
Journal of Computational Physics169,151–192 (2001)

doi:10.1006/jcph.2001.6720, available online at http://www.idealibrary.com on

A Fast Parallel Algorithm for the Poisson
Equation on a Disk

Leonardo Borges∗ and Prabir Daripa†,1
∗Institute for Scientific Computation and†Department of Mathematics, Texas A&M University,

College Station, Texas 77843
E-mail: prabir.daripa@math.tamu.edu

Received January 10, 2000; revised September 6, 2000

A parallel algorithm for solving the Poisson equation with either Dirichlet or Neu-
mann conditions is presented. The solver follows some of the principles introduced
in a previous fast algorithm for evaluating singular integral transforms by Daripa
et al.Here we present recursive relations in Fourier space together with fast Fourier
transforms which lead to a fast and accurate algorithm for solving Poisson problems
within a unit disk. The algorithm is highly parallelizable and our implementation is
virtually architecture-independent. Theoretical estimates show good parallel scala-
bility of the algorithm, and numerical results show the accuracy of the method for
problems with sharp variations on inhomogeneous term. Finally, performance results
for sequential and parallel implementations are presented.c© 2001 Academic Press

1. INTRODUCTION

The Poisson equation is one of the fundamental equations in mathematical physics which,
for example, governs the spatial variation of a potential function for given source terms.
The range of applications covers magnetostatic problems to ocean modeling. Fast, accurate,
and reliable numerical solvers play a significant role in the development of applications for
scientific problems. In this paper, we present efficient sequential and parallel algorithms for
solving the Poisson equation on a disk using Green’s function method.

A standard procedure for solving the Poisson equation using Green’s function method
requires evaluation of volume integrals which define contribution to the solution resulting
from source terms. However, the complexity of this approach in two-dimensions isO(N4)

for a N2 net of grid points which makes the method prohibitive for large-scale problems.
Here, we expand the potential in terms of Fourier series by deriving radius-dependent
Fourier coefficients. These Fourier coefficients can be obtained by recursive relations

1 To whom correspondence should be addressed.

151

0021-9991/01 $35.00
Copyright c© 2001 by Academic Press

All rights of reproduction in any form reserved.

152 BORGES AND DARIPA

which only utilize one-dimensional integrals in the radial directions of the domain. Also,
we show that these recursive relations make it possible to define high-order numerical in-
tegration schemes in the radial directions without taking additional grid points. Results are
more accurate because the algorithm is based on exact analysis. The method presents high
accuracy even for problems with sharp variations on inhomogeneous term. On a single
processor machine, the method has a theoretical computational complexityO(N2 log2 N)
or equivalentlyO(log2 N) per point which represents substantial savings in computational
time when compared with the complexityO(N2) for standard procedures.

The basic philosophy mentioned above has been applied previously in the context of
developing fast algorithms for evaluations of singular integrals [8] in the complex plane.
The mathematical machinery behind this philosophy is applied in Section 2 of this paper for
the presentation of a theorem (Theorem 2.1) which outlines the fast algorithm for solving
the Poisson equation in the real plane. The derivation of this theorem is straightforward and
closely follows the analogous development elsewhere [7], except for the fact that it does
not use the tools of single complex variable theory (such as Cauchy’s residue theorem) as
in Daripa and Mashat [8], and it involves a different equation.

We must state right at the outset that our main goal in this paper is the use of this theorem
for the development of the very efficient serial and parallel algorithms and testing the
performance of these algorithms on a host of problems. Thus, we could have merely stated
Theorem 2.1 without its derivation, but the presentation of the derivation is necessary for
completeness. Also, it is necessary for the purpose of extension of this fast algorithm to
higher dimensions and to arbitrary domains which we will address in a forthcoming paper.
It is worth pointing out that the statement of Theorem 2.1 follows the general format of a
theorem recently introduced by the second author and his collaborators [8] in the context
of singular integral transforms. Thus, part of this paper builds upon our earlier work.

We address the parallelization of the algorithm in some detail which is one of the main
thrusts of this paper. The resulting algorithm is very scalable because of the fact that
communication costs are independent of the number of annular regions taken for the domain
discretization. It means that an increasing number of sample points in the radial direction
does not increase overheads resulting from interprocessor coordination. Message lengths
depend only on the number of Fourier coefficients in use. Communication is performed in a
linear path configuration which allows overlapping of computational work simultaneously
with data-exchanges. This overlapping guarantees that the algorithm is well suited for
distributed and shared memory architectures. Here our numerical experiments show the
good performance of the algorithm in a shared memory computer. Related work [2, 3] shows
the suitability for distributed memory. It makes the algorithm architecture-independent and
portable. Moreover, the mathematical formulation of the parallel algorithm presents a high
level of data locality, which results in an effective use of cache.

