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Abstract

Forced displacement of oil by polymer flooding in oil reservoir is one of the effective methods of
enhanced (tertiary) oil recovery. A classical model of this process within Hele-Shaw approximation involves
three-layer fluid in a Hele-Shaw cell having a variable viscosity fluid in the intermediate layer between oil
and water. The goal here is to find an optimal viscosity profile of the intermediate layer that almost elim-
inates the growth of the interfacial disturbances induced by mild perturbation of the permeability field. We
derive the dispersion relation and sharp bounds on the growth rate of the interfacial disturbances for an
optimal viscosity profile of the intermediate layer. We also discuss how and why an appropriate choice
of variable viscous profile in the intermediate layer can mitigate not only the Saffman-Taylor instability
but also the tendency of preferential channeling of flow through high permeable region in the heterogene-
ous case.
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1. Introduction

One of the factors that has been known to degrade oil recovery is the preferential channeling of
flow largely caused by viscosity driven instability and variable permeability (heterogeneity). Vis-
cosity driven instability, also known as the Saffman-Taylor instability, is the cause of what is
known as the fingering phenomenon which leads to early breakthrough thereby degrading oil
recovery even in homogeneous reservoir. This phenomenon has been studied considerably since
the early fifties works of Saffman and Taylor [8], and Chouke et al. [2].

Viscosity driven instability has dreadful short-wave instability and containing this instability
has direct positive implications for improved oil recovery. It is more so for heterogeneous reser-
voirs because this phenomenon can be significantly pronounced in the presence of strong hetero-
geneities if high permeable regions happen to be perfectly aligned with the direction of growth of
the fingers. These various factors have been the motivation behind studies of control (either mit-
igating or completely eliminating) of viscosity driven instability by various means. Enhanced oil
recovery (abbreviated as ‘EOR’ below) processes are designed to achieve this.

One of the strategies used in EOR is to use polymer flooding, i.e. flood the reservoir first with
polymer-thickened-water (abbreviated as ‘polysolution’ below) followed by water. There are var-
iations on this theme that can be used such as polysolution-alternating-water EOR. Since the
polysolution is more viscous than water, the interfacial instability that causes the fingering phe-
nomenon does not grow as rapidly thereby improving the oil recovery process. This has been
known since early sixties and there have been several studies (see [5-7,10,11]) of this process which
investigate various viscosity profiles in the intermediate layer that may suppress or completely
eliminate the viscosity driven instability. There are other ways to enhance secondary oil recovery
process a detailed description of some of which can be found in Shah and Schecter [9].

In Daripa et al. [3,4], results of exhaustive numerical studies of this polymer flooding process
using saturation model in homogeneous and heterogeneous porous mediums have been reported
and discussed in detail. The subjects of some of these studies were displacement processes where
oil is displaced by polysolution having uniform concentration of polymer and hence uniform vis-
cosity, which in turn is displaced by water. Even though this polymer flooding improves oil recov-
ery as reported in Daripa et al. [4], the choice of constant viscosity of the polysolution in the
intermediate region (between oil and water) may not be optimal in the sense that same amount
of polymer can be distributed in the intermediate layer nonuniformly so that the polysolution in
intermediate layer has a variable viscosity profile that gives the best improvement in oil recovery.
Several studies (see [5-7,10,11]) of this process points in this direction. In mid-eighties, Gorell and
Homsy [5] numerically studied the three-layer case with variable viscosity in the middle layer using
Hele-Shaw model where the interfaces are taken to be contact discontinuities. At about the same
time, Daripa et al. [4] extensively studied instability at dynamic fronts in the initial three-layer fluid
set-up using saturation model where the fronts can be shocks with jumps in saturation at the fronts.

The problem of finding a continuously varying viscosity profile in the intermediate region that
minimizes the growth rate of disturbances at the interface that is sweeping the oil leads to a
Sturm-Liouville problem (eigenvalue problem) with eigenvalues in the boundary conditions.
Numerically solving this problem, Gorell and Homsy [5] has obtained a numerical optimal viscos-
ity profile in the intermediate region. Carasso and Pasa [1] has revisited this problem and has-
obtained an analytical formula for the optimal viscosity in the intermediate region. Both of
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these studies use Hele-Shaw model in which the interfaces are contact discontinuities and the per-
meability is constant in space. All these results for Hele-Shaw flows have some relevance for
immiscible flows in homogeneous reservoirs. Limitation comes from the fact that the interfaces
in Hele-Shaw models are contact discontinuities where as the interfaces in saturation model
involving immiscible flows are shock fronts across which there are jumps in the saturation which
depend on time as well as on specific location along the fronts.

