Journal of Computational Physié$9,151-192 (2001)

®
doi:10.1006/jcph.2001.6720, available online at http://www.idealibrary.col DE &l.

A Fast Parallel Algorithm for the Poisson
Equation on a Disk

Leonardo Borgesand Prabir Daripa?

*Institute for Scientific Computation arfibepartment of Mathematics, Texas A&M University,
College Station, Texas 77843
E-mail: prabir.daripa@math.tamu.edu

Received January 10, 2000; revised September 6, 2000

A parallel algorithm for solving the Poisson equation with either Dirichlet or Neu-
mann conditions is presented. The solver follows some of the principles introduced
in a previous fast algorithm for evaluating singular integral transforms by Daripa
et al. Here we present recursive relations in Fourier space together with fast Fourier
transforms which lead to a fast and accurate algorithm for solving Poisson problems
within a unit disk. The algorithm is highly parallelizable and our implementation is
virtually architecture-independent. Theoretical estimates show good parallel scala-
bility of the algorithm, and numerical results show the accuracy of the method for
problems with sharp variations on inhomogeneous term. Finally, performance results
for sequential and parallel implementations are presentedoo1 Academic Press

1. INTRODUCTION

The Poisson equation is one of the fundamental equations in mathematical physics wt
for example, governs the spatial variation of a potential function for given source terr
The range of applications covers magnetostatic problems to ocean modeling. Fast, accl
and reliable numerical solvers play a significant role in the development of applications
scientific problems. In this paper, we present efficient sequential and parallel algorithms
solving the Poisson equation on a disk using Green’s function method.

A standard procedure for solving the Poisson equation using Green’s function metl
requires evaluation of volume integrals which define contribution to the solution resulti
from source terms. However, the complexity of this approach in two-dimensidhaN$)
for a N2 net of grid points which makes the method prohibitive for large-scale problen
Here, we expand the potential in terms of Fourier series by deriving radius-depenc
Fourier coefficients. These Fourier coefficients can be obtained by recursive relati

1 To whom correspondence should be addressed.

151

0021-9991/01 $35.00
Copyright© 2001 by Academic Press
All rights of reproduction in any form reserved.

152 BORGES AND DARIPA

which only utilize one-dimensional integrals in the radial directions of the domain. Als
we show that these recursive relations make it possible to define high-order numerica
tegration schemes in the radial directions without taking additional grid points. Results
more accurate because the algorithm is based on exact analysis. The method present
accuracy even for problems with sharp variations on inhomogeneous term. On a sir
processor machine, the method has a theoretical computational comgkkiBiog, N)

or equivalentlyO(log, N) per point which represents substantial savings in computation
time when compared with the complexify(N?) for standard procedures.

The basic philosophy mentioned above has been applied previously in the contex
developing fast algorithms for evaluations of singular integrals [8] in the complex plar
The mathematical machinery behind this philosophy is applied in Section 2 of this paper
the presentation of a theorem (Theorem 2.1) which outlines the fast algorithm for solv
the Poisson equation in the real plane. The derivation of this theorem is straightforward
closely follows the analogous development elsewhere [7], except for the fact that it d
not use the tools of single complex variable theory (such as Cauchy’s residue theorern
in Daripa and Mashat [8], and it involves a different equation.

We must state right at the outset that our main goal in this paper is the use of this theo
for the development of the very efficient serial and parallel algorithms and testing t
performance of these algorithms on a host of problems. Thus, we could have merely st
Theorem 2.1 without its derivation, but the presentation of the derivation is necessary
completeness. Also, it is necessary for the purpose of extension of this fast algorithn
higher dimensions and to arbitrary domains which we will address in a forthcoming pag
It is worth pointing out that the statement of Theorem 2.1 follows the general format o
theorem recently introduced by the second author and his collaborators [8] in the con
of singular integral transforms. Thus, part of this paper builds upon our earlier work.

We address the parallelization of the algorithm in some detail which is one of the m:
thrusts of this paper. The resulting algorithm is very scalable because of the fact 1
communication costs are independent of the number of annular regions taken for the dor
discretization. It means that an increasing number of sample points in the radial direct
does not increase overheads resulting from interprocessor coordination. Message ler
depend only on the number of Fourier coefficients in use. Communication is performed |
linear path configuration which allows overlapping of computational work simultaneous
with data-exchanges. This overlapping guarantees that the algorithm is well suited
distributed and shared memory architectures. Here our numerical experiments show
good performance of the algorithm in a shared memory computer. Related work [2, 3] she
the suitability for distributed memory. It makes the algorithm architecture-independent &
portable. Moreover, the mathematical formulation of the parallel algorithm presents a h
level of data locality, which results in an effective use of cache.

At this point, it is worth mentioning that there now exists a host of fast parallel Poisst
solvers based on various principles including the use of FFT and fast multipole mett
[5, 6, 16, 18]. The fast solver of this paper is based on Theorem 2.1, which is deriv
through exact analyses and properties of convolution integrals involving Green’s functi
Thus, this solver is very accurate because of these exact analyses which is demonst
on a host of problems. Moreover, this solver is easy to implement and has a very |
constant hidden behind the order estimate of the complexity of the algorithm. This gi\
this solver an advantage over many other solvers with similar complexity, which usua
have a high value of this hidden constant. Furthermore, this solver can be very optil

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 153

for solving certain classes of problems involving circular domains or overlapped circu
domains. This solver can also be used in arbitrary domains via spectral domain embed
technique. This work is currently in progress.

In Section 2 we begin presenting the mathematical preliminaries of the algorithm &
deriving the recursive relations. In Section 3 we describe the sequential implementation
two variants of the integration scheme. In Section 4 we introduce the parallel implementa
and its theoretical analysis. In Section 5 we present and discuss the numerical result
several test problems for accuracy and performance of the algorithm. Finally, in Sectic
we summarize our results.

2. MATHEMATICAL PRELIMINARIES

In this section we introduce the mathematical formulation for a fast solver for Dirichl
problems. Also, recursive relations are presented, leading to an efficient numerical a
rithm. Finally, the mathematical formulation is extended to Neumann problems. Proofs
given in the Appendix.

2.1. The Dirichlet Problem and Its Solution on a Disk

Consider the Dirichlet problem of the Poisson equation

Au=f inB
1)
u=g onaB,
whereB = B(0, R) = {x € IR? : |x| < R}. Specifically, lety satisfy
Av=1f inB, (2)
andw be the solution of the homogeneous problem
Aw=0 inB
3)
w=g—v onaB.
Thus, the solution of the Dirichlet problem (1) is given by
Uu=v+w. 4)
A principal solution of Eq. (2) can be written as
v(x) = / f) Gx,mdn, xeB, ®)
B
whereG(X, n) is the free-space Green’s function for the Laplacian given by
1
G(x.n) = 5 -log|x — 1. (6)
JT

To derive a numerical method based on Eq. (5), the interior of theR{iBKR) is divided
into a collection of annular regions. The use of quadrature rules to evaluate (5) incursin

154 BORGES AND DARIPA

accuracy for the approximate solution. Moreover, the complexity of a quadrature mett
is O(N%) for a N? net of grid points. For large problem sizes it represents prohibitiv
costs in computational time. Here we expan(@ in terms of Fourier series by deriving
radius-dependent Fourier coefficienta6f). These Fourier coefficients can be obtained by
recursive relations which only utilize one-dimensional integrals in the radial direction. T
fast algorithm is embedded in the following theorem.

THEOREM2.1. If u(r, @) is the solution of the Dirichlet problerl) for x = re'® and
frel*) =3 fa(r)e"e, then the nth Fourier coefficientar) of u(r, -) can be written
as

In|
Un(r) = vn(r) + (%) (Gn — vn(R)), O<r <R, (7)

where g are the Fourier coefficients of g diB, and

r R
vn(r)=/pn(r,p)dp+/qn(r,p)dp, (8)
0 r
with
plogr fo(p), n=0,
Pn(r, p) = { =2 ()" o) N0, 9)
and

plogpfo(p), n=0,
On(r, p) = (10)

72 (5)" fa(p). n#0.

2.2. Recursive Relations of the Algorithm

Despite the fact that the above theorem presents the mathematical foundation of
algorithm, an efficient implementation can be devised by making use of recursive relati
to perform the integrations in (8). Consider the d&{0, R) discretized byN x M lattice
points with N equidistant points in the angular direction alt distinct points in the
radial direction. LetG=r; < r> < --- < ry = Rbe the radii defined on the discretization.
Theorem 2.1 leads to the following corollaries.

COROLLARY 2.1. It follows from(8) and (10) thatv,(0) = O for n # 0.
COROLLARY 2.2. LetO=r; <r,<---<ry =R, and

fj

X n
Cy’ =/ﬁn(%> fa(e)do, N <0, (11)

n
i _ [P (N
D;! = /2n<p fn(p) do, n > 0. (12)

fi

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 155

Ifforr; > r;, we define

v (ry) =0, n<o,
N . (13)
U;(I’j)z (:—]> Un_(ri)‘i‘CrI{J, n <O,
|
and
v (rm) =0, n>0
+ n\" . i (14)
v, (i) = o v, (rj) + Dy, n>o0,
j
thenfori=1,..., M we have
v (i) +vt,(ri), n<0,
un(F7) ={ e (15)
vrf(ri)+v:n(ri), n> 0.

COROLLARY 2.3. LetO=r; <rs <--- <ry = R, and add n= 0to the definitions in
Corollary 2.2as

rj I

Cs'= [pfoprdp and T/ = [plogs fo(p)dp. (16)
Ti fi
thengivenl=1,..., M we have
logr S _,Co ™ + Mt Dy, forn =0,
vn(n) = { Yoo (B)"Cit 4+ oM (L)"DE, forn <0, (17)

() DR+ Ei() e, forn >0,
It is important to emphasize tht distinct pointg 4, ..., ry need not to be equidistant.
Therefore, the fast algorithm can be applied on domains that are nonuniform in the ra
direction. This anisotropic grid refinement may at first seem unusual for elliptic problen
Even though it is true that isotropic grid refinement is more common with solving ellipt
equations, there are exceptions to the rule, in particular with a hybrid method such as
(Fourier in one direction and finite difference in the other). Since Fourier methods
spectrally accurate, grid refinement along the circumferential direction beyond a cer
optimal level may not always offer much advantage. This is well known because of |

exponential decay rate of Fourier coefficients for a classical solutiSrfinction). This
fact will be exemplified later in Example 1 (see Table | in Section 5.1) where we show tt
to get more accurate results one needs to increase the number of annular regions wi
increasing the number of Fourier coefficients participating in the calculation (i.e. anisotro
grid refinement with more grids in the radial direction than in the the circumferenti
direction is more appropriate for that problem).

