
On estimates for short wave stability and long

wave instability in 3-layer Hele-Shaw flows

Prabir Daripa∗

Department of Mathematics, Texas A&M University, College Station, TX-77843

April 19, 2011

Abstract

We consider linear stability of three-layer Hele-Shaw flows with each layer having

constant viscosity and viscosity increasing in the direction of a basic uniform flow.

While the upper bound results on the growth rate of long waves are well known from

our earlier works, lower bound results on the growth rate of short stable waves are

not known to-date. In this paper we obtain such a lower bound. In particular, we

show in this paper following results: (i) the lower bound for stable short waves is

also a lower bound for all stable waves and the exact dispersion curve for most stable

eigenvalue intersects the dispersion curve based on the lower bound at a wavenumber

where most stable eigenvalue is zero; (ii) the upper bound for unstable long waves

is also an upper bound for all unstable waves and the exact dispersion curve for the

most unstable eigenvalue intersects the dispersion curve based on upper bound at a

wavenumber where the most unstable eigenvalue is zero. Numerical results are provided

which support these findings.
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1 Introduction

The depth averaged velocity of a fluid flowing through the gap in a Hele-Shaw cell resembles

the formula for the Darcy’s law which is applicable to porous media flows. The viscous

profile created due to rarefaction waves behind a sweeping front in two-phase immiscible

flows in porous media can be modeled using a viscous profile behind the sweeping front in

a Hele-Shaw flow. These analogies have motivated extensive studies in two-layer Hele-Shaw

flows (see [1],[2], [3],[4]) to understand various issues related to porous media flows. Design

of chemical enhanced oil recovery (EOR) processes usually involves flooding oil reservoirs

with a sequence of displacing fluids of various compositions containing chemicals (see [5]).

A close analogous system is multi-layer Hele-Shaw flows which has been recently studied

by Daripa [6]. This same analogy motivates the current study of three-layer Hele-Shaw

flows in order to gain an understanding of some of the complicated issues surrounding EOR

technology.

The three-layer Hele-Shaw model consists of three different fluid phases in three distinct

regions separated by sharp interfaces along which acts interfacial tensions. It is worth men-

tioning here that in actual porous media, the role of interfacial tension is more involved which

results in diffuse two-phase regions, not a sharp interface across which act the interfacial ten-

sion (see [7]). Towards this end, we mention that linear stability of miscible displacement

processes in porous media in the absence of dispersion has been studied earlier (see [8]).

The approximation of diffused interfaces by sharp interfaces in our Hele-Shaw model allows

exact studies of some hydrodynamic stability issues through analysis which play important

roles in enhanced oil recovery. Many such issues related to three-layer Hele-Shaw flows have

been studied by the author and his collaborators in recent years (see [6], [9], [10], [11]). In

such flows of our present interest in this paper, there is a middle layer of fluid of constant

viscosity µ between the displacing fluid of viscosity µl and the displaced fluid of viscosity µr.

The viscosity µ is chosen so that µl < µ < µr. Two initially planar interfaces including all

three fluids in the three layers move with velocity U along the positive direction of x-axis.

The y-axis is in the plane of the plates and extends all the way to infinity in both directions

of the y−axis. In a frame moving with the velocity U , x = 0 and x = −L are taken to be

initial locations of the two planar interfaces with the displaced fluid extending all the way

to x = ∞ and displacing fluid extending all the way to -∞. The interfacial tension at the

leading interface at x = 0 is denoted by T and that at the trailing interface at x = −L is

denoted by S.