Extensive numerical studies on the effect of various constant viscosities of the intermediate layer
on the growth of disturbances on leading (one that is displacing oil) as well as trailing (one that is
displacing polysolution) interfaces have been carried out by Daripa et al. [4] under one or both of
the following two conditions: (i) the interfaces are shock fronts in saturation which arise in mode-
ling immiscible flows in porous media (see [4]), and (ii) the medium is heterogeneous. However,
there are no results to-date of any kind on the optimal viscosity profiles of the intermediate layer
under one or both of the above two conditions. Since both of these conditions are prevalent in
actual oil reservoirs, it is of interest to assess the effect of each of these conditions separately
on the optimal viscosity profile.

Since most reservoirs are heterogeneous, it will be useful first to consider the problem of inter-
facial instability in the presence of the second condition, i.e. variable permeability, in a three-layer
set-up with middle layer having variable viscosity. However, this problem as stated is not analyt-
ically tractable because there are no known simple steady basic solutions of the underlying equa-
tions involving planar interfaces in the presence of arbitrary variable permeability. On the other
hand, in the case of constant permeability such simple solutions with planar interfaces exist. This
makes it possible to study the effect of mild perturbation of this constant permeability on the
growth rate of the interfacial disturbances. Therefore, we consider this modified problem based
on the hypothesis that the effect of mild perturbation of the constant permeability on the growth
rate of the interfacial disturbances closely approximates the evolution of such interfacial distur-
bances as an initial value problem for the heterogeneous case having variable permeability given
by the above perturbed permeability. This way we can gain precise estimate of the effect of mild
heterogeneity on the growth rate of the interfacial disturbances in the three-layer case with the
middle layer having variable viscosity and even provide optimal viscosity profiles of the middle
layer that can make the growth rates as small as desired. We undertake such a study in this paper.

The paper is laid out as follows. In Section 2, we present relevant equations and linear stability
analysis for planar interfaces in a two-layer fluid set-up in a Hele-Shaw cell and derive well known
Saffman-Taylor result using a framework that is often referenced and is also useful in the follow-
up Section 3. In essence, the way Section 2 is presented also reduces the length of Section 3. In
Section 3, the three-layer fluid model with middle layer having a fluid with variable viscosity is
considered and stability analysis of the planar interfaces under mild perturbation in permeability
is presented and results on the growth rate of the disturbance and an optimal viscosity profile are
derived. Finally, we conclude in Section 4.

2. Two-layer fluid

Here we recall the standard two-layer Saffman—Taylor result (see [8]) concerning the flow of two
immiscible fluids in a Hele-Shaw cell. A Hele-Shaw cell consists primarily of two transparent
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plates with a narrow gap of width, say d, in between. If a fluid is encapsulated in the cell (which
can be propped up at a slant or mounted vertically so that gravity and buoyancy move the lig-
uids), then the motion of fluid inside the cell is quasi-two-dimensional and the governing equa-
tions are same as that of Darcy flow in porous media with effective permeability ¢*/12.

In the case of two immiscible fluids in a Hele-Shaw cell with water displacing oil (as studied by
Saffman and Taylor), there exists a “sharp’ interface between displacing fluid (water) and oil. We
use the continuity equation for the velocity (u,v) and the Darcy law for pressure p, in the fixed
coordinate system x; Oy where x; is the direction of flow far upstream, direction y is orthogonal
to it in the plane of the flow in the usual Cartesian coordinate setting, and ‘O’ is the origin of the
system. The relevant equations are

Uy +0, =0, p, =—pku, p,=—puk, Y (x1,y) € R (1)

where p is the viscosity, and & is the inverse permeability. We have two constant viscosities: water
viscosity p; and oil viscosity u,. The water velocity far upstream is in the x;-direction and is con-
stant, denoted by U.