At this point, it is worth mentioning that there now exists a host of fast parallel Poisson
solvers based on various principles including the use of FFT and fast multipole method
[5, 6, 16, 18]. The fast solver of this paper is based on Theorem 2.1, which is derived
through exact analyses and properties of convolution integrals involving Green’s function.
Thus, this solver is very accurate because of these exact analyses which is demonstrated
on a host of problems. Moreover, this solver is easy to implement and has a very low
constant hidden behind the order estimate of the complexity of the algorithm. This gives
this solver an advantage over many other solvers with similar complexity, which usually
have a high value of this hidden constant. Furthermore, this solver can be very optimal

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 153

for solving certain classes of problems involving circular domains or overlapped circular
domains. This solver can also be used in arbitrary domains via spectral domain embedding
technique. This work is currently in progress.

In Section 2 we begin presenting the mathematical preliminaries of the algorithm and
deriving the recursive relations. In Section 3 we describe the sequential implementation and
two variants of the integration scheme. In Section 4 we introduce the parallel implementation
and its theoretical analysis. In Section 5 we present and discuss the numerical results on
several test problems for accuracy and performance of the algorithm. Finally, in Section 6
we summarize our results.

2. MATHEMATICAL PRELIMINARIES

In this section we introduce the mathematical formulation for a fast solver for Dirichlet
problems. Also, recursive relations are presented, leading to an efficient numerical algo-
rithm. Finally, the mathematical formulation is extended to Neumann problems. Proofs are
given in the Appendix.

2.1. The Dirichlet Problem and Its Solution on a Disk

Consider the Dirichlet problem of the Poisson equation

1u = f in B

u = g on ∂B,
(1)

whereB = B(0, R) = {x ∈ IR2 : |x| < R}. Specifically, letv satisfy

1v = f in B, (2)

andw be the solution of the homogeneous problem

1w = 0 in B

w = g− v on ∂B.
(3)

Thus, the solution of the Dirichlet problem (1) is given by

u = v + w. (4)

A principal solution of Eq. (2) can be written as

v(x) =
∫
B

f (η)G(x, η)dη, x ∈ B, (5)

whereG(x, η) is the free-space Green’s function for the Laplacian given by

G(x, η) = 1

2π
log |x − η|. (6)

To derive a numerical method based on Eq. (5), the interior of the diskB(0, R) is divided
into a collection of annular regions. The use of quadrature rules to evaluate (5) incurs in poor

154 BORGES AND DARIPA

accuracy for the approximate solution. Moreover, the complexity of a quadrature method
is O(N4) for a N2 net of grid points. For large problem sizes it represents prohibitive
costs in computational time. Here we expandv(·) in terms of Fourier series by deriving
radius-dependent Fourier coefficients ofv(·). These Fourier coefficients can be obtained by
recursive relations which only utilize one-dimensional integrals in the radial direction. The
fast algorithm is embedded in the following theorem.

THEOREM 2.1. If u(r, α) is the solution of the Dirichlet problem(1) for x = reiα and
f (reiα) =∑∞n=−∞ fn(r)einα, then the nth Fourier coefficient un(r) of u(r, ·) can be written
as

un(r) = vn(r)+
(

r

R

)|n|
(gn − vn(R)), 0< r < R, (7)

where gn are the Fourier coefficients of g on∂B, and

vn(r) =
r∫

0

pn(r, ρ)dρ +
R∫

r

qn(r, ρ)dρ, (8)

with

pn(r, ρ) =
{
ρ logr f0(ρ), n = 0,

−ρ
2|n|
(
ρ

r

)|n|
fn(ρ), n 6= 0,

(9)

and

qn(r, ρ) =
{
ρ logρ f0(ρ), n = 0,

−ρ
2|n|
(

r
ρ

)|n|
fn(ρ), n 6= 0.

(10)

2.2. Recursive Relations of the Algorithm

Despite the fact that the above theorem presents the mathematical foundation of the
algorithm, an efficient implementation can be devised by making use of recursive relations
to perform the integrations in (8). Consider the diskB(0, R) discretized byN × M lattice
points with N equidistant points in the angular direction andM distinct points in the
radial direction. Let 0= r1 < r2 < · · · < r M = Rbe the radii defined on the discretization.
Theorem 2.1 leads to the following corollaries.