156 BORGES AND DARIPA

TABLE |
Problem 1—Relative Errors in Norm || - || Using Distinct
Values for N and M

Relative errors for Problem 1 (Dirichlet)

M 64 128 256 512 1024 2048

64 2.6e-5 6.4e-6 1.6e-6 3.9e-7 9.8e-8 2.5e-8
128 2.6e-5 6.4e-6 1.6e-6 3.9e-7 9.8e-8 2.5e-8
256 2.6e-5 6.4e-6 1.6e-6 3.9e-7 9.8e-8 —
512 2.6e-5 6.4e-6 1.6e-6 3.9e-7 — —

1024 2.6e-5 6.4e-6 1.6e-6 — — —
2048 2.6e-5 6.4e-6 — — — —

Note.The number of circled is the dominant parameter.

2.3. The Neumann Problem and Its Solution on a Disk

The same results obtained for solving the Dirichlet problem can be generalized for
Neumann problem by expanding the derivative of the principal solution(5). Consider
the Neumann problem

Au=f in B

ou (18)
— = on 0B.
on 4

The analogous of Theorem 2.1 for the Neumann problem is given by Theorem 2.2.

THEOREM 2.2. If u(r, @) is the solution of the Neumann problgi8) for x = rei®
and f(re'® =372 _ fo(r)e"e, then the nth Fourier coefficient,ur) of u(r, -) can be
written as

Uo(r) = vo(r) + ¢o, n=20

r\"/R
Un(r) = vn(r) + (ﬁ) <ﬁ1//n+vn(R)>a n?’éO,

(19)

whereyr, are the Fourier coefficients af ondB, v, are defined as in Theorethl,and g
is the parameter which sets the additive constant for the solution.

3. THE SEQUENTIAL ALGORITHM

An efficient implementation of the algorithm embedded in Theorem 2.1 is derived fro
Corollary 2.2. It defines recursive relations to obtain the Fourier coefficignta (7)
based on the sign of the indexof v,. In the description of the algorithm, we address the
coefficients with index valugs < 0 asnegative modesnd the ones with index values> 0
aspositive modesEquation (13) shows that negative modes are built up from the smalle
radiusr; toward the largest radiug,. Conversely, Eq. (14) constructs positive modes frorn
rv towardr;. Figure 1 presents the resulting sequential algorithm for the Dirichlet probler
The counterpart algorithm for the Neumann problem similarly follows from Theorem 2
and Corollary 2.2.

Notice that Algorithm 3.1 requires the radial one-dimensional inte@gdfs! andD};' 1
to be calculated between two successive points (indexédabdi + 1) on a given radial

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 157

ALGORITHM 3.1. (Sequential Algorithm for the Dirichlet Problem on a Disk). Git&nN,
the grid valuesf (r,€2*'*/N) and the boundary conditiomg R&**/N) | € [1, M], andk e
[1, N], the algorithm returns the valuesr, e2"'*/N), | € [1, M], k € [1, N] of the solution
for the Dirichlet problem (1).

1.

2.

Compute the Fourier coefficienfs(r)), n € [-N/2, N/2], for M sets of data at
| € [1, M], and the Fourier coefficientg onaB.

For i € [1,M — 1], compute the radial one-dimensional integral§'**, n e
[—N/2, 0] as defined in (11) and (16); and compig **, n € [0, N/2] as defined
in (12) and (16).

. Compute coefficients; (r,) for each of the negative modes [—N/2, 0] as defined

in (13) and (17):

(a) Setv,(r) =0forne[-N/20].
(b) Forl =2,..., M

vy () = (rr_') vy (r_y) +C-4 ne[-N/2,0].

. Compute coefficients' (r,) for each of the positive modese [0, N/2] as defined in

(14) and (17):

(@) Setvi(rm) =0forn e [0, N/2].
(b) Forl=M-1,...,1

r n
vl () = (ﬁ) vi(ry) +DF' nef0,N/2).
+

. Combine coefficients; andv,, as defined in (15) and (17):

Forl =1,...,. M

vo(r) = logrjvg (r) + vg (1).
un(r) = v_n(r) = vy, (1) + vi (), ne[-N/2 -1].

. Apply the boundary conditions as defined in (7):

Forl =2,....M

In|
Un() = wnr) + () (@ —wn(R), ne[-N/2.N/2l

. Compute u(r,e¥ /Ny = Zr':'ﬁ,\,/zun(n)e”ik”/"‘, ke[1,N], for each radius

n.l e[l M].

FIG. 1. Description of the sequential algorithm for the Dirichlet problem.

158 BORGES AND DARIPA

direction (defined by). One possible numerical method for obtaining these integrals wou
be to use the trapezoidal rule. However, the trapezoidal rule presents an error of quad
order. One natural approach to increase the accuracy of the numerical integration we
be to add auxiliary points between the actual points of the discretization of the domair
allow higher-order integration methods to obt@iri+* and D' +2. This approach presents
two major disadvantages: (1) it substantially increases computational costs of the algori
because the fast Fourier transforms in step 1 of Algorithm 3.1 must also be perforn
for all the new circles of extra points added for the numerical integration; (2) in practic
problems the values for functioh may be available only on a finite set of points, which
constrains the data to a fixed discretization of the domain, and no extra grid points car
added to increase the accuracy of the solver.

Here, we increase the accuracy of the radial integrals by redefining steps 2, 3, ar
of Algorithm 3.1 based on the more general recurrences presented in Egs. (13) and |
TermsClLi+! and D'+ are evaluated only using two consecutive points. In fact, for th
casen < 0 one can apply the trapezoidal rule for (11) leading to

2 i —-n
Cii+l — % (i (|-I|-—1) fari)+ G +1) fn(ri+1)> (20)

for a uniform discretization, wheng = (i — 1)ér. It corresponds to the trapezoidal rule
applied between circles andr; ;. A similar equation holds foD\;'*1. By evaluating
terms of the fornC/ -1+ and D! ~**1, three consecutive points can be used in the radi
direction. It allows the use of the Simpson’s rule

2 - TN
crn = 8X ((—1>< +1) fo(ri_ 1>+4|(- 1) fn<ri>+<i+1>fn<ri+1>),
(21)

which increases the accuracy of the method. In the algorithm, it corresponds to redefir
step 3fom < 0 as

vy (ry) =0
vy (rp) = CL2,

-2

r n
v (h) = (r'> vy (N—2) + C 2, | =3,..., M,
and step 4 fon > 0 as

v (rm) =0,

M-1,M
vrT(I'M_l) = Dn B

n
v = (r> v + DM =M -2, 1
M2

It results in an integration scheme applied between three successive circlgs; sayand
ri+1, with computational costs practically similar to the trapezoidal rule but with highe
accuracy. The above Simpson’s rule presents an error formula of fourth order in the don
of length 3r. For sufficiently smooth solutions, it allows cubic convergencérims the
numerical results show in Section 5.

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 159

4. THE PARALLEL ALGORITHM

Current resources in high-performance computing can be divided into two major mod
distributed and shared memory architectures. The design of a parallel and portable a
cation must attempt to deliver a high user-level performance in both architectures. In
section, we present a parallel implementation suited for the distributed and shared mo
Although we conduct our presentation using the message-passing model, this model
also be employed to describe interprocessor coordination: Higher communication overt
corresponds to larger data dependency in the algorithm, which results in loss of data Ic
ity. Even though shared memory machines have support for coherence, good perform
requires locality of reference because of the memory hierarchy. Synchronization and
sharing must be minimized [1]. Efficient parallelized codes synchronize infrequently a
have little true sharing [22]. Therefore, a good parallelization requires no communicat
whenever possible. Using the data decomposition, which allows lower communication ¢
also improves the data locality. The numerical results in Section 5 are obtained in a sh
memory architecture. The performance of the parallel algorithm on distributed memory s
tems was addressed in [2]. There a variant of the algorithm was used for fast and acct
evaluation of singular integral transforms.

The recursive relations in Corollary 2.2 are very appropriate to a sequential algoritt
However, they may represent a bottleneck in a parallel implementation. In this section
use the results presented in Corollary 2.3 to devise an efficient parallel solver for the Pois
equation. Theoretical estimates for the performance of the parallel version of the algori
are given below. We also show that this parallel solver has better performance characteri
than an implementation based on Corollary 2.2. Finally, we compare our parallel algorit
with other Poisson solvers.

4.1. Parallel Implementation

The fast algorithm for the Poisson equation requires multiple fast Fourier transfor
(FFT) to be performed. There are distinct strategies to solve multiple FFTs in para
systems [4, 11]. In [2] we have shown that an improved implementation of parallel ce
to sequential FFTs is the best choice for the fast algorithm. For the sake of a more c
explanation, letP be the number of available processors &mdbe a multiple ofP. Data
partitioning is defined by distributing the circles of the domain iRtgroups of consecutive
circles so that each processor contains the grid point®folP circles. To obtain a more
compact notation we define

v(j)=JiM/P.

GivenP processorg;j, j =0, ..., P — 1, datais distributed so that procesggrcontains
the data associated with the grid poin&™*/N k € [1, N],andl € [y(j) + 1, y(j + D).
Figure 2 exemplifies the data distribution for a system with three proce@3c£s3).

One optimized version of a sequentidtpoint FFT algorithm is available on each pro-
cessor: Multiple Fourier transforms of the same length are performed simultaneously.
M sequences of values assumed onlthgrid points belonging to a circle are distributed
between processors so that each one performs one unique call to BtRIfFFT trans-
forms. Overall, the FFT transforms contribute the most to the computational cost of |
algorithm and the above data-locality allows the intensive floating point operations to

160 BORGES AND DARIPA

0 v v2) 3

FIG. 2. Data distribution for the parallel version of the fast algorithm.

performed locally and concurrently. Thus, each FFT can be evaluated in place, with
communication. Other strategies for solving the multiple FFTs required in the algoritt
are discussed in [2].

Although Corollary 2.2 is formulated for the generic cage- r;, the results in Corol-
lary 2.3 only require consecutive radii (i.e., terms of the f@n*' andD};'*1, 1 € [y (j) +
1, ¥(j + D) in processorp;. Therefore, the numerical integration for Egs. (11), (12).
and (16) can be performed locally if one guarantees that all necessary data is avail
within the processor. Notice tha; already evaluates the Fourier coefficieriggr)), | €
[¥(i)+ 1 v(j + 1] Inthe case of a numerical integration based on the trapezoidal ru
(20), only the Fourier coefficients foe= jM /P and = (j + 1)M/P + 1 mustbe added to
the set of known Fourier coefficients for procespprThat s, if the initial data is overlapped
so that each processor evaluates coefficients for radic [y (), y(j + 1) + 1], there is
no need for communication. Similarly, if the modified Simpson’s rule (21) is employe
processomp; only needs to evaluate coefficients for ragljil € [y (j) — 1, y(j + 1 + 2].
The number of circles whose data overlap between any two neighbor processors rernr
fixed regardless of the total number of processors in use. Consequently, this strategy
not compromise the scalability of the algorithm.

