
1−0.4 . Using the solutions for

pressure and saturation given by eq. (61), the source terms and the initial data are calculated for the system
which in turn are used to compute the numerical solution. The numerical errors are defined as follows

es,max = max
ij

|s(xij)− wij | ≈ ‖s− w‖L∞ , (62a)

es,2 =

√∑
ij

|s(xij)− wij |2ΔxΔy ≈ ‖s− w‖L2 . (62b)

Here, wij is the numerical solution w evaluated at the grid point (xi, yj) = xij whereas s(xij) is the exact
solution for saturation. The errors for the pressure and the velocity are computed in a similar fashion. The
order of accuracy is computed using the formula log2 (eα(h)/eα(h/2)), (α = 2,∞).

The exact solution, given above, has been carefully chosen to ensure that the coefficient matrices of the
resulting linear algebraic systems are well conditioned. The simulations have been carried out with different
values of the constant C but the results presented below are for C = 0. The errors between the exact and
the numerical solutions for the saturation, pressure and velocity in the L2 norm and the L∞ norm and the
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respective orders of accuracy are presented in Table 1. These have been computed at the final time T = 0.5
with a time-step of 0.005. We observe the following approximate order of accuracy in space.

‖p− r‖L2 = O(h2) & ‖v − z‖L2 = O(h2).

Table 1 shows that for a given fixed time-step, the errors decrease with refinement of the spatial mesh.
However, for larger time steps (larger than 0.05) we find (data not shown here) that the time discretization
errors dominate the spatial discretization errors. This leads to an increase in the L2 and L∞ error norms and
a reduction in the order of accuracy. For example, the poor order of accuracy in the L2 norm of the error in
velocity seen in the last row of Table 1 has been found to improve significantly when a smaller time step is
used for the entire simulation. The order of accuracy in the L∞ norm of the error in saturation, presented
in the upper part of the last column of Table 1, can also be seen to reduce significantly with reduction in
spatial grid size. This is because the numerical solution attains a high accuracy, to the order of 10−5, even
at the largest spatial grid size used (h = 1/8). The error between the actual solution and the numerical
solution does not improve much further and causes the loss in the order of accuracy.

Table 1: Error and order for saturation, pressure and velocity using the analytic solution at the final time
T = 0.5 with Δt = 0.005.

h ‖s− w‖L2 Order ‖s− w‖L∞ Order

1/8 3.69e−5 − 4.97e−5 −

S
a
tu
ra
ti
o
n

1/16 1.36e−5 1.442 5.38e−5 0.891

1/32 6.27e−6 1.116 4.33e−5 0.313

1/64 3.07e−6 1.027 4.08e−5 0.087

1/128 1.53e−6 1.006 4.02e−5 0.021

h ‖p− r‖L2 Order ‖p− r‖L∞ Order

1/8 3.35e−3 − 1.20e−2 −

P
re
ss
u
re 1/16 1.04e−3 1.688 3.92e−3 1.611

1/32 3.16e−4 1.720 1.23e−3 1.668

1/64 9.36e−5 1.754 3.73e−4 1.725

1/128 2.72e−5 1.784 1.10e−4 1.768

h ‖v − z‖L2 Order ‖v − z‖L∞ Order

1/8 1.59e−3 − 3.27e−3 −

V
el
o
ci
ty 1/16 4.13e−4 1.943 1.51e−3 1.118

1/32 1.07e−4 1.950 7.17e−4 1.069

1/64 2.82e−5 1.923 3.50e−4 1.036

1/128 9.21e−6 1.614 1.75e−4 1.018

The non-symmetric algebraic system obtained by assembling the stiffness matrix of the finite element
weak formulation, given by eq. (41), and the symmetric but sparse algebraic system obtained by discretizing
the transport equation, given by eq. (55), have been solved by a BICGstab iterative method with tolerance
values in the range 10−6−10−9 and without any preconditioners. Apart from achieving high accuracy, there
is one more important significance of choosing such ultra-low values of tolerance, specifically for solving the
transport equations. It has been observed that the BICGstab solver converges to a solution with a relative
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Figure 11: Comparison between the saturation profiles of the exact solution and the numerical solutions at
various spatial resolutions. The profiles are plotted along the horizontal center line (y = 0.5) of the domain,
Ω = [0, 1]2 at t = 0.1.

residual of about 10−6 within the first two iterations for even moderately fine spatial resolution of h = 1/32.
Hence, it becomes necessary to choose much lower levels of tolerance in order to compute the order of
accuracy with respect to spatial discretization for the water saturation. However, it is worth pointing out
that there is a delicate balance involved in such a choice. If the tolerance is reduced even further from 10−9,
then the BICGstab iteration process may stagnate and fail to achieve the desired relative residuals. Although
these observations were made in the context of the exact solution of waterflooding, these are also valid in
the context of the transport equations for the polymer and the surfactant, given by eqs. (56) and (57).

In Fig. 11 we plot the water saturation profiles along the center line, y = 0.5 at an intermediate time
t = 0.1. The true solution is plotted with the solid black line while the numerical solution obtained on a
sequence of successively refined grid sizes, h = 1/10, 1/20, 1/40, 1/80, 1/100 are plotted in different colors
and line markers. This figure shows that the numerical solution monotonically improves with reduction in
spatial grid size and converges toward the exact solution.