In the mobile coordinate system x = x; — Ut, we consider the following basic solution with the
planar interface at x =0: u =0, v =0, and p = P(x) where U and P(x) satisfy

OP/O0x = —ukU; x<O0:pu=u; x>0:pu=p,. (2)

We consider the perturbations i, v, p and study the /inear perturbations of the basic solution (2).
We obtain the following perturbations system:

(@), + (©), =0, x#0, (3)
(p), = —pki, x#0, (4)
(p), = —ukt, x#0. (5)

We consider normal mode analysis using the following form of the perturbation in the x-com-
ponent of the velocity,

u(x, y, 1) = f(x) exp(ioy + at), (6)

where o is the growth rate and the wavenumber « is taken to be greater than zero without any loss
of generality. The perturbations v and p are obtained using Egs. (3) and (5):

b= —(f,/io) exp(iay + ot), p = —(ukf /o?)exp(ioy + at). (7)

If the planar surface is disturbed slightly such that its equation becomes x = g(y,¢), then the
kinematic condition that each particle remains there gives

gt:ﬂ(OJ/vt)v onng(y,t), (8)
within linear approximation (assuming perturbation is small). It then follows from (6) and (8) that
g(y,1) = (f(0)/a) exp(ioy + ot). 9)

The dynamic boundary condition for the free interface, within linear approximation, is given by
p(0) —p (0) =Tg,, (10)
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where the superscripts “+’ and ‘-’ are used to denote the “right”” and “left” limit values, 7 is the
surface tension and g,, is the approximate curvature of the perturbed interface. Above and below,
h, denotes the derivative of an arbitrary function A(y) with respect to y.

We have the following expression for the pressure near the point x = 0:

p(0+28(y,0) =PO+2y,1) +p0+2(y1) (11)

The basic pressure P is continuous because the planar interface of the basic solution has zero cur-
vature. First-order Taylor approximation of P gives

P(0+g(y,1)) = P(0) +g(y, ) - 0P/0x(0). (12)
The right limit values of 0P/0x and p are the following:
OP* /0x(0) = —Uku*(0);  p*(0) = —(u" (0)kf [ (0)/o) exp(ioty + ), (13)

and similar expressions can be obtained for corresponding left limit values.
The above expressions and the relation (11) are used to obtain the right and left limit values of
the pressure near the point x = 0:

p (0 = P(0) - w OR{E 1+ 2 10 b expliny + o) (14)

_ _ —(0) U .
p (0)=P0) —u (O)k{fa—(z) + ;f(O)} exp(iay + at). (15)
For the case of zero surface tension (7' = 0) and x(0) = 1" (0), condition (10) after using (14) and
(15) gives
£ (0) = £7(0). (16)
We consider the case T' #0, p discontinuous at x =0, and g,, # 0. Then using (14) and (15) in
condition (10) gives
_ kULt (0) — u(0)) — Tt £(0)
w(0)f(0) = pH(0)£F(0) k-
The following equation of fis obtained by cross differentiating the relations (4) and (5) and then
using (6) and (7).
fx), —o*f(x) =0, x#0. (18)

Note that the perturbation # is continuous across the interface. Hence f'is also continuous across
the interface (see (6)). For zero perturbations far upstream and downstream, Eq. (18) has follow-
ing solution.

x<0: f(x)=ae™, f7(0) =aa; x>0: f(x)=ae™, f(0)=—na. (19)

We have u~(0) = u; (water viscosity) and u*(0) = u, (oil viscosity). The above solution for f'in (17)
gives the growth rate

KU (0) — i (0) ~ TH_ KUs(ty — ) = T
TR O () ko)

(17)

(20)
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where subscript ‘s’ stands for Saffman-Taylor since this is the well known formula of Saffman and
Taylor (see [8]). In the case p(0) > 1 (0), relation (17) gives o, <0, Vo € R, and hence the inter-
face is stable. On the contrary, if 4; = 4~ (0) < u"(0) = uo, then the interface is unstable because

kU (py —
o, >0 for o<, = M, (21)
where oy is the cut-off wave number where the growth rate is zero. The most dangerous wave-

number o, < o, and the maximum growth rate o, are given by

3/2
Olsm = OCsc/?)v Osm = Z{kU(’uz - /-Ll)} . (22)
3k(uy + ) V3T

The interfacial stability as discussed above shows that the interface, when water displacing oil,
is unstable and suffers from short-wave instabilities (¢ = O(x), as & — oo) for zero surface tension
case. These are detrimental to the sweeping efficiency of the interface.

Since most dangerous mode grows as 3/2 power to the viscosity jump across the interface (see
(22)), one of the ways to control the interfacial instability and thereby improve sweeping efficiency
is then to control the viscosity jump at the interface that displaces the oil. One of the ways to achieve
this is to have an intermediate layer of fluid between oil and water which perhaps has viscosity closer
to oil than water. This requires a study of the displacement process involving a three-layer fluid.