Algorithm 3.1 was described based on the inherently sequential iterations from Cot
lary 2.2 which are more suitable for a sequential implementation. In the case of a
allel algorithm, an even distribution of computational load is obtained by splitting tt
computational work when performing recurrences (16) and (17) as described in Col
lary 2.3. We evaluate iterative sums| € [y (j), y(j + 1], concurrently on all processors
pj,j =0,..., P—1, asfollows. For the case< O let

Gy) (M =0,
r|+1 (22)

g (n) = <n> (Gm+C ™), T=y(h+1....v(+D,

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 161

where we have definag,1 = 1, and for the case > 0 let
Gy j+p42(M =0,

AP , , 23
q.*(n>=<r'r—|1) (@hm + D", I=y(+D.....y(H)+1 23)

Since coefficient€~1' (n < 0) andD'*1(n > 0) are already stored in procesggrwhen

i ely()+1y(+ D] partial sumg;” andtj+ can be computed locally in processu.

In [2] we have shown that the above computations can be used to define the follow
partial sumsfor each processaqp;:

) =M. =0

tj+(n) = q;(j).,.l(n), n>0.

Moreover, it follows from (22) and (23) that for< 0

y (D) 1\"
ty (n) = r;‘(l)+lz<r) c
i=2 \!

vi+d 4 "
— i—1i
G =G0 Y (r> G
I

i=y(j)+1

and forn > 0

M-1 "
M =e, > <> Dy,

i=y(P—1)+1 Fi

vi+d g n
+n) — i+l
tm =rjg Z (‘) Dy

= A\
i=y(+1

Although sums as described above may seem to produce either fast overflows or fast ut
flows for large absolute values of partial sums;” andt;r can be obtained by performing
very stable computations (22) and (23) as described in[2]. Therefore, the algorithm proce
by performing the partial sums in parallel as represented in Fig. 3.

To combine partial sumtg andtj+ evaluated on distinct processors, we definestteu-

mulated sums;” andél*, j=0,...,P—1.Forn <0let
S () =ty (),
Foo n (24)
§(n) = (“J“)”) § (M) +t7,
r i
y(H+1
and forn>0
3'571(”) = tl—:tf]_(n)a
(25)

n
5 IR
57 = (L‘)> 82 + 1
r‘ .
y(i+D

162 BORGES AND DARIPA

Po P1 Pj Pp1
1 (1) (2) Y(3) Ti+D Y(P-1) M
k + ¢ 3 TR S —
to t i o L,
— !
th t} tf ; th,

-

FIG. 3. Sums are evenly distributed across processors.

Therefore we have a recursive method to accumulate partial lspms;dt]—* computed in
processorp;. Accumulated sums;” andéj+ can now be used to calculate coefficie@ts
and D, locally on each processor. Given a fixed radiyghe associated data belongs to
the processop; such that € [y (j) + 1, y(j + 1)]. Computations irp; only make use of
accumulated sums from neighbor processorsnFar0, local updates in processpg are
performed as described in Corollary 2.2. Local updates in procepgojs=1,..., P — 1,
use the accumulated surz‘sujtc,f1 from the previous processor when obtaining temufisas
defined in Eq. (13):

vy (1) = §_y(n) 4+ C v+t
. (26)
_ M _ _
vy (n) = () vy (f-1) + C .
M-1

Forn > 0, local updates in processpp_ are also performed as described in Corollary 2.2
Local updates in processopg, j =0, ..., P — 2 use the accumulated smﬁﬁl from the
next processor to obtain termg from Eq. (14):

a j+1.,y(j+D+1
_5]?*‘+l(n) — DK(H),y (J+D+

vy (M) = e
27

vy () = <r.r_|1) v ((n42) + DR
+

The advantage of using Eqgs. (26) and (27) over original recurrences in Corollary 2.2 is 1
accumulated sumg andéj+ are obtained using partial surtjs andtj*. Since all partial
sums can be computed locally (without message passing) and hence simultaneously
sequential bottleneck of the original recurrences is removed. The only sequential compo
in this process is the message-passing mechanism to accumulate the partial sums.
The next step in the algorithm consists of combining coefficiefit&ind v, to obtain
the component,, of the solution as described in step 5 of Algorithm 3.1. Notice that for
fixed radiusr|, coefficientsv;, (1)) andv®,(r)), n € [-N/2, 0] are stored in the same pro-
cessor. Therefore, computations in (17) can be performed locally and concurrently, with
any communication. Specifically, procesggrevaluates terms, (), n € [-N/2, N/2],
wherel € [y(j) + 1, y(j + D]. A final set of communications is employed to broadcas

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 163

b set; ® s ®
EP) P, S}=8p+t] sy=sy+t}
" Positive stream
St =Spat +1pp '

MP) p v gt © vR®)

o $32= Sta +1on) .
/ \ ! Broadcasting

... Negative stream

(SP) Pes Sp2 =S, +p, Spa=8ps i, v(R)

A)
Per Sha=th Sp1=Spy +lp, v(R)

time

FIG. 4. Message distribution in the algorithm. Two streams of neighbor-to-neighbor messages cross ¢
munication channels simultaneously. Homogeneous and principal solution are combined after pnacgssor
broadcasts the boundary valuesof

the valuesin (R), n € [—-N/2, N/2], from pp_; to all other processors so that the Fourier
coefficientsu,, of the solution can be evaluated by using Eq. (7), as represented in step |
Algorithm 3.1. This broadcast process is represented in Fig. 4 by the second set of upv
arrows starting from processpe_;.

The notation in Egs. (24) and (25) will be simplified to allow a clear exposition of th
interprocessor communication present in our parallel implementation:

e Relations; = s;_, +t; represents the updating process in recurrence (24), and
e Relations{” = s, + ;" represents updating (25).

The parallel algorithm adopts the successful approach investigated in [2, 3]. Proces
are divided into three groups: procesqms), is defined as theniddle processo(MP),
processorgo, . .., Pp/2—1 are thefirst half processors (FP), angp 241, ..., Pp—1 arein
thesecond hal{SP) as represented in Fig. 4.

We define anegative streaninegative pipe): A message started from procegg@mon-
taining the values, =ty and passed to the neighbpy. Generically, processap; re-
ceives the messagg_, from p;_;, updates the accumulated sisn=-s;_; +t;’, and
sends the new messagg to processomp 1. It corresponds to the downward arrows in
Fig. 4. In the same way, processors on the second half start computations for partial s
s*. A positive streanstarts from processqpp_1: processorm; receivessj*+l from pjy1
and sends the updated messaﬁe: sj++1 thj+ to pj_1. The positive stream is formed
by the first set of upward arrows in Fig. 4. The resulting algorithm is composed of tv
simultaneous streams of neighbor-to-neighbor communication, each one with mess
of length N/2. Note from Fig. 4 that negative and positive streams arrive at the midc
processor simultaneously because of the symmetry of the communication structure. I
3] we describe an efficient interprocessor coordination scheme which leads local con
tational work being performed simultaneously with the message-passing mechanisn
short, it consists of having messages arriving and leaving the middle processor as ear
possible so that idle times are minimized. Any procegsoin the first half (FP) obtains
the accumulated suisj and immediately sends it to the next neighbor procegsoi.

164 BORGES AND DARIPA

Computations for partial sumgL only start after the negative stream has been sent. It co
responds to evaluatin’gJr within region A of Fig. 4. Similarly, any processay; in the
second half (SP) performs all the computations and message-passing work for the pos
stream prior to the computation of partial sutpsn region B. This mechanism minimizes
delays because of interprocessor communication. In fact, in [2] we compare this appro
against other parallelization strategies by presenting complexity models for distinct pare
implementations. The analysis shows the high degree of scalability of the algorithm.
The parallel algorithm presented here is certainly based on decomposing the domain
full annular regions and hence, it has some analogy with domain decomposition mett
But this analogy is superficial because domain decomposition methods by its very ne
have come to refer to methods which attempt to solve the same equations in every su
main, whereas our algorithaioes notattempt to solve the same equation in each annule
subdomain separately. Thus our algorithm is not a classical domain decomposition met
Interpreting otherwise would be misleading. In fact, decomposing a circular domain ir
full annular domains and then attempting to solve the equation in each subdomain in
spirit of domain decomposition method would not be very appealing for a very large numi
of domains because the surface-to-volume area becomes very large. Our algorithm is
based on this principle in its entirety, even though there is some unavoidable similarity.

4.2. Complexity of the Parallel Algorithm

To analyze the overhead resulting from interprocessor coordination in the parallel al
rithm we adopt a standard communication model for distributed memory computers. |
the timing analysis we considgras the message startup time apdhe transfer time for a
complex number. To normalize the model, we adopt constaras the computational cost
for floating point operations in the FFT algorithm, as3do represent operation counts for
the other stages of the algorithm. To obtain the model, we analyze the timing for each st
of the algorithm:

e Each processor performs a setMf P Fourier transforms iric;/2)(M/P)N log, N
operations.

e Radial integral<C!.'+1 and D|-1' are obtained usingc,/4)(M/P)N operations for
the trapezoidal rule (an@,2/3)(M/P)N for Simpson’s rule).

e Each group oM /P partial sumg™* andt~ takes(c,/4)(M/P)(N/2) operations on
each processor.

e Positive and negative streams start from procesperg and po, respectively, and
each processor forwards (receive and send) a message of Mpgttoward the middle
node (see Fig. 4). The total time is(P — 1)/2)(ts + (N/2)t,,).

e The second group dfl/ P partial sumg™ andt ™~ is performed in(c,/4)(M/P)(N/2)
operations.

e Positive and negative streams restart from the middle node and arfgeamd pp_1,
respectively, after@P — 1)/2)(ts + (N/2)t,,) time units for communication.

e Termsv—, vt, andv are computed itic,/4)(M/P)N operations.

e Boundary conditions are broadcast(in+ Nt,) log, P time units.

e Principal solutiorv and boundary conditions are combinedaén/4)(M/P)N opera-
tions.

e (C1/2)(M/P)Nlog, N operations are used to apply inverse Fourier transforms.

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 165
Therefore, the parallel timin@p for the parallel fast algorithm is given by

MN
Tp = T(cl log, N +¢) + (2(P — 1) +log, P)ts + N(P —1+1log, P)t,. (28)

To obtain an asymptotic estimate for the parallel timing, we drop the computational ter
of lower order in (28) which leads to

MN
TSP _ clT log, N + 2Pts + N Pt,. (29)

The performance of the parallel algorithm can be observed by comparing Eq. (29) age
the timing estimate for the sequential algorithm. In the case of a sequential implementat
we have the following stages:

M Fourier transforms are performed(cy/2) M N log, N operations.

Radial integralsClii+* and DI -1' are obtained aftefc,/4)M N operations.
Termsv—, vt andv are computed iric,/4) M N operations.

Principal solutiorv and boundary conditions are combinedés/4) M N operations.
M inverse Fourier transforms take;/2)M N log, N computations.