Table 2 shows the numerical errors and the order of accuracy for the saturation equation with respect to
time for three choices of fixed spatial grid sizes, namely h = 1/16, 1/32 and 1/64. The errors are computed at
the final time T = 1. The results confirm that at least a first-order convergence rate in time can be obtained
using this method. This compares favorably with results obtained by others (see [71]) on similar types of
problems. Additionally, we expect that with higher order time-stepping methods, the method will be able to
preserve the accuracy and the expected second or third order convergence rates. It is also important to note
that with a fixed time step, the accuracy of the method increases with decreasing spatial grid size which can
also serve as a quick validation of the results presented in Table 1. Moreover, Table 2 shows a higher than
expected convergence rate with respect to time. This is because the reduction in the error norm associated
with a time step size refinement increases as the spatial grid size increases.

From Table 1 and Table 2 we can also infer that the method suffers from very minimal numerical diffusion.
The L2 error in the water saturation values lies in the range of 10−5 − 10−7 when spatial grid sizes lie in
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Table 2: Error and rates for saturation with time step refinement, computed at T = 1 using the analytical
solution.

h Δt ‖s− w‖L2 Rate ‖s− w‖L∞ Rate

1/20 1.57e−4 − 1.00e−3 −
1/40 3.58e−5 1.670 3.36e−4 1.588

1

16
1/80 8.49e−6 1.625 1.10e−4 1.610

1/160 2.15e−6 1.509 3.88e−5 1.505

1/320 5.51e−7 1.464 1.41e−5 1.462

1/20 6.82e−5 − 4.20e−4 −
1/40 1.99e−5 1.297 1.76e−4 1.253

1

32
1/80 5.75e−6 1.319 7.14e−5 1.302

1/160 1.69e−6 1.260 2.99e−5 1.253

1/320 4.73e−7 1.299 1.22e−5 1.296

1/20 4.91e−5 − 3.12e−4 −
1/40 1.62e−5 1.077 1.37e−4 1.184

1

64
1/80 5.08e−6 1.168 6.22e−5 1.144

1/160 1.56e−6 1.165 2.78e−5 1.162

1/320 4.50e−7 1.247 1.17e−5 1.244

the range of 10−2 − 10−3. This indicates that the amount of numerical diffusion is negligible and does not
dominate over the capillary pressure induced physical diffusion.

4.2 Waterflood simulations

4.2.1 Waterflooding in a quarter five-spot geometry with one block inclusion in permeability

Here we consider a special case of a porous medium that has a square block inclusion with lower permeability.
We set the permeability of the shaded block (Fig. 12(a)) to be 1000 times smaller than in the rest of the
domain. We simulate the displacement of the resident oil with a waterflood using a 30×30 grid on a quarter
five-spot domain, Ω. The water saturation contours inside the domain are compared at four different time
levels during the displacement process (Fig. 13). We observe that the numerical method captures the region
of discontinuity of the permeability very well and the results are in excellent qualitative agreement with
similar simulation studies found in the literature (see [71]). It has been shown [72, 73] that the equations
for immiscible two phase displacement and the equations for miscible displacement are mathematically
equivalent under certain conditions. Chavent [72] showed that the global pressure formulation for immiscible
displacement is identical in form to the miscible displacement equations. Yortsos [73] used a different non-
physical pressure variable to show the equivalence between two-phase immiscible displacement and single-
phase miscible displacement in the presence of equilibrium adsorption. This analogy allows us to compare the
evolution of saturation contours in our simulation to the evolution of concentration contours in an equivalent
miscible flooding simulation [71].
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Table 3: Simulation input data

Model parameter Symbol Value

Spatial grid size h× k variable

Porosity φ 1

Permeability K variable

Initial resident water saturation sσ00 0.21

Polymer injection concentration c0 variable

Surfactant injection concentration Γ0 variable

Oil viscosity μo 12.6

Pure water viscosity μw 1.26

Residual aqueous phase saturation sσ0ra 0.1

Residual oleic phase saturation sσ0ro 0.2

Critical capillary number of aqueous phase Ncao 10−5

Critical capillary number of oleic phase Nco 10−5

Parameters of capillary pressure relation [eq. (19)] ω1, ω2 0.1, 0.4

Injection rate Q 200, 50

Time step size Δt 1/50, 1/100

10

1

0.38 0.38

0.38

0.38

(a) Piecewise continuous permeability
field with one block inclusion

10

1

0.23 0.57

0.23

0.57

0.67 .17

0.58

0.26

(b) Piecewise continuous permeability
field with two block inclusions

Figure 12: Piecewise continuous permeability fields generated for qualitative validation studies

4.2.2 Waterflooding in a quarter five-spot geometry with two block inclusions in permeability

Next, we consider a permeability field with two rectangular block inclusions inside the domain. As before,
the permeability of the shaded blocks (Fig. 12(b)) is set to be 1000 times smaller than in the rest of the
domain. A waterflood is simulated on a 30× 30 grid and the water saturation contours inside the domain at
different points of time during the flooding process are compared (Fig. 14). We observe that the numerical
method is successful in qualitatively capturing the discontinuity in the permeability data very well and the
saturation contours appear to be in good qualitative agreement with what is expected based on physics.
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t = 200 t = 400 t = 700 t = 1000

Figure 13: Saturation contours during a waterflood in a quarter five-spot reservoir with a spatial resolution
of 30× 30. The permeability field is piecewise continuous with a block inclusion at the center, as shown in
Fig. 12(a). The contours are plotted at four different time levels, t = 200, 400, 700, 1000.

t = 200 t = 400 t = 800 t = 1200

Figure 14: Saturation contours during a waterflood in a quarter five-spot reservoir with a spatial resolution
of 30× 30. The permeability field is piecewise continuous with two block inclusions, as shown in Fig. 12(b).
The contours are plotted at four different time levels, t = 200, 400, 800, 1200.