Since adding polymer in water increases the viscosity of this polymer-thickened-water phase (to
be called ‘polysolution” henceforth), use of such a polysolution, instead of water, in displacing oil
followed by water which in turn displaces the polysolution is likely to suppress the instability of
the interface sweeping the oil, assuming validity of the above analysis involving two-layer case to
this three-layer case (see [4] for some discussion on such polymer flooding process). Since the vis-
cosity of polysolution depends on the concentration of polymer, a polysolution with variable vis-
cosity whose viscosity gradually decreases along the layer from the oil-polysolution interface to
the water—polysolution interface is likely to offer most advantage given a fixed amount of poly-
mer, considering the fact that polymer is very expensive. The goal is to find an optimal viscous
profile that can arbitrarily reduce the growth rate of the interfacial instabilities (one that is sweep-
ing the oil) induced by mild perturbation in permeability. This is the subject of study of the next
section. Of course, the problem is now somewhat more complicated as the viscous profile of the
intermediate layer affects the stability properties of both the interfaces under perturbation in
permeability.

3. Three-layer fluid

We consider the “three-layer’” fluid in a Hele-Shaw cell with polysolution having variable vis-
cosity in the middle layer sandwiched between water and oil in the extreme layers. Now, there are
two interfaces: oil-polysolution interface and oil-water interface. In the displacement process
where the water is displacing the intermediate layer which in turn is displacing the oil, the sweep-
ing efficiency of the process, in part, is dictated by the stability characteristics of the oil-poly-
solution interface since this interface is actually sweeping the oil.
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Since the middle layer has polymer thickened aqueous phase in which polymer is passively ad-
vected, we need an equation of continuity for polymer concentration. However, since viscosity de-
pends directly on this polymer concentration and the viscosity u is considered invertible with
respect to the polymer concentration, instead we obtain a continuity equation for viscosity u in
the middle layer (see [5]). Therefore, the following basic solution with planar interfaces at
x = —/ and at x = 0 exists in the mobile coordinate system x = x; — Ut:

u=0, v=0, p=Pk), p=u), (23)

where P(x) and pu(x) satisfy following equations:

x # —{1,0}: 0P/ox = —ukU; 0P/0y =0, (24)
x€(=14,0): u+Up, =0, (25)
x<—=l:u=p, x>0: u=p,. (26)

We consider the perturbations , i, b, p, ji, of the permeability, velocity, pressure and viscosity
(only in the intermediate region), and obtain the system:

(@), +(0), =0, x#—10; (27)
(p), = —ukit — kU — kU, x # —1,0; (28)
(p), = —HkD, x # —1,0; (29)
i+ a(dp/dx) =0, x e (=1,0). (30)

Compared with the similar governing equations (see (3)—(5)) of the previous section, we now have
the new terms (— kU — pkU) in the Eq. (28) for the x-derivative of the pressure perturbation, and
a new Eq. (30) for the perturbed viscosity in the middle layer. Note that the Egs. (27) and (29)
coincide with the Egs. (3) and (5).

We use normal mode analysis involving these perturbations with an ansatz similar to that used
in (6) for the x-component of the velocity. We assume that perturbations in the above quantities in
the Hele-Shaw cell is primarily introduced by infinitesimal movement of the plates which are
somewhat flexible and this disturbance can grow in time within linear theory. This is the rationale
for using this ansatz similar to (6) for .

On carrying out the algebra with the above mentioned ansatz in the above set of equations, we
obtain the same previous expressions (7) for ¢ and p. We consider the perturbed interface given by
(8) at x = 0 and the pressure drop given by (10). Therefore we have the same growth rate (17) as a
function of fand limit values of the viscosity. The viscosity perturbation is given by (6) and (30):

it = (1 (x)f (x)/ o) exp(ioy + o1). (31)

Below we use the notation
F(x) = 1 () /u(x), ¥ € LR, (32)
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The equation of f'is obtained by cross differentiating (28) and (29):
(pkit + pkU + kU, = (ukb),. (33)

The influence of perturbed permeability occurs only if £ depends on y. We obtain the following
equations of f:

Foe() +7r(x) fu(x) — 2f (x) = —éoczf(x)Ur(x) +a*Ue, x € (—1,0); (34)

fu(x) —2f (x) = o?Ue, x ¢ (—1,0). (35)