Summarizing, the sequential timifg is given by
3
TszclMNlogzN—i-ZczMN, (30)
with asymptotic model
TEY™P=c;MN log, N. (31)

From Egs. (28) and (30) one can observe that most of the parallel overhead is attribi
to the communication term in Eq. (28). An immediate consequence is that overheads
mainly the result of increasing the number of angular grid polhit$No communication
overhead is associated with the number of radial grid pdihtdVe use the asymptotic
estimates to obtain the speedsfor the parallel algorithm

Tasymp ctMN log, N

S= asymp — MN (32)

ctMNlog, N
_p 1 92 (33)

caMN log, N + P2(2ts + Nt,)
and the corresponding efficiency

S 1

= (34)

~ P 1+ P22t + Nt,)/ctMNlog, N’

which shows that the efficiency decays quadratically in the number of procd3sors
Different problem sizes correspond to distinct levels of granularity, which implies th

there is an optimal number of processors associated with each granularity. Since mes

lengths depend oN and computational work depends alsoMnthe theoretical model can

166 BORGES AND DARIPA

be used to estimate the best performance for a given problem. The number of proces
for which the asymptotic parallel running tiffé® ™ achieves its minimum is determined
asympt

by BTF’aP = 0. In the case of (29), we have

c;MNlog, N
Pasymp: 2 i 35
opt R INGL (35)

which can be understood as an approximation for the optimal val®exdfiich maximizes
the efficiency (34) for given values & andN.

4.3. Comparison with a Matrix Transposition-based Algorithm

Although the recursive relations in Corollary 2.2 are very appropriate to a sequent
algorithm, these may introduce excessive communications on parallel implementation.
major difference is that if one attempts to evaluate recurrences (13) and (14), data n
be reverted in all processors. In fact, st&and4 in Algorithm 3.1 show that each co-
efficient v, (r)) depends on all term@ﬂ(l’i with i € [2,1], and each coefficient; (r|)
depends on all termBL+1 with i € [I, M — 1]. Consequently a message-passing mech
anism must be used to exchange coefficients of the 1Gfmt' and D'+ across pro-
cessors. Figure 5 shows data being reverted in all processors for the casePnhete
Initially each processor contains data for evaluatMgP Fourier transforms. It corre-
sponds to each row on Figure 5(a). To calculate recurrences locally, each processor |
exchange distinct data of sid¢M/ P2 with all P — 1 remaining processors. At the end of
the communication cycle, processpy contains all the term€! -1 and D}'*+* with n €
[IN/P—=N/2,(j +1)N/P — N/2]. Figure 5(b) describes the communication pattern
Rows are divided int® blocks of sizeN M/ P? so that processq; exchanges distinct data-
blocks with different processors. The data-transfer pattern involves an all-to-all personali
communication as in a parallel matrix transposition procedure. For a mesh architecture

Py

P,

P;

Ps

(@ (b)

FIG. 5. Coordination pattern based on all-to-all personalized communicatioM (&) Fourier transforms
are evaluated locally; (b) each two processors exchange blocks d¥idizeP?2.

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 167

estimated communication timing [15] is given by
MN
Taanspose— 2(v/P — 1) (2ts + 5 tw) . (36)

Therefore, interprocessor communication introduces a delay of otdéd 4/P. Com-
paratively, the stream-based algorithm generates a delay of &MNerin a large-scale
application, clearlyM > P because of practical limitations on the number of available
processors which makeN « 4M N/+/P. Itimplies that the stream-based algorithm mus
scale up better than the second approach because of a smaller communication overhe

4.4. Comparison with Other Methods

Fourier analysis cyclic reduction (FACR) solvers encompass a class of methods for
solution of Poisson’s equation on regular grids [12, 24, 25]. In two-dimensional probler
one-dimensional FFTs are applied to decouple the equations into independent triang
systems. Cyclic reduction and Gaussian elimination (or another set of one-dimensic
FFTs and inverse FFTs) are used to solve the linear systems. In the(EA@Rorithm,
¢ preliminary steps of block-cyclic reduction are performed to decrease the number or
length of the Fourier coefficients. The reduced system is solved by the FFT method@and
steps of block back-substitution. In particular; fo= 0 we have the basic FFT method, and
¢ =1 corresponds to a variant of the original FACR algorithm [12]. The basic idea of t
FACR(¢) method relies on switching to Fourier analysis in the middle of cyclic reductio
to reduce the operation count when compared with either pure Fourier analysis or cy
reduction. Formally, the optimal choide~ log,(log, N) makes the asymptotic operation
count for FACR() be O(N?log, log, N) inanN x N grid, which is an improvement over
the estimate®(N?log, N) associated with the basic FFT method (FACR(0)) and cycli
reduction.

A parallel implementation of the FACRY solver must take into account the effect of
the choice of¢ on the degree of parallelism of the algorithm [25]. A& 0, the method
performs a set of independent sine transforms and solves a set of independent tridi
nal systems, which makes the choice- 0 ideally suited for parallel computations. The
parallel implementation of the matrix decomposition Poisson solver (MD-Poisson solv
presented in [21] follows this concept: A block-pentadiagonal systemis solved on aRng o
processors using Gaussian elimination without pivoting, so that only neighbor-to-neigh
communication is required. The complexity of the method on a rin® gifrocessors is
O(N?/Plog, N) if one disregards communication overhead [21]. Fer 0, the degree of
parallelism of the FACRY) algorithm decreases at each additional stage of cyclic redu
tion. For example, in [14] a parallel variant of the FAQRélgorithm exploits the numerical
properties of the tridiagonal systems generated in the method. Factorization is applied b
on the convergence properties of these systems. However, this approach can lead to s
load-imbalance on a distributed memory architecture because convergence rates ms
different for each system, resulting in idle processors. Cyclic allocation must be usec
diminish load-imbalance. Moreover, it is also known from [14] that any two-dimension
data partitioning would produce communication overhead because of the data transposi

The previous observations show that our parallel Poisson solver is competitive with ot
current techniques. Typically, the best parallel solvers are defined using an one-dimensi

168 BORGES AND DARIPA

processor array configuration because of the unbalanced communication requirement
the operations performed along the different coordinates of the grid.

5. NUMERICAL RESULTS

In this section, numerical results for the algorithms presented in the previous sections
given. To achieve portability, we used MPI [19] for the communication library. Currentl
major computer vendors provide MPI implementations regardless of the memory mo
adopted on each platform. It allows easy implementation and portability.

Of particular importance to the following results is the accuracy of the methods fot
given number of Fourier coefficientd and a number of circleM used for the domain
discretization. For sufficiently smooth data only a few number of Fourier coefficients &
needed to guarantee an accurate representation of the solution in a finite Fourier sg
However, if the actual function presents rapid variations, then a high-frequency compor
may appear to be the same as a lower frequency component when using a limited nur
of samples. In other words, aliasing may occur. Similarly, the numerical integration metk
adopted to evaluate one-dimensional radial integrals presents an error term dependir
the number of circles defined during the discretization of the domain. For instance,
trapezoidal rule presents an error of ord@&#r 2), wheresr = R/M for a disk of radiusR.

If a three-point-based integration method is adopted, such as the variant of the Simps
rule presented in Section 3, one would expect convergence of 6r@eF). It suggests
that there is a tradeoff when making a choice for the discretization paraniétarsl N.
Numerical results in Section 5.1 demonstrate the accuracy of our solver.

Timing performance is also a critical issue in scientific computing. To increase memc
bandwidth and decrease latency of memory access, more recent computer architec
are based on memory hierarchy structures. Under the principle of locality of referen
the data most recently accessed is likely to be referenced again in the near future. Mo
computers present a cache memory at the top of the hierarchy: A smaller and faster mer
is connected to the processor to hold the most recently accessed data. The function ¢
cache is to minimize the number of accesses to other slower levels on the memory hierat
Understanding and exploiting the memory hierarchy is a fundamental issue when obtair
high performance for numerical applications. A good utilization of data cache depends
only on the data partitioning but also on how the computational work is performed. T
fast algorithm was designed to take advantage of data cache. In Section 5.2, we pre
sequential and parallel timings for the fast algorithm.

5.1. Accuracy of the Poisson Solver on Disks

Seven problems were tested to determine the accuracy and efficiency of the Poisson s
for Dirichlet and Neumann problems defined on the unit ddsk B(0; 1). Problems 3 and
4 were also solved for diskB(0; R) with R = 1. Numerical experiments were carried out
using double precision representation. The first four problems present solutions smc
enough to make the number of circliglsas the dominant parameter for the accuracy of the
method. The last three problems were taken to exemplify the importance of the numbe
Fourier coefficientdN in use. For each problem, we present only the solution y) in B
so that the right hand side terfmand the boundary conditions can easily be obtained fror
u. The only exception occurs in Problem 7.

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 169

TABLE Il
Problem 1—Relative Errors in Norms || - || and || - ||2 Using a Fixed Number
of Fourier CoefficientsN = 64

Relative errors for problem 1

Trapezoidal rule Simpson’s rule
Dirichlet Neumann Dirichlet Neumann
M I lloo [P I lloo Iz I lloo Il Nl -2

64 2.6e-5 4.6e-5 7.0e-4 5.7e-4 4.4e-6 6.3e-6 4.4e-6 6.3e-6
128 6.4e-6 1.1e-5 1.7e-4 1.4e-4 5.5e-7 7.9e-7 5.5e-7 7.9e-7
256 1.6e-6 2.8e-6 4.3e-5 3.5e-5 6.9e-8 9.9e-8 6.9e-8 9.9e-8
512 3.9e-7 6.9e-7 1.1le-5 8.7e-6 8.6e-9 1.2e-8 8.6e-9 1.2e-8

1024 9.8e-8 1.7e-7 2.7e-6 2.2e-6 1.1e-9 1.5e-9 1.1e-9 1.5e-9
2048 2.5e-8 4.3e-8 6.7e-7 5.4e-7 1.3e-10 1.9e-10 1.3e-10 1.9e-10

PrROBLEM 1. The solution of the first problem [13] is given by
ux, y) =3 (x — x*)(y - y*) +5.

Table | presents relative errors in the noim||,, when solving the Dirichlet problem
for distinct values ofN and M. Specifically, each row corresponds to a fixed valu&lof
taken as 64, 128, 256, 512, 1024, or 2048. Similarly, each column corresponds to a f
value ofM ranging from 64 to 2048. Entries marked with a dash represent no available d
because of memory limitations. The trapezoidal rule was used for numerical integratio
the radial direction.

Clearly, the dominant parameter is the number of cirMle§unctionsf andu are smooth
on each circle of the discretization, and consequently 64 Fourier coefficients are enc
to represent these functions. The only variations in Table | occurs when we increase
number of circles, which increases the accuracy of the numerical integration in the ra
directions. The same behavior is observed for the relative errors in the jhojimand
for the associated Neumann problem. Table 1l summarizes relative errors injndrmn
and in norm|| - |2 when the Dirichlet and Neumann problems are solved using a const:
number of Fourier coefficientdl = 64. Since the Fourier space representation presen
high accuracy fou and f, convergence rates are determined by the numerical integrati
adopted in the radial direction. In fact, one can observe in Table Il that the ratio betwe
two consecutive errors in the same columns for the trapezoidal rule is constant and ec
4, that is, the two-points-based integration results in quadratic convergence. For the ca
three-points-based integration derived from Simpson’s rule, the ratio is constant and eg
8, which implies cubic convergence.