4.2.3 Waterflooding in a rectilinear geometry with a heterogeneous permeability field

In this simulation we consider the rectilinear flow reservoir design, as shown in Fig. 3(b), in which the left
boundary is treated as an injection well (line source) and the right boundary is treated as a production well
(line sink). We consider a heterogeneous porous medium and choose the permeability function K(x) as given
in [74]. The permeability function is given by

K(x) = 50
[
0.5(1− 10−7)(sin (6π cosx) cos (4π sin (3y))− 1) + 1

]
, (63)

and it is shown in the leftmost plot of Fig. 15 on a 60 × 60 spatial grid. As shown in Fig. 15, the more
mobile fluid (water) moves along the pathways formed by inter-connected zones of higher permeability. These
heterogeneity driven finger formations are in agreement with the results obtained in [74] and provide further
validation of our method. It is clear from the saturation contours that the regions of higher water saturation
(shown in red) are trailing behind the rapidly advancing fingers. This causes premature water breakthrough
(production well starts to produce water), much before a significant amount of the residual oil has been
pushed out. One of the important uses of adding polymer to the displacing phase is to inhibit the formation
and growth of these fingers at an early stage by stabilizing the initial oil-water interface. This effect has
been studied in more detail in one of the following simulation studies (see Fig. 29).

4.2.4 Waterflooding in a rectilinear geometry with a channelized permeability field

We again use a rectilinear flow domain for this study. We consider a heterogeneous porous medium and
choose K(x) as in [75] in the shape of a region of high permeability that meanders from the left to the right.
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Permeability t = 60 t = 100 t = 160

Figure 15: Saturation contours during a waterflood in a rectilinear geometry with 60× 60 spatial resolution
at three different time levels, t = 60, 100, 160. The heterogeneous permeability field from [74] (plotted in the
leftmost figure) has been used. In the permeability plot, the red regions represent higher permeability while
the blue regions represent lower permeability.

The permeability function is given by

K(x) = max

[
exp

(
−
(
y − 0.5− 0.1 sin (10x)

0.1

)2
)
, 0.01

]
,

and it is shown in the leftmost plot of Fig. 16 on a 60×60 spatial grid. The water saturation contours plotted
at three different time levels are in good agreement with those in [75] and provide additional validation of
the method. Moreover, this simulation study demonstrates the ability of the model and the method to
accurately capture flow behavior in highly channelized reservoirs or in rocks with natural faults and cracks.

Permeability t = 80 t = 130 t = 160

Figure 16: Saturation contours during a waterflood in a rectilinear geometry with 60× 60 spatial resolution
at three different time levels, t = 80, 130, 160. The permeability field from [75] (plotted in the leftmost
figure), which represents a single crack porous medium, has been used. In the permeability plot, the red
regions represent higher permeability while the blue regions represent lower permeability.

4.2.5 Waterflooding in a quarter five-spot geometry with the Upper-Ness (SPE10) perme-
ability field

In this simulation we use a 30×30 block of permeability field data from the Upper-Ness region of the SPE10
benchmark problem dataset (see [76]). The original dataset is described on a regular Cartesian grid with
60 × 220 × 85 (1, 122, 000) cells. The model consists of two types of formations: a shallow-marine Tarbert
formation in the top 35 layers with relatively smooth permeability, and a fluvial Upper-Ness permeability in
the bottom 50 layers. Both formations (Fig. 17) are characterized by large permeability variations (8 to 12
orders of magnitude), but are different qualitatively. The Upper-Ness formation has more rapid variability
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while the Tarbert formation has a higher contrast in the permeability values. In this work, we present results
obtained using both types of permeability field data.

(a) Upper-Ness type permeability (b) Tarbert type permeability

(c) Logarithmic permeability plot (d) Logarithmic permeability plot

Figure 17: Permeability plots from the SPE10 benchmark dataset on a 30× 30 grid.

t = 1000 t = 4000 t = 8000 t = 12000

Figure 18: Saturation contours during a waterflood in a quarter five-spot reservoir with 30 × 30 spatial
resolution. The permeability field is of Upper-Ness formation type (see Fig. 17(a) and Fig. 17(c)). The
contours are plotted at four different time levels, t = 1000, 4000, 8000, 12000.

The simulation results are shown in Fig. 18. As expected, the highly heterogeneous rock matrix leads to
development of undesirable finger formations while the high viscosity ratio (Mμ = μo/μw = 10) between the
displaced and displacing phase leads to the growth of these viscous fingers. We observe that the displacing
phase progresses towards the production well (located at (x, y) = (1, 1)) by sweeping through the regions of
higher permeability values. The method captures the expected features of fluid flow through the regions of
high and low permeability very well and the fronts are well resolved. This provides qualitative validation of
the model and the numerical method as it is able to capture the expected physical phenomenon like viscous
finger formations in fully developed flows.
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4.2.6 Study of grid orientation effects

Many of these waterflooding simulations involve adverse viscosity ratio (Mμ = μo/μw) displacement as the
displacing aqueous phase usually flows more easily through the porous medium than the displaced oil phase.
For these flows, numerical methods can suffer from grid orientation effects depending on whether the flow is
parallel or diagonal to the computational grid. This phenomenon was first reported in [77]. It was observed
there that quarter five spot simulations have two different principal axes of symmetry and accordingly the
simulation grid can be aligned in two different ways. At an adverse viscosity ratio, the simulations were found
to converge to different solutions on these two different grid alignments. There is a rich literature dedicated
towards understanding this phenomenon and developing approaches to alleviate these grid orientation effects.
We refer to [78] for a comprehensive summary.

