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Abstract

The linear stability of three-layer Hele–Shaw flows with middle-layer having variable viscosity is consid-
ered. Based on application of the Gerschgorin�s theorem on finite-difference approximation of the linearized
disturbance equations, an upper bound of the growth rate is given and its limiting case for the case of con-
stant viscosity middle-layer is considered. A weak formulation of this equation, we obtained after some
analysis. The upper bound in this case has also been derived here by analyzing an weak formulation of
the problem.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper concerns displacement of a more viscous fluid by one or more fluids in succession
each having less effective viscosity than the one being pushed by it. In traditional two-layer
Hele–Shaw flows, the planar interface is unstable when a more viscous fluid is displaced by a
less viscous fluid. The disturbances grow at a rate which depends on the viscosity difference at
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the interface. In three-layer Hele–Shaw flows, growth rate of disturbances depends on the viscos-
ities of fluids in all three layers and growth rate of the leading interface, i.e. the interface in contact
with the most viscous fluid in our above set-up, depends on viscosity profiles of all three layers. The
set-up where the extreme layers have constant viscosities and the middle-layer has varying viscous
profile has been of some interest because this can optimally provide control of the disturbances at
the leading interface. This study also has relevance in the context of enhanced oil recovery.
In oil recovery by secondary displacement processes, a viscous oil in a porous medium is dis-

placed by the injection of another less viscous immiscible fluid, usually water. The sharp interface
(a contact discontinuity), within Hele–Shaw model approximation, separating oil and water suf-
fers from the Saffman–Taylor instability [1] which is one of the sources of poor oil recovery as the
moving unstable interface fails to sweep the oil completely before interface breaks at the produc-
tion well, thereby producing water instead of oil at breakthrough. The surface tension reduces the
instability only to some extent which is not sufficient enough for enhancing oil recovery. In order
to contain this instability to a meaningful level for improving oil recovery process before break-
through, various tertiary displacement processes are used. One of these processes involves flood-
ing the reservoir with a fluid having variable viscosity followed by pure water. This recovery
process, thus, involves fluid flow involving three regions each containing fluid having different vis-
cosity properties. Because there is some analogy between flows in porous media and Hele–Shaw
flows, we consider the three-layer Hele–Shaw flows as it retains the main instability mechanism
due to viscosity difference in porous media though the problem here is somewhat simpler due
to absence of other effects usually present in porous media.
The paper is laid out as follows. In Section 2, we lay out the disturbance equations of Hele–

Shaw flows and its discrete approximations. Using these discrete approximations with Gerschgo-
rin�s localization theorem we arrive at a theoretical upper bound on the growth rate when the
middle-layer has variable viscosity. This is produced in Section 3. Section 4 analyzes theoretical
upper bound for slowly varying viscous profile. In Section 5, using a weak formulation of the dis-
turbance equations valid only for the constant viscosity case, we obtain a theoretical upper bound
of the growth rate for the constant viscosity case which is also recovered from the results valid for
the slowly varying viscous case. Finally, we conclude in Section 6.
2. The disturbance equation and its discrete approximation

Consider the three-layer Hele–Shaw cell where the fluid in the left layer with viscosity ll extends
up to x = �1 and fluid in the right layer with viscosity lr extends up to x =1 and the in-
between middle-layer of length L contains a fluid of variable viscosity l(x). The fluid at upstream
x = �1 has velocity (U, 0). The underlying equations of this problem admits a simple solution
which is that the whole system and thus, the two planar interfaces also move with speed U in
the x direction. The system is considered to be infinite in the y direction.
In a moving frame where the frame moves with the velocity (U, 0), the above system is station-

ary along with the two planar interfaces separating these three fluid layers. In linearized stability
analysis of these disturbances in the moving frame, the amplitude of the modal disturbances is
assumed to be proportional to a function f(x) and the viscosity of the middle-layer is l(x) where,
with slight abuse of notation without losing any substance, the same variable x is used in the mov-
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ing frame. As discussed in detail in [2–4], the linear stability analysis then gives rise to the follow-
ing equation for the perturbation
�ðlfxÞx þ k2lf ¼ kk2Urlxf ; x 2 ð�L; 0Þ;
fxð0Þ ¼ ðkp þ qÞf ð0Þ; f xð�LÞ ¼ ðkr þ sÞf ð�LÞ;

)
; ð1Þ
where k = 1/r, and p, q, r, s are defined by
p ¼ fðlr � lð0ÞÞUk2 � Tk4g=lð0Þ; q ¼ �lrk=lð0Þ 6 0;
r ¼ fðll � lð�LÞÞUk2 þ Sk4g=lð�LÞ; s ¼ llk=lð�LÞ P 0.