Note that Eq. (35) follows from (34) with r(x) = 0. The ¢ in the above equations is the amplitude of
the permeability perturbation. We have to find the solution f of the Egs. (34) and (35), where u is
an unknown function of x. The boundary conditions are:

x=—1: u"(=)=wu (=I)=u,, surface tension 7 = 0. (36)
x=0: pu <u(0) <y, surface tension 7 # 0. (37)
The relation (16) and condition (36) give

fo (D) = £ (=D). (38)
Since the function f'is continuous and bounded far upstream and downstream, we obtain
[ =D =f(=0), f7(0)=r7(0). (39)

Now the problem is to solve the system (34) and (35) subject to the boundary conditions (38) and
(39) and find the optimal viscosity u, in the intermediate layer which gives us the smallest value of
the growth rate (17).

We consider a constant value of r in (32)—(34) and search for an Euler solution of the system
(34) and (35). We use the last condition given in (39) and obtain

x < —=I: f(x) =cexp(ox) — Uk, (40)
x € (=1,0): f(x)=bexp(gx) —oUe¢/(c — Ur), (41)
x>0: f(x) =aexp(—ox) — Uk, (42)

where a > 0, a, b, ¢ are complex numbers, and ¢*> + rq — o*(1 — Urla) = 0. Subject to the condition

1—Ur/o >0, (43)
the roots of this equation are real of which only the positive root is of relevance for our solution.
Moreover, a consequence of this inequality is 0 < ¢ < o which can easily be verified from the above
quadratic equation for ¢. The validity of the above condition (43) is justified towards the end of
this section under Remark 1.

The first two conditions given in (39) and the continuity of f'at x = 0 give
Uer Uer

b= e GO D= O+ Us 0= —

exp(ql). (44)



P. Daripa, G. Pasa | International Journal of Engineering Science 42 (2004) 2029-2039 2037

The solutions (41) and (42) give
1 (0)f(0) = (0)gb,  £.7(0) = —oa, (45)

where constants @ and b are given by (44). Substituting (45) in the formula (17) for the growth rate
g, we obtain, after simple algebraic manipulation (note that constants a and b also depend on g),
the following dispersion relation

E (o) Uroed!
(o — q)E (o) + kUr(u~(0)goet’ + pyo(ce?’ — o0+ q))’
where we have used
E(2) = o’kU (py — p (0)) — o*T. (47)

Note from relation for E(x) that the ¢ in (46) stands for the growth rate of the interface displacing
the oil. Henceforth, this will be implicit when we use o.

The parameter ¢ describing the fluctuation of the permeability does not appear explicitly in the
final dispersion relation (46) but implicitly it does which makes the result (46) mathematically con-
sistent. A constructive way to explain the dependence of the growth rate o on € is to first note that
the growth rate ¢ of a mode with wave number « can be calculated from (46) for given values of
Uz, 1 (0), k (unperturbed permeability), U, and r provided ¢ (see (46)) is known a priori which it is
not. But ¢ depends on the growth rate ¢ itself through (44), and (44);. Thus the dispersion relation
(46) is a nonlinear equation in the growth rate which depends on the parameter ¢. Formally, one
can set up an iterative method to calculate ¢ which starts with an initial guess of ¢, then using (46)
to calculate o, followed by (44), (i.e. % (6 — 1) = f(0) + Ue) to calculate 6 (which depends on ¢,
the amplitude of perturbation in permeability) and then using (44); (i.e. 0 = P exp(q!)) for
updating the value of ¢. This implicitly shows the dependence of ¢ on &. However, our basic result
is not (46) but rather estimate (53) (see below) which follows from it for the optimal viscous profile
(48) (see below) and does not require any calculation involving ¢ as above. Below, we obtain a
qualitative result estimating this growth constant ¢ as a function of «, u, /, and r.