Injector

(a) Parallel flow

Injector

(b) Diagonal flow

Figure 19: Simulation domain designs for study of grid orientation effects. The flow direction is parallel to
the computational grid in part (a) and diagonal to the computational grid in part (b).

In the next set of simulations we investigate if our method suffers from significant grid orientation effects.
For this purpose we consider two special five-spot flow geometries, as shown in Fig. 19. We consider a
square domain with an injection well or source at the center and four production wells or sinks placed in
two different configurations. In Fig. 19(a) the positions of the producers ensure that the effective flow is
along the computational grid, while in Fig. 19(b) the producers are placed in such a way that the effective
flow is diagonal to the computational grid. In order to make these two configurations equivalent, we choose
the boundary of a square as the initial position of the interface separating the displacing phase from the
displaced phase. In both the configurations, each vertex of this square is located on the line connecting the
injector with one of the producers. The producers are also placed in such a way that they are at the same
distance from the source in both the cases. Effectively, these are two equivalent configurations for a five-spot
flow. The only difference is in the alignment of the computational grid.

In Fig. 20 we compare the parallel grid solutions obtained using the geometry in Fig. 19(a) with the
diagonal grid solutions obtained using the geometry in Fig. 19(b). A homogeneous permeability field is
considered. The source strength is kept fixed at Q = 10 with a spatial resolution of 40× 40 and a time step
size of Δt = 1/80. The simulations were done at a viscosity ratio of Mμ = 20 in order to trigger any grid
alignment effects induced by the adverse viscosity ratio. The water saturation contours at two different times
during the simulation on both the grids are presented in Fig. 20. The parallel flood contours are rotated
counterclockwise by an angle of 45◦ to facilitate the comparison with the diagonal flood contours. It can be
clearly seen that there are very minor differences in the features of the contours but they are qualitatively
very similar. Some of the minor differences can be attributed to a graphical issue that comes up while
rotating the image counterclockwise by 45◦ using the Image Processing toolbox of MATLAB. Rotating the
matrix of water saturation values in Ω by nπ/2 where n is a non-integral value produces a new matrix of
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(a) t = 200, parallel flood (b) t = 200, diagonal flood

(c) t = 400, parallel flood (d) t = 400, diagonal flood

Figure 20: Comparison of water saturation contours for parallel and diagonal flow simulations in a five-
spot geometry with a spatial resolution of 40 × 40 to study the grid orientation effects. The left column
corresponds to the parallel flow and the right column corresponds to the diagonal flow simulations at two
different time levels, t = 200 and t = 400. Some of the minor differences are explained in the discussion in
section 4.2.6.

water saturation values. In this process, some data points are lost while some new data points are introduced
which need to be evaluated by a linear or spline interpolation process. This adjustment causes some of the
minor changes observed in the parallel flood figures. For instance, four fine black lines lying diagonally
across the four corners of the domain are introduced in the contour map. Also, the rotated data matrix is
plotted using 4 contour lines as opposed to the 5 contour lines used in the diagonal flood figures (which are
not rotated). In spite of these graphical changes, the development of the saturation contours can be seen to
follow a very similar trend in both the grid configurations. This leads us to conclude that our method suffers
from negligible grid orientation effects and hence can be used reliably as a predictive numerical model.

4.3 Polymer flood simulations

The displacement processes involved in tertiary oil recovery methods like polymer flooding and SP flooding
are usually unstable to begin with. Hence one of the fundamental fluid dynamical mechanisms that is
employed to improve oil recovery is to delay and slow down the development of these instabilities that lead
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to development of these nonlinear fingers since there is always a finite reservoir area that needs to be swept.
The growth of these initial disturbances can be controlled by various means including the use of optimal
values of the viscosity ratio [79, 80, 81]. The following set of simulations has been performed to compare the
flow characteristics of a waterflood with that of a polymer flood.

4.3.1 Polymer flooding in a quarter five-spot domain with the Tarbert permeability field

In this simulation, we use the Tarbert permeability field data, shown in Fig. 17(b) and Fig. 17(d) on a 30×30
grid. We compare the flow patterns of two different waterflood scenarios with that of two different polymer
floods. As shown in Fig. 21, the change in viscosity ratio from Mμ = μo/μw = 10 and Mμ = 5 in the
waterfloods to Mμ = μo/μa = 1.82 and Mμ = 1.25 in the two polymer floods causes a marked change in the
sweeping pattern of the process. We see that in the case of waterfloods, the water phase advances through
the heterogeneous formation much faster compared to the polymer floods. This is due to the fact that pure
water being less viscous is more mobile. On the other hand, the polymer floods are able to achieve a much
more efficient sweep of the domain. Figure 21 shows that the higher water saturation contours (plotted in
yellow and red colors) have advanced further in the polymer floods than in the waterfloods, at the same
time point. Although this makes polymer flooding a slower recovery process compared to waterflooding,
the net oil recovery can be substantially more in polymer flood. This claim is supported by the last row of
plots in Fig. 21 where the saturation contours have been plotted at the time of water breakthrough in each
flooding process. The polymer flood results clearly show that a larger area has been swept and also the higher
water saturation levels (yellow contour) have penetrated deeper into the domain compared to the waterflood
results. Between the first two columns, both showing waterfloods, the difference in mobility ratios has a
significant effect in controlling the growth of the most advanced saturation contour. This is evident in the
fact that the waterflood with a mobility ratio of Mμ = 5 takes longer time (t = 2418) for water breakthrough
than the time taken (t = 1673) by the waterflood with a higher mobility ratio of Mμ = 10. However, there
is little difference in the water saturation contours between the two polymer floods (see Columns 3 and 4 in
Fig. 21) because the mobility ratios (Mμ = 1.82 and Mμ = 1.25) are very close.