)
. ð2Þ
It is worth noting that
p P 0 for k2 6 k21 ¼ ðlr � lð0ÞÞU=T ; r 6 0 for k2 6 k22 ¼ ðlð�LÞ � llÞU=S. ð3Þ

All these equations are in dimensional form.
We discretize the problem (1) using (M � 1) equidistant interior points in (�L, 0):

xM = �l < xM�1 < xM�2 < 
 
 
 x1 < x0 = 0, with d = (xi � xi+1). We use the first order approxima-
tion for the end points derivatives and second order approximation for the interior point deriva-
tives namely,
fxð�LÞ ¼ ðfM�1 � fMÞ=d; f xð0Þ ¼ ðf0 � f1Þ=d;
fxðyÞ ¼ ½f ðy þ d=2Þ � f ðy � d=2Þ�=d; f xxðyÞ ¼ ½f ðy þ dÞ � 2f ðyÞ þ f ðy � dÞ�=d2;

�
; ð4Þ
where y is any one of the interior discretization points. Using these finite difference approxima-
tions (4) in the boundary conditions given in (1) leads to
ðfM�1 � fMÞ=d ¼ ðkr þ sÞfM ; ðf0 � f1Þ=d ¼ ðkp þ qÞf0; ð5Þ

which are rewritten as
1

rd
fM�1 �

1

rd
þ s
r

� �
fM ¼ kfM and

1

dp
� q
p

� �
f0 �

1

dp
f1 ¼ kf0. ð6Þ
Using (4)–(6) the discrete analog of the pde (1) in a compact form is written as
Af ¼ kBf ; f ¼ ðf0; f1; f2; . . . ; fMÞ. ð7Þ

As an example, for the case of three interior points matrix A and B are given by
1

dp
�q
p

� �
� 1
dp

0 0 0

�l1=2
d2

l1=2þl3=2
d2

þl1k
2

� �
�

l3=2
d2

0 0

0 �
l3=2
d2

l3=2þl5=2
d2

þl2k
2

� �
�

l5=2
d2

0

0 0 �
l5=2
d2

l5=2þl7=2
d2

þl3k
2

� �
�

l7=2
d2

0 0 0
1

rd
� 1

dr
þ s
r

� �

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

;

ð8Þ
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B ¼

1 0 0 0 0

0 k2Ul0
1 0 0 0

0 0 k2Ul0
2 0 0

0 0 0 k2Ul0
3 0

0 0 0 0 1

0
BBBBBB@

1
CCCCCCA
; ð9Þ
where l0
i denotes first derivative of l(x) at point x = xi. Similarly, li/2 stands for values of l(x) at

mid-point of the subinterval [xi�1,xi]. We rewrite (7) as
Cf ¼ kf ; C ¼ ðCijÞ; ð10Þ

which for the case of three-interior points is equivalent to multiplying Eqs. (2)–(4) in system (7) by
ðk2Ul0

lÞ
�1, ðk2Ul0

rÞ
�1, ðk2Ul0

3Þ
�1 respectively.
3. An upper bound

Using Gerschgorin�s localization theorem for the eigenvalues k of (10), which are contained in
the union of the following circles, we obtain
jk � C11j 6 jC12j ð11Þ
jk � C22j 6 jC21j þ jC23j ð12Þ
jk � C33j 6 jC32j þ jC34j ð13Þ
jk � C44j 6 jC43j þ jC45j ð14Þ
jk � C55j 6 jC54j. ð15Þ
From inequalities (12)–(14) we obtain
li