COROLLARY 2.1. It follows from(8) and(10) thatvn(0) = 0 for n 6= 0.

COROLLARY 2.2. Let0= r1 < r2 < · · · < r M = R, and

Ci, j
n =

r j∫
ri

ρ

2n

(
r j

ρ

)n

fn(ρ) dρ, n < 0, (11)

Di, j
n = −

r j∫
ri

ρ

2n

(
ri

ρ

)n

fn(ρ) dρ, n > 0. (12)

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 155

If for r j > ri , we define

v−n (r1) = 0, n < 0,

v−n (r j) =
(

r j

r i

)n

v−n (ri)+ Ci, j
n , n < 0,

(13)

and

v+n (r M) = 0, n > 0

v+n (ri) =
(

ri

r j

)n

v+n (r j)+ Di, j
n , n > 0,

(14)

then for i= 1, . . . ,M we have

vn(ri) =
{
v−n (ri)+ v+−n(ri), n < 0,

v+n (ri)+ v−−n(ri), n > 0.
(15)

COROLLARY 2.3. Let0= r1 < r2 < · · · < r M = R, and add n= 0 to the definitions in
Corollary 2.2as

Ci, j
0 =

r j∫
ri

ρ f0(ρ) dρ and Di, j
0 =

r j∫
ri

ρ logρ f0(ρ) dρ, (16)

then given l= 1, . . . ,M we have

vn(rl) =


logrl

∑l
i=2 Ci−1,i

0 +∑M−1
i=l Di,i+1

0 , for n = 0,∑l
i=2

(
rl
r i

)n
Ci−1,i

n +∑M−1
i=l

(
ri
rl

)n
Di,i+1
−n , for n < 0,∑M−1

i=l

(
rl
r i

)n
Di,i+1

n +∑l
i=2

(
ri
rl

)n
Ci−1,i
−n , for n > 0.

(17)

It is important to emphasize thatM distinct pointsr1, . . . , r M need not to be equidistant.
Therefore, the fast algorithm can be applied on domains that are nonuniform in the radial
direction. This anisotropic grid refinement may at first seem unusual for elliptic problems.
Even though it is true that isotropic grid refinement is more common with solving elliptic
equations, there are exceptions to the rule, in particular with a hybrid method such as ours
(Fourier in one direction and finite difference in the other). Since Fourier methods are
spectrally accurate, grid refinement along the circumferential direction beyond a certain
optimal level may not always offer much advantage. This is well known because of the
exponential decay rate of Fourier coefficients for a classical solution (c∞ function). This
fact will be exemplified later in Example 1 (see Table I in Section 5.1) where we show that
to get more accurate results one needs to increase the number of annular regions without
increasing the number of Fourier coefficients participating in the calculation (i.e. anisotropic
grid refinement with more grids in the radial direction than in the the circumferential
direction is more appropriate for that problem).

156 BORGES AND DARIPA

TABLE I

Problem 1—Relative Errors in Norm ‖ · ‖∞ Using Distinct

Values for N and M

Relative errors for Problem 1 (Dirichlet)

N\M 64 128 256 512 1024 2048

64 2.6e-5 6.4e-6 1.6e-6 3.9e-7 9.8e-8 2.5e-8
128 2.6e-5 6.4e-6 1.6e-6 3.9e-7 9.8e-8 2.5e-8
256 2.6e-5 6.4e-6 1.6e-6 3.9e-7 9.8e-8 —
512 2.6e-5 6.4e-6 1.6e-6 3.9e-7 — —

1024 2.6e-5 6.4e-6 1.6e-6 — — —
2048 2.6e-5 6.4e-6 — — — —

Note.The number of circlesM is the dominant parameter.

2.3. The Neumann Problem and Its Solution on a Disk

The same results obtained for solving the Dirichlet problem can be generalized for the
Neumann problem by expanding the derivative of the principal solutionv in (5). Consider
the Neumann problem

1u = f in B
∂u

∂n
= ψ on ∂B.

(18)

The analogous of Theorem 2.1 for the Neumann problem is given by Theorem 2.2.