Considering the constant value of r in the intermediate region that we have chosen above, the
optimal viscosity profile in the intermediate region consistent with (32) and continuity of viscosity
W (=0) = pu; at x = —/ interface is then given by

pu(x) = pexp{r(x+1)}. (48)
The constant r in (48) is still undefined and can be chosen as

(46)

o=

1=
r~-In , 49
i (49)

where 7 is a small positive number. Note that exp(r/) < oo, regardless of how large is /. It follows
from (48) and (49) that the viscosity u (0) in the intermediate region at the interface x = 0 is given
by

1o(0) = e = py —n < py. (50)

This 1 equals the jump in viscosity, [u] = o — 1 (0), at the interface separating oil from the
variable viscosity fluid in the intermediate layer.
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For large values of /, from the dispersion relation (46) we obtain
N E(2)
k(= (0)g + pp2)°

It is worth noting that this result resembles two-layer Saffman—Taylor result (see (17)) with an ad-
justed viscosity. The adjusted viscosity, of course, is a result of the stability analysis of the three-
layer case as presented above. Since (see (47))

E(a) >0 forocgocc:\/k%, (52)

we obtain from (51) after using (50) and 0 < ¢ < «, that
E@) _ @)
2k, ku,o

which gives the upper and lower bounds of the growth rate ¢. It is important to note that only the

(51)

(53)

modes with wavenumbers in the small interval 0 < a < o, = \/@ are unstable because for « in
this range we have ¢ > 0.

The upper bound of the growth rate of the most dangerous wave number oy, is obtained by
seeking o at which E(x)/a takes a maximum value (see (51)) and then using this value o in the right
hand side of (51) which gives

t = )3 0 <oy = 2R = O)FF 2HRUGE (54)

3ku,v3T 3ku,v/3T
Therefore, the optimal profile gives a maximum growth rate of order [u]*? where [1] = > — 1 (0)
is the jump in viscosity at the interface separating oil from the variable viscosity fluid in the inter-
mediate layer.

Remark 1. We need to justify the condition (43). We use the left inequality of (53) to obtain
(1/o) < 2Ek—”;‘°‘; in which we use the fact that E(o)) = o’k U(uo — ye”) — o*T (see (48) and (50)) is

bounded as r — 0. Then (Ur/o) < Ur 2;‘(‘;)“ — 0 as r — 0 whose consistency with (43) suggests that

this condition will hold for values of » away from zero but less than some finite threshold value of r.

4. Discussions and conclusion

When a less viscous fluid displaces a more viscous one, the Saffman-Taylor instability for zero
surface tension case suffers from short-wave instability which is completely eliminated by surface
tension in the presence of which the cutoff-wavenumber o, and the growth rate of the most unsta-
ble mode are proportional to, respectively, 1/2 and 3/2 power to the jump in viscosity at the inter-
face. In the three-layer case, these same estimates hold for the interface sweeping the oil when the
intermediate layer is long and has viscosity profile (48). The advantage of using this optimal vis-
cosity profile is that jump in viscosity can be made as small as we please and thus the maximum
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growth rate as well as cut-off wavenumber can be made arbitrarily small, thereby almost eliminat-

ing the instability of the interface. The long waves with wavenumbers below the cut-off wavenum-
least with large /, that its existence may not have much relevance in the context of oil recovery,
considering the degree of uncertainty that exist in such oil recovery processes.

In the case of mild heterogeneity, the dispersion relation (46) shows that the growth rate of indi-
vidual modes depends on the length ‘I of the intermediate layer and the modified measure ‘¢’ of
the small perturbation ‘¢’ in permeability. The relationship between ‘¢’ and ‘¢’ is complicated
involving the growth rate ‘o’ (see (44)). Therefore, the dispersion relation (46) is a nonlinear equa-
tion in the growth rate itself for individual modes. Remarkably, for the same viscous profile (48)
which can diminish the growth of the interfacial disturbance arbitrarily small, upper and lower
bounds of the growth rate are given by the simple formulae (53) for large ‘7. These bounds do
not depend on the amplitude of perturbation in permeability and, in fact, are same as for the
homogeneous case where the interfaces are directly subjected to disturbances. This is primarily
due to the fact that the variation in the growth rate due to small perturbation, &, in permeability
is negligibly small for the optimal viscous profile (48). In other words, if we were to write the
growth rate as a Taylor series in ¢, i.e., o(a,¢) = 6(2) + ea,(2, 0) + O(e?), then the o,(x,0) is very
small for the optimal viscous profile (48) and only the leading term in the series really matters
for practical purposes. Thus, what our result indirectly shows that an appropriate choice of var-
iable viscous profile in the intermediate layer can mitigate not only the Saffman—Taylor instability
but also the tendency of preferential channeling of flow through high permeable regions in the
heterogeneous case.

ber, o, = can only grow but the maximum growth rate (see (54)) can be made so small, at
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