Ul0
i
6 k ) r 6

Ul0
i

li
. ð16Þ
From inequality (11), we obtain
1

pd
þ�q

p
� � 1

pd

����
����

� �
6 k 6

1

pd
þ�q

p
þ � 1

pd

����
����

� �
; ð17Þ
and from inequality (15), we obtain
� 1

rd
� s
r
� 1

rd

����
����

� �
6 k 6 � 1

rd
� s
r
þ 1

rd

����
����

� �
. ð18Þ
If p P 0, then it follows from (17) that
� q
p
6 k 6 � q

p
þ 2

pd
. ð19Þ
If p 6 0, then it follows from (17) that
2

pd
� q
p
6 k 6 � q

p
. ð20Þ
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If r P 0, then it follows from (18) that
� 2

rd
� s
r
6 k 6 � s

r
. ð21Þ
If r 6 0, then it follows from (18) that
� s
r
6 k 6 � s

r
� 2

rd
. ð22Þ
It is worth recalling here that q < 0 and s > 0. We have the following two inequalities, the first one
from (19) and (20), and the second one from (21) and (22).
k > 0 ONLY if p P 0; and also k > 0 ONLY if r 6 0. ð23Þ

The inequalities (19) and (22) give the most dangerous situation for the wave numbers. Therefore,
we have the following estimates which also includes the inequality (16).
0 6 r 6
Ul0

i

li
or r 6 � p

q
or r 6 � r

s
. ð24Þ
Since
p P 0() k2 6
U ½lr � lð0Þ�

T
; r 6 0() k2 6

U ½lð�LÞ � ll�
S

; ð25Þ
inequalities (19) and (22) holds iff
k2 6Max
U ½lð�LÞ � ll�

S
;
U ½lr � lð0Þ�

T

� �
. ð26Þ
Therefore, the inequality (26) is a necessary and sufficient condition for instability of a mode with
wave number k. If (26) is true, then it follows that
r 6Max � p
q
;� r

s
;
Ul0

i

li

� �
. ð27Þ
Since this is true for any arbitrary number of grid points, we conclude from applying this inequal-
ity in the limit of zero mesh size that
r 6Max � p
q
;� r

s
;Max

x

Ul0

l

� �� �
. ð28Þ
(a) Case I
U ½lð�LÞ � ll�
S

<
U ½lr � lð0Þ�

T
ð29Þ
• Case I.a: If k < [l(�L)�ll]U/S, then r < 0, p > 0, and we have (27).
• Case I.b: If [l(�L)�ll]U/S < k2 < [lr�l(0)]U/T, then r > 0, p > 0, and we have
2

r 6Max
n
� ðp=qÞ;Max

x

Ul0

l

� �o
.

• Case I.c: If [lr�l(0)]U/T < k2, then r > 0, p < 0, and we have from (23) and (16), the

inequality r 6Max
x

Ul0

l

� �
.
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ax
k

� p
q

� �
¼ 2T

lr

Uðlr � lð0ÞÞ
3T

� �3=2
. ð30Þ
(b) Case II
U ½lr � lð0Þ�
T

<
U ½lð�LÞ � ll�

S
ð31Þ
• Case II.a: If k2 < [lr � l(0)]U/T, then r < 0, p > 0, and we have (27).
• Case II.b: If [lr � l(0)]U/T < k2 < [l(�L) � ll]U/S, then r < 0, p < 0, and we have

r 6Max
n
� ðr=sÞ;Max

x

Ul0

l

� �o
.

• Case II.c: If [l(�L) � ll]U/S < k2, then r > 0, p < 0, and we have r 6Max
x

Ul0

l

� �
.

ax
k

� r
s

� �
¼ 2S

ll

Uðlð�LÞ � llÞ
3S

� �3=2
. ð32Þ
4. Case of slowly varying viscosity

For the viscosity profiles satisfying
Max
x

Ul0

l

� �
6Maxfp=ð�qÞ; r=ð�sÞg; ð33Þ
or equivalently,
Max
x

l0

l

� �
6Max

2

3
ffiffiffi
3

p
lr

ffiffiffiffi
U
T

r
lr � lð0Þð Þ3=2; 2

3
ffiffiffi
3

p
ll

ffiffiffiffi
U
S

r
lð�LÞ � llð Þ3=2

( )
; ð34Þ
we then obtain from the above consideration
r 6Max � p
q
;� r

s

� �
. ð35Þ
Instead, to have an effective constant viscosity, we consider a linear, very slowly increasing
viscosity lc(x) in the middle-layer.
lcðxÞ ¼ � 
 xþ lcð0Þ; ð36Þ
where � = (lc(0) � lc(�L))/L and 1 < lc(�L) < lc(0) < a. The condition (33) is satisfied in our
case, if � given in (36) satisfies the following condition.
U
lcð0Þ � lcð�LÞ