4.3.2 Grid refinement study with polymer flooding

In the next simulation of polymer flooding in a quarter five-spot geometry, we refine the grid over three
steps - 15 × 15, 30 × 30 and 60 × 60. The domain has two rectangular inclusions in the permeability field
such that the permeability of the shaded blocks (see Fig. 12(b)) is 1000 times smaller than that in the
rest of the domain. The viscosity ratio is kept fixed at Mμ = 1.67. The water saturation contours for the
polymer flooding process with three different grid sizes are given in Fig. 22. We observe that even over the
wide range of grid sizes the evolution of the fronts near the region of discontinuous permeability is captured
accurately. The details in the high gradient region of the saturation contours become more prominent with
the reduction in mesh size due to the additional computational points added to the domain. The qualitative
agreement between the saturation contours at the same time levels but with different grid sizes provide
further validation of the numerical convergence of the method.

4.4 Surfactant-polymer flood simulations

In the following simulations we investigate the effect of using surfactant as a chemical flooding agent. This
is done by comparing the effectiveness of surfactant and SP floods as compared to polymer flood and
waterflood on the basis of the change in mobility ratio, Mλ values. The goals of these simulations are: (a) to
demonstrate the robustness of the method in performing simulations of various different types of chemical
flooding processes and (b) to compare the effect of these different flooding schemes on the oil recovery, the
sweeping efficiency, and on controlling the growth of fingers.
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Figure 21: Saturation contours comparing waterfloods with polymer floods in a quarter five-spot reservoir
with spatial resolution of 30 × 30. The simulations were carried out on the Tarbert formation type per-
meability field (see Fig. 17(b)). The first two columns correspond to waterfloods with viscosity ratios of
Mμ = 10 and Mμ = 5 while the third and the fourth columns correspond to polymer floods with viscosity
ratios given by Mμ = 1.82 and Mμ = 1.25 respectively. The contours are plotted at three different time
levels, t = 400, 1400 and water breakthrough. The t values below the last row of plots indicate the time
levels at which water breakthrough occurs in each flood.

4.4.1 Surfactant-polymer flooding in a quarter five-spot geometry

The first two sets of simulations for surfactant-polymer flooding are performed in a quarter five-spot reservoir
fitted with a 32×32 grid. A multiscale, stationary, isotropic Gaussian permeability field (Fig. 23(a)) generated
using the method outlined in Section 3.4 has been used to construct a scalar, log-normal permeability field
(Fig. 23(b)) with k0 = 3.44253, � = 1.0 (CVk = 0.5).

The first set of simulations, presented in Fig. 24, provides a comparison of water saturation surface plots
between four different types of flooding schemes at three different time levels. The first column represents
waterflooding (Mλ = 2.89), the second represents surfactant flooding (Mλ = 3.12), the third and fourth
columns represent two different schemes of SP flooding (Mλ = 3.06 and Mλ = 1.96) which differ only in
the amount of polymer present in the displacing phase. In Fig. 25, we compare the surfactant concentration
surface plots and the polymer concentration surface plots for these floods. Specifically, the first and the
second columns show the surfactant concentration plots during the surfactant flood and the second SP flood
(Mλ = 1.96) while the third and fourth columns present the polymer concentration surface plots between
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Figure 22: Water saturation contours during a polymer flood (viscosity ratio, Mμ = 1.67) in a quarter five-
spot geometry with a piecewise continuous permeability field containing two block inclusions (see Fig. 12(b)).
The contours have been plotted at three different time levels, t = 350, 550, 800. The simulations were
performed on three different spatial resolutions : Row 1 - 15× 15, Row 2 - 30× 30 and Row 3 - 60× 60.

(a) Gaussian field (b) Logarithmic plot of the permeability field

Figure 23: Multi-scale, stationary, isotropic Gaussian distribution [shown in (a)] which is used to generate a
scalar log-normal permeability field [shown in (b)] of spatial resolution 32× 32.

the two different SP floods.
The difference in the surface plots between the waterflood and the surfactant flood simulations is explained

by the combined effect of the surfactant on the interfacial tension and the relative permeability of the aqueous
phase. This allows more resident oil to be swept out as seen in the first two columns. We see that the regions
with higher water saturation values (i.e. regions where most of the oil has been pushed out), indicated in the
darker shades of red, have advanced further into the domain for the surfactant flood than for the waterflood
at comparable times. There is not much difference between the saturation surface plots of the surfactant
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Figure 24: Comparison of water saturation surface plots in a quarter five-spot reservoir with spatial resolution
of 32× 32 during four different floods - waterflood, surfactant flood and two SP floods. The mobility ratios
are Mλ = 2.89, 3.12, 3.06 and 1.96, respectively for the four floods. Γ0 = 0 for the waterflood and Γ0 = 0.05
for the other three floods. The permeability field used is given in Fig. 23. The surface plots are shown at
three different time levels, t = 1600, 3000, 5000.

flood (2nd column) and the first SP flood (3rd column), in spite of the fact that polymer is added to the
system in the SP flooding. This is because, the addition of polymer does not cause an appreciable change
in the mobility ratio (Mλ = 3.12 and Mλ = 3.06 respectively) between these two flooding schemes. Hence
these two flooding schemes produce very similar results and this serves as an additional validation of the
robustness of the model. The difference in the saturation surface plots between the two SP floods is primarily
observable in the features near the advancing fronts (i.e. near the edges of the surface plots). The higher
water saturation values can be seen to have spread wider in the second SP flood (fourth column) than in
any of the other floods. This means that the gradient of the water saturation is the largest in the second SP
flood as the frontal region is spread over the thinnest area among all the four floods. Even in Fig. 25, the
surfactant and polymer concentration surface plots of the second SP flood, as seen in the second and fourth
columns respectively, have a higher gradient near the frontal region as compared to the surfactant flood or
the first SP flood. This is expected as the combination of polymer and surfactant used in this particular
flood gives rise to the lowest mobility ratio (Mλ = 1.96). As a result, the progress of the finger formations
is arrested to a higher extent and also a higher percentage of the resident oil is mobilized.