PROBLEM 2. The solution of this problem has a discontinuity in the “2.5” derivative
[13]:

ux, y) = (X + D3y + 1% — (x + D(y + 1)*?
—X+D¥2y+ D)+ x+D(y+1).

170 BORGES AND DARIPA

TABLE 11l
Problem 2—Relative Errors in Norms || - || and || - ||2 Using a Fixed Number
of Fourier CoefficientsN = 64

Relative errors for problem 2

Trapezoidal rule

Simpson’s rule

Dirichlet

Neumann Dirichlet Neumann
M - Moo -1z - oo -1z I lloo -1z I lloo 12
64 3.4e-5 1.7e-4 2.2e-4 5.4e-4 3.2e-6 1.3e-5 3.5e-6 1.2e-5
128 8.2e-6 4.2e-5 5.4e-5 1.3e-4 4.2e-7 1.5e-6 4.5e-7 1.5e-6
256 2.0e-6 1.0e-5 1.3e-5 3.3e-5 5.6e-8 1.9e-7 5.9e-8 1.9e-7
512 4.9e-7 2.6e-6 3.3e-6 8.1e-6 7.7e-9 2.3e-8 8.3e-9 2.3e-8
1024 1.2e-7 6.4e-7 8.2e-7 2.0e-6 1.4e-9 2.9e-9 1.7e-9 2.9e-9
2048 3.1e-8 1.6e-7 2.0e-7 51e-7 55e-10 4.2e-10 9.3e-10 4.6e-10

As in the previous problem, the dominant parameter is the number of civtl@able 11|
presents relative errors for the Dirichlet and Neumann problems in a discretization wit
constant number of Fourier coefficieMs= 64. Note that quadratic and cubic convergence
resulting from distinct integration schemes, still holds.

ProBLEM 3. This problem was originally designed for the ellipse centered at (0, 0) wi

major and minor axes of 2 and 1 [20]. One interesting property is the presence of symm
for all four quadrants:

e +e

Relative errors for the Dirichlet and Neumann problems can be found in Table IV. T
number of Fourier coefficients was kept consthhi 64. Again, the ratio between two
consecutive errors in north- |2 is constant and equals either 4 or 8. The same problel
was also solved for the didR(0; 0.5), and the relative errors fdd = 64 are presented in

TABLE IV
Problem 3—Relative Errors UsingR = 1 and a Fixed Number
of Fourier CoefficientsN = 64

Relative errors for problem R = 1)

Trapezoidal rule Simpson’s rule

Dirichlet Neumann Dirichlet Neumann
M I lloo [P I Nl Il I Moo I ll2 I lloo Iz
64 1.2e-4 1.3e-4 6.0e-4 3.0e-4 2.4e-5 1.9e-5 2.5e-5 2.0e-5
128 2.9e-5 3.2e-5 1.5e-4 7.6e-5 3.2e-6 2.5e-6 3.2e-6 2.5e-6
256 7.6e-6 8.0e-6 3.8e-5 1.9e-5 6.2e-7 3.le-7 6.2e-7 3.2e-7
512 1.9e-6 2.0e-6 9.5e-6 4.7e-6 1.3e-7 4.0e-8 1.3e-7 4.0e-8
1024 5.1e-7 5.0e-7 2.3e-7 1.2e-6 3.0e-8 5.2e-9 3.0e-8 5.2e-9
2048 1.3e-7 1.2e-7 5.9e-7 2.9e-7 7.2e-9 7.2e-10 7.2e-9 7.2e-10

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 171
TABLE V
Problem 3—Relative Errors UsingR = 0.5 and a Fixed Number
of Fourier CoefficientsN = 64
Relative errors for problem 3= 0.5)
Trapezoidal rule Simpson’s rule

Dirichlet Neumann Dirichlet Neumann

M I Nl - Il - llo Il I lleo - Il I lleo -l
64 3.1e-5 1.0e-5 3.1e-5 1.0e-5 3.7e-6 6.0e-7 3.7e-6 6.0e-7
128 8.2e-6 24e-6 8.2e-6 2.5e-6 9.0e-7 1.0e-7 9.0e-7 1.0e-7
256 2.2e-6 5.9e-7 2.2e-6 6.1le-7 2.2e-7 1.8e-8 2.2e-7 1.8e-8
512 5.9e-7 1.5e-7 5.9e-7 1.5e-7 5.5e-8 3.7e-9 5.5e-8 3.2e-9
1024 1.6e-7 3.6e-8 1.6e-7 3.7e-8 1.4e-8 5.6e-10 1.4e-8 5.6e-10
2048 4.2e-8 9.0e-9 4.2e-8 9.3e-9 3.4e-9 9.9e-11 3.5e-9 9.8e-11

Table V. As it was expected, the accuracy is higherRoe 0.5 because of larger density

of points in the domain discretization.

PROBLEM 4.

u(x, y) = x3e*(y + 1) cosx + y).

In contrast with Problem 3, here we adopt a solution without symmetrie

Table VI presents relative errors for the Dirichlet and Neumann problems in the d
B(0; 1). The same problem was solved in the larger d@$; 2), and the numerical results
are shown in Table VII. Clearly, the solution in the larger domain (even using twice t

number of Fourier coefficients) presents a lower accuracy when compared with the s
number of circles foB(0; 1).

of Fourier CoefficientsN = 64

TABLE VI
Problem 4—Relative Errors UsingR = 1 and a Fixed Number

Relative errors for problem 4= 1)

Trapezoidal rule

Simpson’s rule

Dirichlet Neumann Dirichlet Neumann

M I lloo Il I lloo I ll2 I lloo -2 Nl -2
64 1.3e-4 2.5e-4 8.6e-4 1.3e-3 2.2e-5 5.5e-5 2.3e-5 5.5e-5
128 3.2e-5 6.1e-5 2.1e-4 3.3e-4 2.8e-6 6.7e-6 2.7e-6 6.8e-6
256 7.8e-6 1.5e-5 5.3e-5 8.2e-5 3.4e-7 8.4e-7 3.4e-7 8.4e-7
512 1.9e-6 3.7e-6 1.3e-5 2.0e-5 4.2e-8 1.0e-7 4.3e-8 1.0e-7
1024 4.8e-7 9.2e-7 3.2e-6 5.1e-6 5.3e-9 1.3e-8 5.3e-9 1.3e-8
2048 1.2e-7 2.3e-7 8.2e-7 1.2e-6 6.6e-10 1.6e-9 6.6e-10 1.6e-9

172 BORGES AND DARIPA

TABLE VII
Problem 4—Relative Errors UsingR = 2 and a Fixed Number
of Fourier CoefficientsN = 128

Relative errors for problem &R = 2)

Trapezoidal rule Simpson’s rule
Dirichlet Neumann Dirichlet Neumann
M Nl Iz Il -1l I Nl -2 Nl Iz

64 6.1e-4 1.6e-3 3.6e-3 6.7e-3 2.9e-4 4.7e-4 3.1e-4 4.7e-4
128 1.4e-4 3.7e-4 9.0e-4 1.6e-3 3.6e-5 4.9e-5 3.7e-5 4.9e-5
256 3.4e-5 9.2e-5 2.3e-4 4.0e-4 4.4e-6 5.5e-6 4.4e-6 5.6e-6
512 8.3e-6 2.3e-5 5.8e-5 9.8e-5 5.4e-7 6.6e-7 5.5e-7 6.6e-7

1024 2.1e-6 5.7e-6 1.5e-5 2.4e-5 6.7e-8 8.0e-8 6.8e-8 8.1e-8
2048 7.3e-7 1.8e-6 4.3e-6 6.2e-6 8.4e-9 9.9e-9 8.4e-9 9.9e-9

PrOBLEM 5. To analyze the effect of growing derivatives in our method we conside
the solution

u(x, y) = sinfl@m (X + y)).

This solution and the respective functibix, y) = —2?m? sin(am (X + y)) presentrapidly
growing derivatives for large values af[23]. In Tables VIII and IX we present relative
errors in the normj| - ||, when solving the Dirichlet problem far = 5 anda = 20, re-
spectively. Here we have adopted the trapezoidal rule for evaluating the radial integr
For the casex = 5 the dominant parameter is the number of cirdiésegardless of the
number of Fourier coefficients in use. In fact, quadratic convergence dependigcan

be observed in Table VIII. For the larger valwe= 20 functionsu and f oscillate rapidly,
and the derivatives increase in absolute value. The Fourier spaces of dimbhsidi¥d
and N = 128 do not allow a good representationwénd f as one can observe on the
first two rows of relative residual in Table 1X. However, flr= 256 or larger, the Fourier
space provides a good representation of these functions, and the quadratic convergen
M resumes (rows 3, 4, 5, and 6 in Table 1X). This problem shows the importance of us
Fourier representation when dealing with rapidly oscillating functions.

TABLE VIII
Problem 5—Relative Errors in Norm || - || Taking oo = 5

Relative errors for Problem 5 (Dirichlet aad= 5)

M 64 128 256 512 1024 2048
64 1.3e-2 3.4e-3 8.4e-4 2.1e-4 5.2e-5 1.4e-5
128 1.3e-2 3.4e-3 8.4e-4 2.1e-4 5.2e-5 1.3e-5
256 1.3e-2 3.4e-3 8.4e-4 2.1e-4 5.2e-5 —
512 1.3e-2 3.4e-3 8.4e-4 2.1le-4 — —
1024 1.3e-2 3.4e-3 8.4e-4 — — —

2048 1.3e-2 3.4e-3 — — — —

Note.The number of circle# is the dominant parameter.

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 173

TABLE IX
Problem 5—Relative Errors in Norm || - || Taking
a =20

Relative errors for Problem 5 (Dirichlet and= 20)

n\M 64 128 256 512 1024 2048

64 25e+l 25e+l 25e+l 25e+l1 2.5e+l1 2.5e+l
128 2.2e+0 2.1e+0 2.1e+0 2.0e+0 2.0e+0 2.0e+0
256 2.7e-1 6.5e-2 1.6e-2 4.0e-3 1.0e-3 —
512 2.7e-1 65e-2 16e-2 4.0e-3 — —

1024 2.7e-1 6.5e-2 1.6e-2 — — —
2048 2.7e-1 6.5e-2 — — — —

Note.The number of Fourier coefficients is the dominant parameter
for small values of N.

PrROBLEM 6. To better understand the importance of the use of Fourier representat
for functions with rapid variations, let

ux, y) =104 (x)¢ (y),

where ¢ (x) = e~100x-1/2%(x2 _ x) The solution has a sharp peak@ts, 0.5), and it

is very small for(x — 0.5)2 + (y — 0.5)2 > 0.01 [20]. Figure 6 shows the analytical so-
lution u. For a small number of Fourier coefficienlté = 64 aliasing occurs and errors
of order 10 dominate the circle of radius = 0.5 even if large values of are used.
In fact, Fig. 7 presents the function error fof = 64 andM = 256 when solving the

o
w

solution

o
)

0.1

S \‘\‘\‘\\\\\\\:&Q\‘\% R
DR RONLTERTIRARINY

ol 7
-1

X-axis

Y-axis

FIG. 6. Problem 6—Analytical solution.