Llcð0Þ
6Max

2S
ll

Uðlð�LÞ � llÞ
3S

� �3=2
;
2T
lr

Uðlr � lð0ÞÞ
3T

� �3=2( )
; ð37Þ
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where we have used relations (31) and (33). This condition is satisfied if (lc(0) � lc(�L)) is small
enough, that is if we have a very slowly increasing viscosity in the intermediate region.
Since, a constant viscosity profile is the limiting case of a slowly varying viscosity profile satis-

fying (36), the upper bound given by (35) should hold in the case of constant viscosity profile.
Below, we show that this is indeed the case by analyzing Eq. (1) for the constant viscosity case.
5. Case of constant viscosity

In this case problem (1) reduces to
fxx � k2f ¼ 0; x 2 ð�L; 0Þ;
fxð0Þ ¼ ðkp þ qÞf ð0Þ; f xð�LÞ ¼ ðkr þ sÞf ð�LÞ;

)
ð38Þ
where p, q, r, s are the same as defined in (2) with l(�L) = l(0) = l, the constant viscosity of the
middle-layer. We multiply the equation in (38) by f and then integrate over (�L, 0) which, after
using the boundary conditions defined in problem (38), yields
kfpf 2ð0Þ � rf 2ð�LÞg ¼
Z 0

�L
f 2x þ k2

Z 0

�L
f 2 þ sf 2ð�LÞ � qf 2ð0Þ. ð39Þ
Therefore,
r ¼ 1
k
¼ pf 2ð0Þ � rf 2ð�LÞR 0

�L f
2
x þ k2

R 0
�L f

2 þ sf 2ð�LÞ � qf 2ð0Þ
; ð40Þ
which gives the inequality
r 6
pf 2ð0Þ � rf 2ð�LÞ
�qf 2ð0Þ þ sf 2ð�LÞ

. ð41Þ
Let a = pf 2(0) > 0, b = �rf 2(�L) > 0, c = �qf 2(0) > 0, d = sf 2(�L) > 0. Then we have
r 6
aþ b
cþ d

6
a
c
¼ p

�q
if bc 6 ad ð42Þ
and
r 6
aþ b
cþ d

6
b
d
¼ �r

s
if ad 6 bc. ð43Þ
It is easy to see that above two cases are the only possibilities and hence we conclude from (42)
and (43) that upper bound on the growth rate is the same one as given above by (35).
6. Summary

In this paper, we have derived an upper bound of the growth rate for the constant viscosity
middle-layer in two ways: (i) applying the upper bound for the variable viscosity case to very
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slowly varying linear viscous profiles and assuming that the upper bound for the limiting case
lx ! 0 is the upper bound for lx = 0 case; (ii) using analysis directly on the equations valid
for lx = 0 case. Both methods yield the same result.
Eq. (1) has eigenvalues k (which is the inverse of growth rate) as well as the viscosity gradient lx

in its right hand side. For the constant viscosity case, lx = 0 and hence the righthand side of the
equation becomes identically zero. This changes the structure of the equation since the equation
does not have the eigenvalue in it anymore and eigenvalue appears only in the boundary condi-
tions. So, the analysis of the Sections 2 and 3 which is based on application of Gerschgorin�s
theorem to the eigenvalue problem for the case lx 5 0 now breaks down for the constant viscosity
case.
Since the analysis of Sections 2 and 3 is applicable to very slowly varying linear profiles, we

applied upper bound result obtained in Section 3 to these profiles. It turns out (see Eqs. (36)
and (37)) that for very slowly varying linear viscous profile, the upper bound does not depend
on the viscosity gradient. This is an indication that the same upper bound should also hold for
the constant viscosity case.
In Section 5, we derived an upper bound for the constant viscosity case directly from Eq. (38)

appropriate for this case. Through a weak formulation of this equation, we obtained after some
analysis the same upper bound as the one we obtained in Section 4 for very slowly varying linear
profiles. It is perhaps interesting to note that we arrive at the same result by two different methods:
Section 4 is essentially based on application of Gerschgorin�s theorem to the eigenvalue problem
for varying viscosity case where as the Section 5 is based on analysis of a weak formulation of the
problem for the constant viscosity case.
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