THEOREM 2.2. If u(r, α) is the solution of the Neumann problem(18) for x = reiα

and f(reiα) =∑∞n=−∞ fn(r)einα, then the nth Fourier coefficient un(r) of u(r, ·) can be
written as

u0(r) = v0(r)+ ϕ0, n = 0

un(r) = vn(r)+
(

r

R

)|n|(R

|n|ψn + vn(R)

)
, n 6= 0,

(19)

whereψn are the Fourier coefficients ofψ on∂B, vn are defined as in Theorem2.1,andϕ0

is the parameter which sets the additive constant for the solution.

3. THE SEQUENTIAL ALGORITHM

An efficient implementation of the algorithm embedded in Theorem 2.1 is derived from
Corollary 2.2. It defines recursive relations to obtain the Fourier coefficientsvn in (7)
based on the sign of the indexn of vn. In the description of the algorithm, we address the
coefficients with index valuesn ≤ 0 asnegative modes, and the ones with index valuesn ≥ 0
aspositive modes. Equation (13) shows that negative modes are built up from the smallest
radiusr1 toward the largest radiusr M . Conversely, Eq. (14) constructs positive modes from
r M towardr1. Figure 1 presents the resulting sequential algorithm for the Dirichlet problem.
The counterpart algorithm for the Neumann problem similarly follows from Theorem 2.2
and Corollary 2.2.

Notice that Algorithm 3.1 requires the radial one-dimensional integralsCi,i+1
n andDi,i+1

n

to be calculated between two successive points (indexed byi andi + 1) on a given radial

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 157

ALGORITHM 3.1. (Sequential Algorithm for the Dirichlet Problem on a Disk). GivenM, N,
the grid valuesf (rl e2π ik/N) and the boundary conditionsg(Re2π ik/N), l ∈ [1,M], andk ∈
[1, N], the algorithm returns the valuesu(rl e2π ik/N), l ∈ [1,M], k ∈ [1, N] of the solution
for the Dirichlet problem (1).

1. Compute the Fourier coefficientsfn(rl), n ∈ [−N/2, N/2], for M sets of data at
l ∈ [1,M], and the Fourier coefficientsgn on ∂B.

2. For i ∈ [1,M − 1], compute the radial one-dimensional integralsCi,i+1
n , n ∈

[−N/2, 0] as defined in (11) and (16); and computeDi,i+1
n , n ∈ [0, N/2] as defined

in (12) and (16).
3. Compute coefficientsv−n (rl) for each of the negative modesn ∈ [−N/2, 0] as defined

in (13) and (17):

(a) Setv−n (r1) = 0 for n ∈ [−N/2, 0].
(b) Forl = 2, . . . ,M

v−n (rl) =
(

rl

rl−1

)n

v−n (rl−1)+ Cl−1,l
n , n ∈ [−N/2, 0].

4. Compute coefficientsv+n (rl) for each of the positive modesn ∈ [0, N/2] as defined in
(14) and (17):

(a) Setv+n (r M) = 0 for n ∈ [0, N/2].
(b) Forl = M − 1, . . . ,1

v+n (rl) =
(

rl

rl+1

)n

v+n (rl+1)+ Dl ,l+1
n , n ∈ [0, N/2].

5. Combine coefficientsv+n andv−n as defined in (15) and (17):
For l = 1, . . . ,M

v0(rl) = logrlv
−
0 (rl)+ v+0 (rl).

vn(rl) = v−n(rl) = v−n (rl)+ v+−n(rl), n ∈ [−N/2,−1].

6. Apply the boundary conditions as defined in (7):
For l = 2, . . . ,M

un(rl) = vn(rl)+
(rl

R

)|n|
(gn − vn(R)), n ∈ [−N/2, N/2].

7. Compute u(rl e2π ik/N) =∑N/2
n=−N/2un(rl)e2π ikn/N, k ∈ [1, N], for each radius

rl , l ∈ [1,M].

FIG. 1. Description of the sequential algorithm for the Dirichlet problem.

158 BORGES AND DARIPA

direction (defined byn). One possible numerical method for obtaining these integrals would
be to use the trapezoidal rule. However, the trapezoidal rule presents an error of quadratic
order. One natural approach to increase the accuracy of the numerical integration would
be to add auxiliary points between the actual points of the discretization of the domain to
allow higher-order integration methods to obtainCi,i+1

n andDi,i+1
n . This approach presents

two major disadvantages: (1) it substantially increases computational costs of the algorithm
because the fast Fourier transforms in step 1 of Algorithm 3.1 must also be performed
for all the new circles of extra points added for the numerical integration; (2) in practical
problems the values for functionf may be available only on a finite set of points, which
constrains the data to a fixed discretization of the domain, and no extra grid points can be
added to increase the accuracy of the solver.