The eigenvalue problem arising from the linear stability analysis of this uniform flow
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using equations relevant for Hele-Shaw flows has been derived in Daripa [11] and also in some

references cited therein. This derivation is outlined here briefly. The disturbances (ũ, ṽ, p̃)

in basic velocity (U, 0) and basic pressure P (see Daripa [11] for P ) are first decomposed in

normal modes according to the ansatz

(ũ, ṽ, p̃) = (f(x), φ(x), ψ(x))e(iky+σ t) (1)

where k is the wave number and σ is the growth rate. Then these are used in the linearized

disturbance equations arising from Hele-Shaw flow equations and the linearized dynamic and

kinematic boundary conditions. The resulting equations are then manipulated to obtain the

following eigenvalue problem in f(x). Details on this derivation can be found in Daripa [11].

fxx − k2f = 0, (2)

f+
x (−L) = (λ r + s)f(−L), f−x (0) = (λ p+ q)f(0), (3)

where λ = 1/σ and r, s, p, q are given by

r = {(µl − µ)Uk2 + S k4}/µ, s = µlk/µ ≥ 0, (4)

p = {(µr − µ)Uk2 − T k4}/µ, q = −µrk/µ ≤ 0. (5)

Notice that the eigenvalue σ appears in the boundary conditions (3) through λ. There

are two non-trivial eigenvalues σ+(k) and σ−(k) (where σ+(k) > σ−(k)) of this eigenvalue

problem which has been discussed in Daripa [11].

Past works on this problem that are relevant for this paper are reviewed here briefly.

This is also necessary for the purpose of continuity so that we place the contribution of this

paper in proper perspective. An absolute upper bound on the growth rate has been derived

in [9] and [10] in two different ways. In [9], this has been done using numerical analysis of the

discrete version of the above eigenvalue problem followed by an application of Gerschgorin’s

localization theorem for eigenvalues. Since an absolute upper bound need not be the best

upper bound (i.e., maximum growth rate), we sought to derive this by another approach

hoping an improved upper bound can be obtained. In a subsequent paper [10], this was

done using the variational formulation of the eigenvalue problem which is more elegant and

straight-forward. Even though we have not emphasized in these two papers about the local

upper bound on the growth rates of long waves, they are embedded in the content of those

papers from which the local upper bound result for long waves follows. However, to-date no

local lower bound result on the growth rates of short waves exists. This is partly due to the
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fact that such short waves are stable due to surface tension effects. Therefore, it was felt at

the time that the local lower bound for short waves may not be of interest. In retrospect,

it turns out that this is not true for many reasons. Short waves participate and thus play

an important role in determining overall stability in an experimental set up of finite (in

y-direction) width of the plates. More importantly, we obtain in this paper stronger results:

the local upper bound on the growth rates for most unstable modes which include the long

waves and the local lower bound on the growth rates for most stable modes which include

the short waves.

For our purposes below, we recall from [6] that σ is referred to as the growth rate even

when σ < 0. Growth rate (σ < 0) characteristics of any short wave depend on the values

of the parameters such as viscosity of three fluids, two interfacial tensions, and length of

the middle layer. Therefore, growth rate of a short wave can vary widely in the space of

these parameters. Even for a fixed set of parameter values, growth rate can decrease rapidly

with increasing wave number. If a local lower bound on the growth rate for short waves

also shares these same properties of the growth rate with respect to variation in one or more

of these parameters, then it is possible to use the local lower bound to find approximately

the qualitative effect of changes in parameter values on the stability of short waves. This

quantitative information can be useful in the selection of one or more of the parameters

appropriately in order to achieve some stabilization objectives of these short waves and in

particular the system as a whole. In fact, its effect on the size of the unstable band (which

usually is outside the band of short waves) can also be inferred in a qualitative sense, i.e.,

whether more or less number of unstable waves participate in determining stability of the

system as the parameter values are changed. For example, if it is found from the local lower

bound that the short waves as a group can become more stable from some changes in some

parameter values, then it is very likely that the unstable band will also shrink in size.

Below, we first analyze the above eigenvalue problem to estimate this local lower bound

for short waves. This can be done in three different ways all leading to the same result, and

two of these three methods parallels the ones we have presented in [9] and [10] for estimating

the local upper bound for long waves. Below we present all these three approaches to derive

some inequalities from which not only the local lower bound on the growth rate for short

waves but also the local upper bound on the growth rate of long waves follow. Some degree

of overlap with the author’s work in [9] and [10] is unavoidable but necessary in order to

establish the equivalence among these three methods one of which is new. In this paper,

we also compare these bounds with exact growth rates of these waves found numerically
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in Daripa [6]. Such comparisons validate not only the bounds but also some other results

derived below.