Some of the effects, discussed above, seem to be marginally observable in the surface plots, but the
differences in the oil recovery efficiency and the change in the water cut at the production well with time,
as presented in Fig. 26, strongly support these claims. The oil recovery efficiency, ER (in %) is defined as
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Figure 25: Comparison of surfactant (Columns 1 & 2) and polymer (Columns 3 & 4) concentration surface
plots in a quarter five-spot reservoir with spatial resolution of 32 × 32 during three different floods. The
mobility ratio Mλ = 3.12, 1.96 for the first two columns while Mλ = 3.06, 1.96 for the third and fourth
columns, respectively. Γ0 = 0.05 is fixed for all the simulations. The permeability field given in Fig. 23 has
been used. The surface plots are shown at three different time levels, t = 1600, 3000, 5000.

the fraction of resident oil that is recovered in a flooding process. Figure 26(a) shows the recovery efficiency
of four types of chemical flooding schemes with different mobility ratios: (a) waterflood (Mλ = 14.43), (b)
surfactant flood (Mλ = 14.77), (c) SP flood (Mλ = 2.35) and (d) SP flood (Mλ = 2.98). The large drop
in mobility ratios between the first two (Mλ = 14.43 and 14.77) and the last two (Mλ = 2.35 and 2.98)
floods is used to enhance the difference in their efficiencies. Fig. 26(b) shows the time dependence of the
water cut or the aqueous phase saturation (sa) at the production well for these four floods. As expected,
in Fig. 26(a) we see that the oil recovery efficiency increases with the decrease in the mobility ratio of the
scheme. The curves coincide initially and start to diverge as soon as water breakthrough is achieved in each
flood. The respective breakthrough times are directly influenced by the mobility ratio of each flood, thus
causing the flooding scheme with a higher Mλ to breakthrough earlier. In Fig. 26(b), the water cut curves
follow the same trend. The water cut is constant and the same for each flood until breakthrough happens.
The surfactant flood, with the highest mobility ratio, achieves breakthrough earlier than all the other floods,
and also produces the highest fraction of water for almost the entire time. This can be attributed to the dual
effect of the surfactant. It increases the relative permeabilities and reduces the capillary pressure barrier,
thus facilitating the fluid flow. It can also be seen that the SP flood with the lower mobility ratio (Mλ = 2.35)
always has a lower water cut in comparison to the SP flood with a higher mobility ratio (Mλ = 2.98), which
supports the trend in their relative oil recovery efficiencies as well.

In Fig. 27, the second set of simulations is presented which compares water saturation surface plots
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Figure 26: Effect of the different flooding schemes on oil recovery efficiency and water cut in a quarter
five-spot geometry with a heterogeneous permeability field given by Fig. 23.

between four different types of flooding schemes at three different time levels. The first column represents
waterflooding (Mλ = 2.89,Γ0 = 0), the second column represents surfactant flooding (Mλ = 3.04,Γ0 = 0.1),
the third and fourth columns represent two different configurations of SP flooding (Mλ = 1.91,Γ0 = 0.01
and Mλ = 1.92,Γ0 = 0.1). In Fig. 24 we study the effect of polymer by changing the mobility ratios while
keeping Γ0 fixed. Here, we study the effect of surfactant by varying Γ0 between the two SP floods. In
Fig. 28 we compare the surfactant concentration surface plots for three floods. Specifically, the first column
represents a surfactant flood (Mλ = 3.04,Γ0 = 0.01) while the second and the third columns show the
surfactant concentration plots during the two SP floods.

As observed in Fig. 27, the surfactant flood and both the SP floods perform better than the waterflood in
recovering oil from the reservoir. This is reflected in the saturation surface plots of all the three floods where
the region of higher saturation values (shown in the darker shade of red) have advanced further than that
in the waterflood at comparable time levels. Even at water breakthrough, this is clearly visible. The other
striking observation is that the surfactant flood and the two SP floods take somewhat comparable times
while the waterflood takes significantly longer for water breakthrough. The surfactant flood is expected to
achieve a quicker breakthrough as it has a higher mobility ratio than the waterflood, but the two SP floods
achieve breakthrough earlier in spite of having lower mobility ratios than waterflood. This is because the
surfactant mobilizes a larger percentage of the resident oil (by lowering capillary pressure and increasing
relative permeabilities) and hence in Fig. 27, the interaction of the heterogeneity field used and the flood
configuration allows the water saturation surfaces with higher values (sa ≥ 0.5) to breakthrough earlier than
in the waterflood. This kind of flow behavior is possible partly because the difference in mobility ratios
between the floods in Fig. 27 is not very high.