174 BORGES AND DARIPA

x 10

error
W

0.5 =
0.5

. X-axis
Y-axis

FIG. 7. Problem 6—Errors for 64 Fourier coefficients and 256 circles.

Dirichlet problem using the trapezoidal rule. If the number of coefficients is increased
N = 128, the Fourier space provides a better approximation, and the aliasing effect
creases drastically as one can observe in Fig. 8. Although the maximum error pers
with order 10# in a neighborhood of (0.5, 0.5), globally it decreases for the larger valt
N = 128: Figure 9 contains the errors when only observing the grid poifgdinl) on the
segmen(—+/2/2, —/2/2) to (v/2/2, ~/2/2). Specifically, we say that the radial position
is equal to—1 for the point(—+/2/2, —+/2/2), and it is 1 for the pointv/2/2, +/2/2). The
linear plot of the errors presented in Figure 9(a) shows thakfer 128 the local error at
(0.5, 0.5) persists in the same order but the aliasing effect is negligilgle(ab, —0.5).
Moreover, the log-scale shown in Fig. 9(b) shows the global convergence of the algoritt
Similar results hold for the Neumann problem as shown in Fig. 10.

PROBLEM 7. The last problem presents discontinuities on the boundary conditions. T
formulation is best described in polar coordinates

Au=f, inB=B(@0;1),
u=g, o0naB,
where

f(re'*) = —4r3(cof « - sina + sin® &) sin(1 — r?) — 8 sina cog1 — r?),

and
‘ 0, ae€(0mn),
g =¢1 «ac(r2n),
% o € {m, 21},

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 175

x10

85 ...
3.

25

X-axis

Y-axis

FIG. 8. Problem 6—Errors for 128 Fourier coefficients and 256 circles.

In this case we have the solutiargiven by

2k — Da

o _} i —rdgj _E S 2k—lSin
ucre'®) = 5 + sin(r (1 — r?) sin(a)) = kZ:;r 1 (37)

and the actual input data is expressed in Cartesian coordinates as
f(x,y) = —4(x*y + y*) sin(1 — x* — y?) — 8y cog(1 — x* — y?).

Figure 11 presents the actual solution of Problem 7 obtained by expanding the summe
in (37) up to the machine precision on each point ofthex N discretization of the domain
B(0; 1). The rapid variations in the points (1, 0) a1, 0) produce considerable errors
when the Dirichlet problem is solved using 64 Fourier coefficients and 256 circles, as shc
in Fig. 12. Nevertheless, the use of a larger number of Fourier coefficients for represen
the solution preserves the locality of the errors caused by rapid variations of the soluti
Fig. 13 contains the errors when increasing the number of coefficients to 128; and Fig
presents errors for 256 Fourier coefficients. Although the magnitude of the maximum el
remains constant, the solution obtained by the algorithm converges globally. As an exarn
Fig. 15 contains the errors when only observing the grid poin8(i 1) laying on the
segment from(0, —1) to (0, 1). In this case we say that the radial position is equal t
—1 for the point(0, —1), and it is 1 for the point (0, 1). The linear plot of the errors
presented in Fig. 15(a) shows convergence as the number of Fourier coefficients incre
from 64 to 128, and to 256. The log-scaling in Fig. 15(b) shows the rate of converger
Global convergence can also be assessed by evaluating the global error without consid
the points close tg—1, 0) and (1, 0). Table X presents the relative errors in the domai

176 BORGES AND DARIPA

a ,q0*
T T T T T T T T T
--- 64 coefficients
_— 128 coefficients
"
5r I 7
[
4l ~
1A
[
[
[
ea reot
@ 1 \
i \
i !
! \
2 ! !
! i
! \
! \
1 \
1+ | \
! \
/ \
1 \
/ \
0 P I LN 1 t 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2
radial position
b
10-2 T T T T T T T T T
--- 64 coefficients
_ 128 coefficients
107° | .
PN 7~ N
’ \ / N
107 L / \ / N
/ A\ ! N\
/ \ ~\ \
5 / \ 7 A \
10 F / \ y 1 e
/ \ / i i
[/ \ 4 '
10° L/ ! ! :
5 ¢ ‘ ~i
5 1 \\ - - 'I
107 £ V=TT Y 3
£ \ 7
F f
10° E f .
10° & 4
10_105 E
! L 1 ' i 1 L 1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

radial position

FIG. 9. Problem 6—Errors for the Dirichlet problem when considering the one-dimensional section of tl
disk B(0; 1) from (—+/2/2, —/2/2) t0 (v/2/2, +/2/2): (a) The aliasing effect disappears fér= 128; (b) global
convergence also occurs as it can be noticed at the center of the graph.

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 177

a yi0*
6 T T T T T H T T T
--- 64 coefficients
_— 128 coefficients
5 -
- r
4 N
o
i \
! }
&l Pt
[} | i
{ \
i |
i i
2 ! ‘
i i
i i
! i
! i
L !
! \
! 1
/ \
/ \
0 = 1 A L 1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2
radial position
b
10_2 E T T T T T T T T T
b - - - 64 coefficients
[—_— 128 coefficients
10°F 3
— o N
/ . A
\
107k / \ 3
/ \ 1
/ \ N
// '
10_5 £/ \
& '
& [/)
L \
~ \ -~ 7
10k
107}
107°k

radial position

FIG. 10. Problem 6—Errors for the Neumann problem when considering the one-dimensional section of
disk B(0; 1) from (—+/2/2, —+/2/2) t0 (+/2/2, /2/2): (a) the aliasing effect disappears fdr= 128; (b) global
convergence also occurs as it can be noticed at the center of the graph.

178 BORGES AND DARIPA

TABLE X
Problem 7 - Relative Errors in Norm || -

lloo

Relative errors for Problem 7

M 64 128 256 512 1024 2048

64 3.1e-3 3.0e-3 3.1e-3 3.1e-3 3.1e-3 3.1e-3
128 5.6e-4 5.5e-4 5.6e-4 5.5e-4 5.6e-4 5.6e-4
256 1l.4e-4 1.4e-4 1.4e-4 1.4e-4 1.4e-4 —
512 3.7e-5 3.5e-5 3.5e-5 3.5e-5 — —

1024 1.7e-5 9.3e-6 8.6e-6 — — —
2048 1.6e-5 4.3e-6 — — — —

Note. Errors were taken only over the points B(0; 1) — (Byoi(1; 0) U
Boo1(—1; 0)).

B(0; 1) — (Bo01(1, 0) U Bpo1(—1, 0)). As the number of Fourier coefficients increases
convergence is observed.

5.2. Timing Performance of the Fast Algorithm

The computational results in this section were obtained on the HP V-Class [10] whi
is supported on the HP PA-8200 processor. The PA-8200 is based on the RISC Preci
Architecture (PA-2.0) and runs at speeds of 200 or 240 MHz with 2 MBytes of data cac
and 2 MBytes of instruction cache.

08"

solution
o
=
!

I
'S
/

0.2~ -1

-1

0.5
1 1 X-axis

Y-axis

FIG. 11. Problem 7—Analytical solution.

error

error

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK

0.025— "

002

0.015 <

0.01— "

b

\
\

xR_
w\\\\\\\\\\k\\\&&
RN
I AR TR

ui

\
e
X
i

N

\
AN
\
\

\
A

N

0.005 - W 2 A
E Y 7 272775
[

N
N

SESRUTTRARTS
AR
=3
—

X-axis

Y-axis

FIG. 12. Problem 7—Errors for 64 Fourier coefficients and 256 circles.

0.025—"
0.02- "

0015~

001~

0.005-""

X-axis

Y-axis

FIG. 13. Problem 7—Errors for 128 Fourier coefficients and 256 circles.

179

180 BORGES AND DARIPA

0.025— "
002"

0015~

error

001"

ST
B ooy
e

0005

07"”
-1

X-axis

Y-axis

FIG. 14. Problem 7—Errors for 256 Fourier coefficients and 256 circles.

To observe the computational complexity of the fast algorithm, we ran the sequen
code in a single node of the V-Class using seven distinct problem sizes. Table Xl prest
sequential timings when solving the Dirichlet and Neumann problems. Each row cor
sponds toM = N taken as 32, 64, 128, 256, 512, 1024, or 2048. Results are shown |
the two numerical integration schemes discussed in Section 3: the trapezoidal rule anc

TABLE Xl
Timings and Estimates for the Constantc; for the Sequential Algorithm When Using
Either Trapezoidal or Simpson’s Rule

Sequential timings and estimated constant

Trapezoidal rule Simpson’s rule
Dirichlet Neumann Dirichlet Neumann

M=N Time (sec.) C1 Time (sec.) C1 Time (sec.) C1 Time (sec.) C1
32 6.6e-4 1.2e-7 6.4e-4 1.2e-7 8.0e-4 1.5e-7 7.9e-4 1.5e-7
64 3.5e-3 1l.4e-7 3.2e-3 1.3e-7 3.8e-3 1.5e-7 3.3e-3 1.3e-7
128 1.5e-2 1.3e-7 1.3e-2 1.1e-7 1.5e-2 1.3e-7 1.4e-2 1.2e-7
256 7.1e-2 1.3e-7 7.0e-2 1.3e-7 7.4e-2 1.4e-7 7.1e-2 1.3e-7
512 2.0e+0 8.7e-7 3.2e+0 1.3e-6 1.9e+0 8.3e-7 1.9e+0 8.1e-7
1024 1.5e+1 1.5e-6 1.5e+1 1.5e-6 1.5e+1 1.4e-6 1.5e+1 1.4e-6

2048 7.8e+1 1.6e-6 7.6e+1 1.6e-6 7.8e+1 1.7e-6 7.6e+1 1.6e-6

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK

a yio™
2.5 T T T T T T T T T
-—-- 64 coefficients
i - 128 coefficients
\ _— 256 coefficients
\
\
2 -
\
/ \
/ \
/ ‘\
! \
15 ! \
/
\ -
o / -
g / ! 4 N
® / \ / \
/) N
I \ ! N
1+ \ / \
/ \ , \
! \ , \
/ \ , \
! \ \
/ \ // \
os|/ \ , b
I \ \
I \ / \
I T T . d T T T~ A
\ — -
! - ~ / - S
o ~ \ e e
-~ ‘_\I./' NG
ol= - i I 1 N Sy 1 I I T =
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
radial position
b
~3
10 F T T T T T T T T T
- 64 coefficients
1 128 coefficients
L _— 256 coefficients
I - T~
Ve ~ —_———
4 ’ ~ - ~
10 F Vs N ~ // = ~
Fos N ’ N
[/ \ 4 N
L/ \ / N
H ce T - \ / ——— h
. | - o~ v T~
2 i - h v 7 RN
o | e N v 4 '~
‘g 10_5 F ,/ 1 ! \,
S Lo/ A \
@ L B i - .
o
« .