2 The estimates of the growth rate σ

Upper and lower bounds on the growth rates of short and long waves are derived in this

section. We will later show that these are also the bounds on the growth rates for unstable

and stable modes. This derivation will be based on the following proposition which we prove

first. Recall λ = 1/σ.

Proposition 1. There are only following two possibilities.

a := λp+ q > 0, or b := λr + s < 0. (6)

Proof. The above result will be proved using three methods: (i) calculation using the gen-

eral solution of (2); (ii) discretization of the stability system (2)-(3) and the Gerschgorin’s

localization theorem for eigenvalues; & (iii) variational formulation of the stability system.

(i) From calculation using the general solution of (2): The general solution of system

(2)-(3) is given by

f(x) = Aekx +B e−kx, (7)

where A and B satisfy the algebraic system

k(A−B) = (λp+ q)(A+B),

k(Ae−kL −B ekL) = (λr + s)(Ae−kL +B ekL).

}
(8)

The above system has nontrivial solution A,B iff the determinant is zero, that is

(a− k) ekL(b+ k)− (a+ k) e−kL(b− k) = 0, (9)

or

(ab− k2)(e2kL − 1) + k(a− b)(e2kL + 1) = 0. (10)

In [6], this algebraic equation has been solved for eigenvalues σ+ and σ− as a function of

wavenumber k. Suppose that a < 0 and b > 0. Then both the terms in the left hand side of

the above equation are negative and the sum can not equate to the right hand side which is

zero. One can easily verify this and other possible scenarios from the Figure 1 and arrive at

the conclusion (6). This figure shows zero level sets of (ab− k2) and (a− b) using a and b as

the two axis. The five curves in the figure then clearly identify regions when both ab > k2

and a > b hold or when both ab < k2 and a < b hold. These regions are shown shaded in
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Figure 1: Plots of functions a − b = 0 and ab − k2 = 0 for k = 1 with a and b as two axis.

The regions where both a− b > 0 and ab− k2 > 0 hold or both a− b < 0 and ab− k2 < 0

hold are shaded.

the figure. These are then the regions in which the solution (a, b) of (10) can not lie, thus

justifying the assertion (6).

(ii) From discretization of the stability system (2)-(3) and the Gerschgorin’s localization

theorem for eigenvalues: Discretization version of our paper is first recalled here from [9]. The

domain [−L, 0] is discretized into M subintervals of equal length d = L/M by introducing

the points x0 = 0, x1 = −d, ..., xi = −id, ...., xM = −L. The notation f(xi) = fi is used. The

derivative fxx at the interior points x1, x2, ..., xM−1 has been approximated as follows.

fxx(xi) ≈
f(xi + d)− 2f(xi) + f(xi − d)

d2
. (11)

The end-point derivatives f−x (x0) and f+
x (xM) are approximated as follows.

fx(x0) ≈
f0 − f1

d
, fx(xM) ≈ fM−1 − fM

d
, (12)

Therefore the boundary conditions (3) become

(f0 − f1)/d = (λp+ q)f0, (fM−1 − fM)/d = (λr + s)fM . (13)

The discretized form of the stability system (2)- (3) is given by

Eijfj = Fijfj, (14)
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where E is the tridiagonal matrix with its entries given by

Ejj = −2 except E0,0 = (1− d q) and EM,M = −(1 + ds),

Ej−1,j = Ej,j+1 = 1 except E0,1 = −1,
(15)

and F is the diagonal matrix with its entries given by

Fi,i = d2k2 except F0,0 = λd p and FM,M = λd r. (16)

In the particular case M = 4, we have 3 equidistant interior points and the system (14)

becomes
f0(1− d q)− f1 = (λd p)f0,

f0 − 2f1 + f2 = d2k2f1,

f1 − 2f2 + f3 = d2k2f2,

f2 − 2f3 + f4 = d2k2f3,

f3 − f4(1 + d s) = (λd r)f4.