The addition of polymer arrests the progress of the displacing phase along the heterogeneity induced
“fingers” and this is visible near the advancing fronts (i.e. along the edges of the surface plots) if we compare
the surfactant flood figures with any of the two SP flood figures. It is also confirmed by comparing the
surfactant concentration surface plots, given in Fig. 28, especially at t = 6000 and at water breakthrough. On
the other hand, addition of surfactant while keeping the amount of polymer fixed does not have a significant
impact, as seen in the last two columns of Fig. 27. The saturation surface plots are almost indistinguishable
and these two floods also take very similar times to reach water breakthrough. Similarly, the second and
the third columns of Fig. 28 show that the surfactant concentration surface plots for these two SP floods are
almost the same indicating that they depend weakly on the concentration of the surfactant for this particular
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simulation. Overall, in the last two sets of simulations we observe that, even in the presence of both polymer
and surfactant, the method is able to produce qualitatively accurate water saturation, polymer concentration
and surfactant concentration plots through the heterogeneous permeability field while capturing the intricate
details of the advancing fronts.
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Figure 27: Comparison of water saturation surface plots in a quarter five-spot reservoir with spatial resolution
of 32 × 32 during four different floods - waterflood, surfactant flood and two SP floods. The mobility ratio
for the four floods were Mλ = 2.89, 3.04, 1.91, 1.92. Γ0 = 0.1 for the surfactant flood (second column) and
the second SP flood (fourth column) and Γ0 = 0.01 for the first SP flood (third column). The permeability
field used is given in Fig. 23. The surface plots are shown at three different time levels including the plots
at water breakthrough for each flood in the last row. The respective times at which water breakthrough
happens for each flood is given below the last row of plots.

4.4.2 Surfactant-polymer flooding in a rectilinear geometry

In the final simulation, we compare four different types of floods in a rectilinear geometry with a spatial
resolution of 60 × 60. These are waterflood (Mλ = 14.43,Γ0 = 0), polymer flood (Mλ = 2.60,Γ0 =
0), surfactant flood (Mλ = 15.27,Γ0 = 0.05) and SP flood (Mλ = 3.06,Γ0 = 0.05). The heterogeneous
permeability field given by eq. (63) has been used. Fig. 29 shows the water saturation contours at three
different time levels. Fig. 30(a) shows the oil recovery efficiency with time for all the four floods and Fig. 30(b)
shows the water recovery efficiency versus time.

The first important point to notice is the difference in time required to achieve water breakthrough for
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Figure 28: Comparison of surfactant concentration surface plots in a quarter five-spot reservoir with spatial
resolution of 32 × 32 during three different floods. The mobility ratio was Mλ = 3.04 for the surfactant
flood (Column 1) and Mλ = 1.91, 1.92 for the two SP floods (Columns 2 and 3). Γ0 = 0.01 for the first two
columns and Γ0 = 0.1 for the third column. The permeability field given in Fig. 23 has been used. The
surface plots are shown at three different time levels including the plots at water breakthrough for each flood
in the last row. The respective times at which water breakthrough happens for each flood is given below the
last row of plots.

each of these floods. These time levels are provided below each of the water breakthrough contours in Fig. 29.
The addition of polymer increases the viscosity of the displacing aqueous phase making it slower. For the
purpose of demonstration, a very large drop in the mobility ratio from Mλ = 14.43, 15.27 (waterflood and
the surfactant flood) to Mλ = 2.60, 3.06 (polymer and the SP flood) has been used to capture this effect.
Hence the polymer flood takes the longest time to achieve water breakthrough as the polymer laden displacing
phase becomes highly viscous. The addition of surfactant has the twin effect of lowering the capillary pressure
barrier and increasing the relative permeability for the displacing phase and hence this makes it easier for the
displacing phase to penetrate into the reservoir. In the SP flood, the dual effect of polymer and surfactant
compete with each other and hence this flood achieves water breakthrough earlier than the polymer flood.
However, for the particular setup chosen in this experiment, the surfactant in the system cannot completely
overcome the slowdown caused by the polymer and hence pure waterflooding achieves water breakthrough
earlier than both the polymer and the SP flooding. As expected intuitively, the surfactant flooding is the
fastest. This is because the aqueous solution of surfactant is more mobile compared to pure water.

The effect of polymer in stabilizing the oil-water interface and thus reducing the growth of fingers can
be seen as well in Fig. 29. From the first two rows in Fig. 29, it is evident that the growth of fingers slows
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down the most in the polymer flood, followed by the SP flood, the waterflood and the surfactant flood, at
the same time level. This in turn ensures that by the time water breaks through a polymer flood achieves
an improved sweep compared to the waterflood. As seen in the first two columns of the last row of Fig. 29,
at water breakthrough the contours with higher levels of water saturation (shown in yellow and red) are
trailing in the case of the waterflood to those of the polymer flood. In Fig. 30(a), the oil recovery curves
for the waterflood and the polymer flood also support this observation. The oil recovery efficiency of the
polymer flood is more than that of the waterflood and hence the water recovery efficiency of the polymer
flood is lower as well (in Fig. 30). The water breakthrough times of all the floods can be clearly identified
from the points in Fig. 30 where the curves abruptly depart from their steady coincidental trajectory. These
times are also in agreement with the data obtained from the water saturation contour plots given in Fig. 29.