10

-7

10
-1 -0.8

-0.2 0 0.2
radial position

0.4

0.6 0.8

FIG. 15. Problem 7—Errors when considering the one-dimensional section of th&ddsk) from (0, —1)
to (0, 1): (a) convergence is observed as the number of Fourier coefficients increases; (b) the same errors ob:
in log-scaling.

182 BORGES AND DARIPA

modified Simpson’s rule. Additionally, for each running time we estimate the corcgtemt
(31) which determines normalized timing per grid point spent on the sequential algorith
Specifically,

t

CLl=—5——
'™ NZlog, N’

wheret represents the running times shown on the table. Overall, it shows an extrem
low constant associated with the complexity of the algorithm. In fact, one can observe t
¢y is ©(1077) as observed foN = 32, 64, 128, and 256. It results from the data locality
in Algorithm 3.1: It presents a low ratio of memory references over float point operatior
For the larger cased = 512, 1024 and 2048, one can observe slightly increasing valu
of ¢; because of the fact that all data cannot be stored in cache. It is due to the fact
some steps of Algorithm 3.1 basically involve two data structures formadNbgomplex
numbers in double precision. For the case in whith- M = 256 we have 256x 16 x 2
bytes, which can be maintained into the 2 MBytes of data cache. Conversely, for the cz
N =512, 1024, and 2048, multiple accesses between data cache and shared memol
expected.

Estimate (31) can also be understood as the computational complexity of the algorit
based on floating point operations counting. In our current implementation, compu
tions taken into account in (31) correspond to two sets MfiNy2log, N + 3log, N +
4(2N — 1) multiplications and MN/2log, N + 4(2N — 1) additions. It leads to a total
of 20MN/2log, N + 16(2N — 1) + 6log, N operations. Asymptotically, the sequential
algorithm presents computational complexity

10MN log, N

floating point operations, which essentially correspond to the the metric of two radix
Cooley—Turkey FFT implementations [17] applied ordata sets of siz8l.

To observe the scalability of the algorithm, we ran the parallel solver for the Dirichl
problem using the trapezoidal rule for numerical integration. Timings were taken for tv
sets of data. For a fixed numblr= 2048 of angular grid points, three distinct numbers
of radial grid points were employedil = 512, 1024, and 2048. Fig. 16(a) presents plots
for the actual running times when allocating 2, 4, 6, 8, 10, 12, 14, and 16 processors.
the second set, Fig. 16(b) contains the timings for three distinct numbers of angular ¢
points (N = 512, 1024, and 2048) on a discretization with a fixed number of radial gr
pointsM = 2048. An immediate observation is that larger levels of granularity correspol
to more computational work performed locally on each processor and, therefore, be
performance for the algorithm. In fact, the problem of skde= N = 2048 scales better
than the smaller cases. Nevertheless, savings in computational timings for an increa
number of processors can be observed even for the smaller problems because of the
overhead for interprocessor communication through the shared memory.

To infer the degree of parallelism of our implementation of the fast Poisson solvi
we present speedups in a coarse-grained data distribution. Note that the algorithm t
advantage of data cache for small or even medium problem sizes. It means that ¢
paring the running time for a single processor against the time obtained in a multip
cessor architecture may indicate super-linear speedups as a result of smaller amour
data assigned to each node of the multiprocessor system. Data may reside on cache

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK

a Running times for N=2048

183

< 5) =%
& 0. -
@ i
£ -~
-~ ~
~
X
. AN
o S
1 F o, .
“o..
o
"o
0.3 , R ¢
2 4 6 8 10 12 14 16
number of processors
b Running times for M=2048
T T T
4 A N=2048 ||
0 = N=1024
O N=512
L ~
10 | T~ -
[x
r N A
b \X\ - B
’g 5 6. = ™~ %
L) -~
@ * o
E >~
o ~
~
~
ol
1 = . —
‘0.
O
o
o]
0.3 1 4'-0
2 4 6 8 10 12 14 16

number of processors

FIG. 16. Scalability of the parallel implementation of the fast solver for the Dirichlet problem: (a) timing:
for a fixed number of angular pointd = 2048 and distinct number of radial poirté = 512 1024, and 2048;
(b) timings for a fixed number of radial poinkd = 2048 and distinct number of angular poitNs= 512 1024,

and 2048. All plots in (a) and (b) are log—log plots.

184 BORGES AND DARIPA

TABLE XII
Speedups for the Parallel Algorithm for a Problem
of SizeM = N = 2048

Speedups foM = N = 2048

Number of processors ~ Timing (sec.) Speedup Efficiency

1 78 1.0 1.00
2 43 1.8 0.91
4 22 3.5 0.89
6 15 5.2 0.87
8 11 7.1 0.88
10 9.7 8.0 0.81
12 8.3 9.4 0.78
14 7.8 10 0.71
16 7.0 11 0.69

sufficiently large number of processors. To overcome this problem, we compare runn
times for problem sizé = N = 2048 to guarantee that multiple accesses occur betwe
data cache and shared memory even when 16 processors are in use. Table XlI presen
timings for the parallel algorithm using up to 16 processors. The timing for a single proces
was extracted from Table XI. Speed8iis defined as the ratio of the time required to solve
the problem on a single processor, using the purely sequential Algorithm 3.1, to the ti
taken to solve the same problem usigrocessors. Efficiencl indicates the degree of
speedup achieved by the system and is defin&dasS/P. The lowest admissible value for
efficiencyE = 1/P corresponds to leaving — 1 processors idle and having the algorithm
executed sequentially on a single processor. The maximum admissible value for efficie
E = 1 indicates all processors devoting the entire execution time to perform computati
of the original Algorithm 3.1 without any overlapping. Speedup and efficiency are shown
Table XXII. These results demonstrate that the additional computational work introduc
by using partial sums, as described in Section 4.1, does not increase the complexity o
algorithm. By comparing the asymptotic estimate for the parallel running time (29) agail
the full estimate (28), one can observe that this extra computational work does not incre
the asymptotic estimate.

We see that efficiency and speedup of the parallel algorithm gradually decrease witt
increasing number of processors, which is quite expected. However, at the rate it doe
may raise some questions about whether our method scales well or not. This issue ce
properly addressed by looking at how the parallel algorithms for this class of problel
perform in general. We have already addressed this issue in Section 4.2 where Eq.
shows that the efficiency is approximateB(1/(1 + cP?)) which is consistent with the
data in Table XXII. It is worth pointing out that an efficiency of 69% or speedup of 11 fc
an approximate four million points (see last line in Table XII) for this class of problems
not atypical. This is because the algorithm (see Section 4) uses two sets of data: Data s
the radial direction need to be constructed from the data set in the circumferential direct
and this requires communication among various processors. This communication co
perhaps somewhat large, but this is not so unusual with problems of this kind. In fact,
have shown in Section 4.4 that FACR-based methods also present the same behavior.

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 185

XIl shows that our algorithm scales well and is very competitive when compared with ot!
current approaches.

6. CONCLUSIONS

In this paper, we presented a fast algorithm for solving the Poisson equation with eit
Dirichlet or Neumann conditions. The resulting algorithm presents a lower computatio
complexity when compared against standard procedures based solely on numerical int:
tion. The method is based on exact analysis which provides a more accurate algorithm.
representation of the solution using Fourier coefficients and convolution properties prov
a very accurate numerical solution, even for problems with sharp variations on inhoma
neous terms. We also have shown that the mathematical foundation of the algorithm all
us to define high-order one-dimensional integration schemes without increasing the nur
of grid points on the domain.

From a computational point of view, data locality was preserved leading to an efficient
of cache. By reformulating the inherently sequential recurrences present in the seque
algorithm, we were able to obtain a parallel version of the solver characterized by a redt
amount of communication, and message lengths depending only on the number of Fo
coefficients being evaluated. We have shown that the new approach can be defined
way that it presents the same numerical stability as in the sequential algorithm. The par:
solver is very suited for distributed and shared memory systems. A timing model for
algorithm was presented to provide a better understanding of the algorithm and to pro
performance prediction.

APPENDIX: MATHEMATICAL PROOFS

Proof of Theorem 2.1.We recall that the solutiow of the homogeneous problem (3)
can be derived by using the Poisson integral formula [9]

o
1
w(r,a):zﬂ/<p(r)K<rR,a—r> dr, O<r <R,
0

where the boundary conditions are defined by

(1) =9(r) —v(R, 1), (38)
and the Poisson kernel is

1— p?

K(p, 1) =)
(0, 7) 1+ p2 —2pcost

O<p<1l (39)

A Fourier representation af is obtained by considering

1—p? 1z
(1—pcost)2+ (psint)?2 |1—z?

K(p, 1) =

186 BORGES AND DARIPA
for z= p€® = p(cost +i sint). Thus,

B 1-z2z Rel-2z-7+2)
C 1-21-2 (1-2(1-2

1-2(1-2 1-2z

K(p,7) = Ral+2014+z2+2Z2+--)

K(p, 1)

Since|z| < 1

~+00
= Rel+2z+22+--)= Y pem.

N=—00

Consequently, for the Fourier representatiofp, 7) = > K, (0)€"* we have
n

Kn(p) = p". (40)

Letw(r, a) = > wn(r)€™, where
n

1 yi 1 i
wn(r) = g/w) Zﬂ/K<;,a—t>e_i““da] dr
0 0
1 2n 1 21
r . .
I _ K[| — _ —in(e—1) —int
27T/Gﬁ(r) 27_[/ (R,a ‘E)e da] e " dr
0 0
27

1 r —int _ L
Z/‘P(T)Kn<§>e df—(ﬂnKn(R>,
0

and
1 2
on= o /w(r)E’i”’dr- (41)
0
Equation (40) leads to
r r\ "
wn(r) = ¢n Ky <R> = (R> @n- (42)

The principal solutiony defined by the integral in (5) can be evaluated by considerin
the splitting of the domain defined by
r—eSrie = B(O; 1 +6) — B(O;1 —¢),

r—SQ:+E = r—aQH-S - B(X; 8);

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK

and
r 27 = B(0; 1) — B(O;r).

Therefore,

1 1 .
v = [fan;_toglx—nldy = tim [falogix—nldy
B

B—B(x;¢e)

1 .
=, lm /f(n)|09|X—n|dn+ / () log I — n| dn

0S2r—¢ r—eS2,

+ / f(n)log|x—n|dn},

r+e SR

*
T+e

and forx = re'?, the Fourier decomposition is given by

187

21 21
1))
() = e {/ f(n)/log|x—n| e "dadn + / f(n)/log|x—n|e_'”°‘dozdn}
0 0

Q

1 1 |
= —lim I, —ine g ,
+271/<27T iy)e o
0

r 2R

where

I = / f () log X — n| dn.

r—eQ

:+s
Since

Il < sup f(p) sup [log|x —nll 7((r +&)° = (r —&)?)