(17)

Using Gerschgorin’s theorem, we obtain from (14)

|Ekk − Fkk| ≤
∑
j 6=k

|Ekjfj|/|fk| ≤
∑
j 6=k

|Ekj|,

if max |fi| = |fk|. Now, following three possibilities exists.

(a) If max |fi| = |fj|, 0 < j < M , then from (14) we obtain

|d2k2 + 2| ≤ 2⇒ −4 ≤ d2k2 ≤ 0. (18)

It is obvious that this last relation is false.

(b) If max |fi| = |f0|, then we obtain

|λd p− 1 + d q| ≤ 1⇒ 0 ≤ d(λp+ q) ≤ 2. (19)

(c) If max |fi| = |fM |, then we obtain

|λdr + 1 + d s| ≤ 1⇒ −2 ≤ d(λr + s) ≤ 0. (20)

Thus we see that only the possibilities (b) and (c) are meaningful from which we again get

the relation (6).

(iii) Multiplying equation (2) by f(x) and then integrating the resulting equation in the

interval [−L, 0], we obtain after using the boundary conditions (3)

(λp+ q)f 2(0)− (λr + s)f 2(−L) =

∫ 0

−L
f 2
x dx+ k2

∫ 0

−L
f 2 dx. (21)
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Therefore using the notations introduced in (6), we have

af 2(0)− bf 2(−L) ≥ 0. (22)

Suppose a < 0 and b > 0, then both terms in the above inequality are negative and the sum

can not be positive. Therefore the assumption a < 0 and b > 0 is false and we obtain the

result (6).

This completes the proof of the Proposition 1 in three different ways.

We see from (5) that p > 0 if 0 < k < k1 and p < 0 if k > k1 where k2
1 = U(µr − µ)/T .

Similarly from (4), (−r) > 0 if 0 < k < k2 and (−r) < 0 if k > k2 where k2
2 = U(µ− µl)/S.

Therefore both p > 0 and (−r) > 0 hold when 0 < k < min(k1, k2) (which we call “small”

wavenumber below) and both p < 0 and (−r) < 0 hold when k > max(k1, k2) ( which we

call “large” wavenumber below). In the following we analyze these two cases: the case of

“small” wavenumbers for which p > 0 and (−r) > 0 and the case of “large” wavenumbers

for which p < 0 and (−r) < 0. We can see that (recall µl < µ < µr)

p > 0 and (−r) > 0⇔ k2 ≤ min

{
U(µr − µ)

T
,
U(µ− µl)

S

}
, (23)

p < 0 and (−r) < 0⇔ k2 ≥ max

{
U(µr − µ)

T
,
U(µ− µl)

S

}
. (24)

We first consider the case of small wavenumbers. Then using (23) and Proposition 1, we

obtain the following two possibilities.

λ >
−q
p
> 0⇒ λ > 0 and σ <

p

−q
=
Uk(µr − µ)− k3T

µr
, (25)

or

λ >
s

−r
> 0⇒ λ > 0 and σ <

−r
s

=
Uk(µ− µl)− k3S

µl
. (26)

Therefore, in this case we obtain the following upper bound σul on the growth rate of long

waves (i.e., small wavenumbers).

0 < σ < σul = max

{
Uk(µr − µ)− k3T

µr
,

Uk(µ− µl)− k3S

µl

}
. (27)

This upper bound for long waves is consistent with one of our results in [6]. There we have

shown that σul is an upper bound for all unstable waves (the word unstable was inadvertently

left out from the third line after equation (33) in [6]), i.e. for all waves in the range

k ≤ max(k1, k2) = max

{√
U(µr − µ)

T
,

√
U(µ− µl)

S

}
. (28)
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This range contains all long waves and thus the upper bound result (27) for long waves is

consistent with our result in [6]. It is easy to verify that σul = 0 at k = max(k1, k2). We have

also shown in Daripa [6] that σ+ = 0 at k = max(k1, k2). Thus plots of σul versus wavenumber

k should intersect the dispersion curves σ+(k) at k = max(k1, k2) where σul = σ+ = 0. This

along with the upper bound result (27) will be validated below numerically.