The effect of surfactant can be observed in the surfactant flood and the SP flood simulations shown in
the last two columns of Fig. 29. The surfactant flood seems to enhance the finger formation, as can be
seen by comparing the first and the third columns of Fig. 29 where the fingers advance faster in surfactant
flood. The surfactant flood also has a lower oil recovery efficiency than the waterflood (see Fig. 30(a)). This
result is not surprising if we compare the mobility ratios for each of the two floods. The surfactant flood
has a higher mobility ratio than the waterflood and hence has a lower oil recovery efficiency. This is also
supported by the water recovery curves of the waterflood and the surfactant flood in Fig. 30(b). The SP
flood on the other hand combines the twin effect of the polymer and the surfactant and hence not only are
the growth of fingers arrested, but also an improved sweep of the reservoir is achieved in comparison to the
waterflood and the surfactant flood. Also, in Fig. 30(a), it can be seen that oil recovery curve for the SP
flood steadily surpasses that of the surfactant flood, but trails that of the polymer flood. While this might
look counterintuitive, a comparison of the mobility ratios of the polymer flood (Mλ = 2.60) and the SP flood
(Mλ = 3.06) explains this phenomenon. From the standpoint of physics, this can be explained as well. The
polymer flood has a lower mobility ratio and hence is able to achieve a better areal sweep of the reservoir.
This means that the finger formations slowly become thicker and the resident oil in a larger area is swept
through. Also, with the passage of time after water breakthrough, the region where the finger tips intersect
with the line sink becomes larger compared to the SP flood, allowing for more discharge of oil. On the other
hand, the surfactant in the SP flood tries to facilitate the movement of the more mobile displacing phase
through the pathways formed by the finger formations. Hence, even though a larger percentage of oil is made
available for recovery (in the SP flood), this is recovered only at the narrow tips where the fingers intersect
with the line sink (see Fig. 29). The oil in the regions not yet swept by the displacing phase is not recovered.
The better oil recovery efficiency of the polymer flood over the SP flood can be attributed to a combination
of all these effects. The higher water recovery efficiency of the SP flood given in Fig. 30(b), compared to the
polymer flood, supports these observations. Overall, it appears from our simulations that a careful study
of the mobility ratios and the reservoir properties are critical for designing an efficient flooding scheme that
can maximize recovery.

5 Conclusions

We have proposed a mathematical model of immiscible two-phase, multi-component, incompressible flow
in porous media that arises in the context of chemical EOR processes, in particular polymer flooding and
surfactant-polymer flooding. The mathematical model is a coupled nonlinear system of an elliptic equation for
pressure and transport equations for water saturation, polymer concentration and surfactant concentration.
This model takes into account the capillary pressure. A new global pressure formulation has been developed
which renders the form of the elliptic equation with a discontinuous coefficient to be the same as the one
without the capillary pressure included in the model, except for the fact that now we solve the elliptic
equation for the global pressure. In this global pressure formulation, the system of flow and transport
equations bears some similarity with that of a miscible displacement process which is known to be much
simpler to solve numerically. A new hybrid numerical method based on an extended finite element method
for the discontinuous coefficient elliptic global pressure equation and a modified method of characteristics
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in combination with a time-implicit finite difference method for the transport equations has been developed
and implemented. Numerical simulations of several water, polymer and SP floods through heterogeneous
porous media have been performed. Numerical results show the convergence and robustness of the numerical
method both qualitatively and quantitatively.

The numerical method has been validated with an exact two dimensional solution for waterflooding. The
corresponding error norms and order of accuracy calculations have been presented to demonstrate the accu-
racy of the method. Several other numerical simulations have been carried out on both a quarter five-spot
geometry as well as a rectilinear geometry with four different types of heterogeneous permeability fields -
piecewise discontinuous with rectangular inclusions, the Upper-Ness formation type and the Tarbert forma-
tion type from the SPE10 dataset and a scalar, log-normal permeability field generated using a stationary,
isotropic, fractal Gaussian distribution. Two types of piecewise discontinuous permeability fields with one
or more square inclusions have been used in the simulations. The method has been validated qualitatively
by comparing these numerical results with those available in the literature. Simulations of a five-spot flood
have been performed on a parallel and a diagonal grid to demonstrate that the method does not suffer from
any serious grid orientation effects. The method is able to produce results which show that under similar
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Figure 29: Comparison of saturation contours during four different types of chemical floods in a rectilinear
geometry with 60× 60 spatial resolution at three different time levels. The heterogeneous permeability field
from [74] (plotted leftmost in Fig. 15) has been used. The saturations contours have been presented at
t = 80 (first row), t = 120 (second row) and at water breakthrough in each of the different floods, with the
corresponding time levels mentioned below each figure.
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Figure 30: Effect of the different flooding systems on oil recovery and water cut in a rectilinear geometry
with a heterogeneous permeability field from [74] (plotted leftmost in Fig. 15).

reservoir conditions with heterogeneous Upper-Ness type permeability field data from the SPE10 benchmark
problem, polymer flood improves the sweeping efficiency and inhibits growth of fingering instability in com-
parison to secondary recovery (waterflood). Numerical convergence of the method under grid refinement has
been shown by performing polymer flood simulations in heterogeneous porous media using three different
mesh sizes. The robustness of the method has been further demonstrated by simulating surfactant-polymer
floods with various different compositions of the surfactant-polymer solution. The method is able to capture,
fairly well, all the intricate details of the flow including the heterogeneity and viscosity driven finger forma-
tions. Using the saturation plots, the oil recovery curves and the water cut curves we are able to compare
the relative effectiveness of different types of chemical flooding schemes in both types of flow geometry.
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In: E. Bänsch (Ed.), Challenges in Scientific Computing - CISC 2002, Lecture Notes in Computational
Science and Engineering, vol. 35, Springer Berlin Heidelberg, 2003, pp. 1–22.

[30] Y. Epshteyn, B. Rivière. Fully implicit discontinuous finite element methods for two-phase flow. Appl.
Numer. Math., 57(4) (2007) 383–401.
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