NEr 2, N L,
=— sup f(n)dreloge,
775r759?+s

we have Iir(1)1||£| =0.1fn=p€®andd =« — 7, then

2r—1
1 R (N A
v(r) = o {//pf(p,l’)e (Zn / log|x —nle d@) dr dp}

082

2r—1
+ 1 {// pf(p, v)e " (1 / log|x — n|e”‘9d6) dr dp} .
2 2

r Q2R -7

188 BORGES AND DARIPA

It implies

r R
on(r) = / fa(0) Gn(r, p) p dp +/ fa(p) Gn(r, p) p dp 0<r=R (43)
0 r
where f, andG,, are thenth Fourier coefficients of andG, respectively, with

G(r, p,0) = log|x — n| = log|r? + p? — 2rp coso| Y.

To deriveG, we define; = 2e7? forr > p, andg = %eie forr < p, then

logril—¢D, r>p,
log|x —n| = 44
gp=l {|09(pll—$|), r<op. “4)
Moreover, sincgz| < 1 forr > p
1 _ o é-n © n
log|1~¢| = Sdog(l— &) +logl —)=~ = => =
n=1 n=1
_ . 1 n n . |§|n —ing ing
=D N == S +e™)
n=1 n=1
__2{:|§|m‘|n0
nZ0 2In|
A similar result hold for logl — &| whenr < p. Equation (44) leads to
logr — Znﬂﬁ(@)'n'e‘”e, r>p,
log|x —nl = 1 eI ing (45)
Ing—Zn#Om(E) e’ r <p.

Using the above decomposition, Eq. (43) can be rewritten as in (8)pyiimdq, as defined
in (9) and (10).
Recall that the solution of the Dirichlet problem (1) is given by

U=v+w.

Therefore, the Fourier coefficientg(r) of u(r, -) are obtained from (42) as

In|
Un(r) = vn(r) + wn(r) = va(r) + (%) @ns (46)

and from (38) we obtain (7).

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 189

Proof of Corollary 2.2 We first want to show that recurrences (13) and (14) evaluate

o= [2(Y
0
R n
v () = _/p(r) fi(p)dp, N >0 (48)
n 2n p n 5 .

If n <O, then

fj

0= () [= 5(2) e
0

0

which implies (47). Ifn > 0, the same argument holds for (48). From Theorem 2.1 we ha
Jo £) fae) do + [T £(2) falp) dp. N <0,
vn() =4 Jo plogr fo(p) do + [plogp fo(p) do, n=0, (49)
o 22 (1) " fa() do+ [F 22 (L) fa(p) dp. N> 0.

Consequently, it < 0 we have from (47)

R -n
vn(ri)=vn(ri)—/_gn(rpi> fn(p) dp,

and sincef, = f_,, Eq. (48) leads to
un(ri) = vy (r) + vZa(r)
as in (15). The proof is similar far > 0 sincev,(r;j) = v_n(f;).
Proof of Corollary 2.3. Forn = 0 we have

r M—1 R

|
eyt = /pfo(p) dp and Y Dg'*t= /,Ologpfo(ﬁ)dp’
i=2

0 =l n
thuswvp(r)) is given as in (49). Ih < 0, Eq. (11) and (47) give
Zl: (rl)ncil’i =}p<r'>nf (p) dp = vy, (1))
25 n J i) n (M),
and Eqgs. (12) and (48) lead to

= (ni\"= A P\ T
Z (I’|> Doy = _/—2n<,0) f_n(p) do = v ().

190 BORGES AND DARIPA

From Corollary 2.2 the above terms sum up
un(r) = vy () + v ().

The proof is similar for the case > 0.

Proof of Theorem 2.2. Consider the normal derivative of the principal soluticzbtained
from the gravitational potential (5)

v 0
a(X) = (,Tﬁ(x) = / f(n)afﬁG(X, n) dn, X € 9B,
B

where the normal derivative for the Green'’s function (6dhis given by

(206 = 1, X2 = 12), g (4. X)) (X, X — n)
4 |x — 7|2 ~ 27R|x —)2’

1
fG(X nN=s7—= |09|X -l =

with X = (X1, X2) andn = (11, n2). One can rewrite the above derivative as

0 1 2(X,x—n)+{n,n) —(n,
9 G) = (m+{n.n)—(n,n
on 4R (X—n,X—n)
_ 1 X, X=n)—(n,X—=n)+(X,X)—(n,n)
47 R (X—=n,X—n)
47 R (X—n,X—n)
N PR e UGN 1 R—|nf?
T 47R Xx—n2) 4nR 47R |x —n|?

for x € 9B. Therefore =G(x, n) can be expanded in the same way as the Poisson kerr
(39) by noticing that

) n\ 1 N 1 1—y
an \R'R) 47R 4nR1+ y2— 2y cosd

for x = Ré* andn = p€?, whered = o — 1, y:% and O< y < 1. That s,
3 (X 7 1 1 =X e\
TG D D — — e'”".
an <R R) 4nR+4RZ<R

Therefore, fom % 0 we have

In|
el
p(§> fa(po) do,

and comparing the above equation against the Fourier coefficientgieén in (8) as

R In|
_ | P (P
vn<R)—/2|n|<R) f(o) forn#£0
0

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 191

we have

op = —%vn(R) forn #£0. (50)

To obtain the solution of the Neumann problem (18) in the fom= v + w as before,
we need to define boundary conditignef the homogeneous Dirichlet problem

Aw=0 in B
w=¢ on 9B,

which corresponds to the Neumann conditions

9 a

— w(R =¢ — —v(R) =y — 51

aﬁw()=V 8ﬁv()=V —«a (51)
on dB. From the relation given in (42) we obtain

3 In|

ﬁwn(R) = Eﬁl’n,

and from equations (50) and (51) we have

R n(R)ZB(Wn_an)Z Bwn‘FUn(R), for n;/:O.

¢n=——=w
[nfan [n| n|

Consequently, to solve the Neumann problem (18) the above definition for the bounc
conditiong is used in (46) leading to the Fourier coefficients described in (19) f610.

For the case = 0, ¥ is uniquely defined by the compatibility condition derived from
Green’s theorem:

R

2
1 1 1
Yo = 27/1/f(r)df= —/Au(n)dn= —/ f(n)dn=/pfo(p)dp-
T 27 2
0 B B

0

ACKNOWLEDGMENTS

This material is based in part upon work supported by the Texas Advanced Research Program under (
TARP-97010366-030. We sincerely thank the referees for their constructive criticisms.

REFERENCES

1. J. Anderson, S. Amarasingle, and M. S. Lam, Data and computation transformations for multiprocess
in Proceedings 5th Symposium on Principles and Practice of Parallel Program@idiyl SIGPLAN, July
1995).

2. L. Borges and P. Daripa, A parallel version of a fast algorithm for singular integral transfgumr. Algor.
23,71 (2000).

3. L. Borges and P. Daripa, A parallel solver for singular integralRroteedings of PDPTA’99—International
Conference on Parallel and Distributed Processing Techniques and Applicdtiassv/egas, Nevada, June
28-July 1, 1999), Vol. lll, pp. 1495-1501.

4. W. Briggs, L. Hart, R. Sweet, and A. O’Gallagher, Multiprocessor FFT mett®lddy J. Sci. Stat. Comput
8, 27 (1987).

192 BORGES AND DARIPA

5.
6.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25

W. Briggs and T. Turnbull, Fast Poisson solvers for mimd compuarsllel Comput6, 265 (1988).

T. F. Chan and D. C. Resasco, A domain-decomposed fast Poisson solver on a reStanglé, Sci. Stat.
Comput8, S14 (1987).

. P. Daripa, A fast algorithm to solve the Beltrami equation with applications to quasiconformal magpings

Comput. Phys106, 355 (1993).

. P. Daripa and D. Mashat, Singular integral transforms and fast numerical algofMomsy. Algor.18, 133

(1998).

. M. D. GreenbergApplication of Green’s Functions in Science and Enginee(figentice Hall, New York,

1971).

Hewlett-PackardlP 9000 V-Class Server Architectydn ed. (Hewlett-Packard, March 1998).

R. Hockney and C. Jesshoparallel Computers: Archithecture, Programming and Algorith(hslger,
Bristol, 1981).

R. W. Hockney, A fast direct solution of Poisson equation using Fourier analyAissoc. Comput. Mach,

95 (1965).

E. Houstis, R. Lynch, and J. Rice, Evaluation of numerical methods for ellipitic partial differential equatior
J. Comput. Phy27, 323 (1978).

L. S. Johnsson and N. P. Pitsianis, Parallel computation load balance in parallel FAGg&h Performance
Algorithms for Structured Matrix Problemedited by P. Arbenz, M. Paprzycki, A. Sameh, and V. Sarin (Nova
Science Publishers, Inc., 1998).

V. Kumar, A. Grama, A. Gupta, and G. Karypistroduction to Parallel ComputingBenjamin/Cummings,
Redwood City, CA, 1994).

J.-Y. Lee and K. Jeong, A parallel Poisson solver using the fast multipole method on networks of workstati
Comput. Math. Appi36, 47 (1998).

C. V. Loan, Computational Frameworks for the Fast Fourier Transform (Soc. for Industr. & Appl. Matt
Philadelphia, 1992).

A. McKenney, L. Greengard, and A. Mayo, A fast Poisson solver for complex geométi@smput. Phys.
118 348 (1995).

P. Pachecdarallel Programming with MP{Morgan Kaufmann, San Francisco, CA, 1997).

J. Rice, E. Houstis, and R. Dyksen, A population of linear, second order, elliptic partial differential equatic
on rectangular domains, I, IMath. Comput36, 475 (1981).

A. Sameh, A fast Poisson solver for multiprocesorgliiptic Problem Solvers |edited by G. Birkhoff and

A. Schoenstadt (Academic Press, Orlando, 1984) pp. 175-186.

J. Singh, W. Weber, and A. Gupta, SPLASH: Stanford parallel applications for shared-m@ompyt. Arch.
News20, 5 (1992).

G. Skllermo, A Fourier method for the numerical solution of Poisson’s equakitaih. Comput29, 697
(1975).

P. N. Swarztrauber, The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the disc
solution of Poisson’s equation on a rectan@AM Rev19, 491 (1977).

. C. Temperton, On the FACR(l) algorithm for the discrete Poisson equdtiGomput. Phys34, 315 (1980).

	1. INTRODUCTION
	2. MATHEMATICAL PRELIMINARIES
	TABLE I

	3. THE SEQUENTIAL ALGORITHM
	FIG. 1.

	4. THE PARALLEL ALGORITHM
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.

	5. NUMERICAL RESULTS
	TABLE II
	TABLE III
	TABLE IV
	TABLE V
	TABLE VI
	TABLE VII
	TABLE VIII
	TABLE IX
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	TABLE X
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.
	TABLE XI
	FIG. 15.
	FIG. 16.
	TABLE XII

	6. CONCLUSIONS
	APPENDIX: MATHEMATICAL PROOFS
	ACKNOWLEDGMENTS
	REFERENCES