In the case of large wavenumbers for which (24) holds, the inequality signs in the relations

(25) - (26) are reversed because p, (−r) are negative. Therefore, the growth rate of short

waves (i.e., large wave numbers) becomes negative and we obtain the following lower bound

σls for short waves.

0 > σ > σls = min

{
Uk(µr − µ)− k3T

µr
,

Uk(µ− µl)− k3S

µl

}
. (29)

The new principal element of this paper is the last estimate (29) for short waves. It is also

easy to verify that σls = 0 at k = min(k1, k2). We have also shown in Daripa [6] that σ− = 0

at k = min(k1, k2). This proves that the plot of σls versus wavenumber k will intersect the

dispersion curve σ−(k) at k = min(k1, k2) where σls = σ− = 0. This along with the lower

bound result (29) are validated numerically in the next section.

3 Numerical Results

We have obtained above upper and lower bounds on the growth rates of short and long waves

respectively but it turns out, as explained and justified above, these bounds also hold for

all unstable and stable waves respectively. Since, in general, the bounds are rarely optimal

allowing rooms for possible further improvement in these estimates through some different

kind of analysis which we are not aware of at this point, it is useful to test the tightness

of these bounds against exact calculations of the dispersion curves. In Daripa [6], such

dispersion curves have been obtained numerically. The upper and lower bounds given above

will now be compared with such numerically obtained exact dispersion curves.

In figures 2 through 5, we present plots for several choices of the set (S, T, U, L, µ) with

viscosities of end layers fixed, namely µr = 10 and µl = 2. Figure 2(a) shows the plots

of σ+, σ− & σul versus k and Figure 2(b) shows the plots of σ+, σ− & σls versus k for one

such choice of the set: (S, T, U, L, µ) = (1, 1, 1, 1, 4). For the other three choices of the set

(S, T, U, L, µ), such plots are shown in figures 3, 4, and 5 for (S, T, U, L, µ) = (1, 1, 1, 0.5, 4),

(S, T, U, L, µ) = (1, 0.5, 1, 1, 4), and (S, T, U, L, µ) = (0.5, 1, 1, 1, 4) respectively. These figures

support the validity of the estimates σul and σls. Also, these figures support our results:
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σul = σ+ = 0 at k = max(k1, k2) and σls = σ− = 0 at k = min(k1, k2). Validity of these have

been confirmed for many many other choices of the set (S, T, U, L, µ).

The point of illustrating four typical cases is to have a qualitative idea of the trend of

the difference between exact values of the growth rates and corresponding bounds as the

parameters are varied. Giving more case studies than one usually tend to answer more

questions that may otherwise arise in readers’ mind. For example, from these typical case

studies and associated figures 2-5, one finds that the plots of the upper bound σul versus k in

regions of interest (long wave regime) can have a double-hump or a single-hump characteristic

(one being more pronounced than the other when there is a double hump). In figures 2(a),

3(a), 4(a), and 5(a), the upper bound plots shown by the dashed curves are not that far

off from the exact growth rates σ+ of most unstable waves which include very long waves.

This leaves very little room for further improvement in the upper bound, specially when we

consider the fact that the bound which does not depend on L has to hold for all values of

L on which the growth rates depend, though the dependence of exact growth rates on L is

exponentially small (see [6]). In Daripa [6], it has been shown that the quadratic equation

whose solutions are σ+ and σ− contains a term involving e−kL and none of the other terms

in the equation depends on L. On the other hand, in figures 2(b), 3(b), 4(b), and 5(b), the

lower bound shown by dashed curves agrees closely with the actual growth rates σ− only for

modest values of large wave numbers and quickly diverges away from the actual growth rates

with increasing wavenumber. Thus, there is a lot of room for improving the lower bound

result (29). It will be worthwhile in the future to take an attempt on improving upon this

lower bound result.

In closing this section, it must be stressed that the bounds (27) and (29) are valid for

any values of the parameters including L > 0. As discussed above, the large k regime for

which the bound (29) holds corresponds to all stable modes which includes modest values of

k as well as k →∞ (see Figures 2 through 5). In this asymptotic limit k →∞ with L finite,

kL→∞ and in this limit, dispersion equation (9) gives either a = k or b = −k. Using these

values of a and b and the definitions of r, p, s, q from (4) and (5) in (6), it follows that

σ = [(µr − µ)Uk − Tk3]/(µr + µ) < 0, or σ = [(µ− µl)Uk − Sk3]/(µ+ µl) < 0, (30)

in the limit k → ∞. This is consistent with the bound σls given in (29) , keeping in mind

that the value of this bound will be negative for large k. The two limiting values of σ given

by (30) as kL→∞ are actually formulas for pure individual Saffman-Taylor growth rates of

two individual interfaces. This makes sense because this limit also includes the limit L→∞
(for any finite k) when the instabilities of the two interfaces should be independent of each
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other and should be driven by pure individual Saffman-Taylor instability, i.e., the eigenvalue

corresponding to each of the two interfaces should be given by Saffman-Taylor formula with

viscosity jump across that interface only.

4 Conclusions

We have derived here for the first time a lower bound σls on the growth rate of short waves

and re-derived an upper bound σul on the growth rate of long waves. We have also shown

that the lower bound is valid for all stable waves, i.e. σls < σ− for all k > min(k1, k2)

and the upper bound is valid for all unstable waves, i.e. σul > σ+ for all k < max(k1, k2).

Therefore, we have provided here the upper bound on all most unstable modes (σ+) and

lower bound on all most stable modes (σ−). Moreover, we have shown that σls = σ− = 0 at

k = min(k1, k2) and σul = σ+ = 0 at k = max(k1, k2). These have been also validated using

numerical results.

These results are useful in many ways. One can use these exact results without resorting

to computation to qualitatively estimate the influence of changes of various parameters such

as S, T, U and µ on the growth rates of stable and unstable waves. In [11], stabilization

criteria has been given based on an absolute upper bound on the growth rate. However, this

does not imply that a stabilized system based on an absolute upper bound (see [11]) will

stabilize all individual modal disturbances. The lower and the upper bounds (27) and (29)

for stable and unstable waves respectively can be used to determine the influence of such

stabilization on any individual modal disturbance. There are many creative ways one can

think of using these exact results. For example, following the exact procedure outlined in

Daripa [11], one can find new stabilization criteria (i,e,, the values of S, T, µ) based on these

local bounds rather than the absolute upper bound and purpose of doing so will be to target

stabilization of specific stable or unstable wave.

We should mention in closing the limitations of the upper and lower bounds (27) and

(29). These results are certainly valid for reasons mentioned before to predict the onset

of instability. Moreover, these bounds contain all the parameters including both interfacial

tensions which show that the interaction between the interfaces prevails even within the

linearized theory. Thus, there is a transfer of instability between the interfaces regardless

of how weak the interfacial disturbances are. As the disturbances grow and shapes of the

interfaces change, nonlinearity comes into play and these bounds based on linear theory

may not hold in the nonlinear regime. Nonetheless, it will be worthwhile to test this using
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Figure 2: Plots of σ+, σ−,&σul versus k in the left subfigure (a). Similarly, plots of

σ+, σ−,&σls versus k in the right subfigure (b). The parameter values are S = T = U =

1, L = 1, and µ = 4.

numerical as well as physical experiments which falls outside the scope of this paper.
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waves.

Figure 4: Plots of σ+, σ−,&σul versus k in the left subfigure (a). Similarly, plots of

σ+, σ−,&σls versus k in the right subfigure (b). The parameter values are S = L = U =

1, T = 0.5, and µ = 4.
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(a) Validation of upper bound σul for long waves.
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(b) Validation of the lower bound σls for short

waves.

Figure 5: Plots of σ+, σ−,&σul versus k in the left subfigure (a). Similarly, plots of

σ+, σ−,&σls versus k in the right subfigure (b). The parameter values are L = T = U =

1, S = 0.5, and µ = 4.
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