Here, we increase the accuracy of the radial integrals by redefining steps 2, 3, and 4
of Algorithm 3.1 based on the more general recurrences presented in Eqs. (13) and (14).
TermsCi,i+1

n and Di,i+1
n are evaluated only using two consecutive points. In fact, for the

casen < 0 one can apply the trapezoidal rule for (11) leading to

Ci,i+1
n = (δr)2

4n

(
i

(
i

i + 1

)−n

fn(ri)+ (i + 1) fn(ri+1)

)
(20)

for a uniform discretization, whereri = (i − 1)δr . It corresponds to the trapezoidal rule
applied between circlesri and ri+1. A similar equation holds forDi,i+1

n . By evaluating
terms of the formCi−1,i+1

n andDi−1,i+1
n , three consecutive points can be used in the radial

direction. It allows the use of the Simpson’s rule

Ci−1,i+1
n = (δr)2

6n

(
(i − 1)

(
i − 1

i + 1

)−n

fn(ri−1)+ 4i

(
i

i + 1

)−n

fn(ri)+ (i + 1) fn(ri+1)

)
,

(21)

which increases the accuracy of the method. In the algorithm, it corresponds to redefining
step 3 forn < 0 as

v−n (r1) = 0,
v−n (r2) = C1,2

n ,

v−n (rl) =
(

rl

rl−2

)n

v−n (rl−2)+ Cl−2,l
n , l = 3, . . . ,M,

and step 4 forn > 0 as

v+n (r M) = 0,

v+n (r M−1) = DM−1,M
n ,

v+n (rl) =
(

rl

rl+2

)n

v+n (rl+2)+ Dl ,l+2
n , l = M − 2, . . . ,1.

It results in an integration scheme applied between three successive circles, sayri−1, ri and
r i+1, with computational costs practically similar to the trapezoidal rule but with higher
accuracy. The above Simpson’s rule presents an error formula of fourth order in the domain
of length 2δr . For sufficiently smooth solutions, it allows cubic convergence inδr as the
numerical results show in Section 5.

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 159

4. THE PARALLEL ALGORITHM

Current resources in high-performance computing can be divided into two major models:
distributed and shared memory architectures. The design of a parallel and portable appli-
cation must attempt to deliver a high user-level performance in both architectures. In this
section, we present a parallel implementation suited for the distributed and shared models.
Although we conduct our presentation using the message-passing model, this model can
also be employed to describe interprocessor coordination: Higher communication overhead
corresponds to larger data dependency in the algorithm, which results in loss of data local-
ity. Even though shared memory machines have support for coherence, good performance
requires locality of reference because of the memory hierarchy. Synchronization and true
sharing must be minimized [1]. Efficient parallelized codes synchronize infrequently and
have little true sharing [22]. Therefore, a good parallelization requires no communication
whenever possible. Using the data decomposition, which allows lower communication cost,
also improves the data locality. The numerical results in Section 5 are obtained in a shared
memory architecture. The performance of the parallel algorithm on distributed memory sys-
tems was addressed in [2]. There a variant of the algorithm was used for fast and accurate
evaluation of singular integral transforms.

The recursive relations in Corollary 2.2 are very appropriate to a sequential algorithm.
However, they may represent a bottleneck in a parallel implementation. In this section we
use the results presented in Corollary 2.3 to devise an efficient parallel solver for the Poisson
equation. Theoretical estimates for the performance of the parallel version of the algorithm
are given below. We also show that this parallel solver has better performance characteristics
than an implementation based on Corollary 2.2. Finally, we compare our parallel algorithm
with other Poisson solvers.

4.1. Parallel Implementation

The fast algorithm for the Poisson equation requires multiple fast Fourier transforms
(FFT) to be performed. There are distinct strategies to solve multiple FFTs in parallel
systems [4, 11]. In [2] we have shown that an improved implementation of parallel calls
to sequential FFTs is the best choice for the fast algorithm. For the sake of a more clear
explanation, letP be the number of available processors andM be a multiple ofP. Data
partitioning is defined by distributing the circles of the domain intoP groups of consecutive
circles so that each processor contains the grid points forM/P circles. To obtain a more
compact notation we define

γ (j) = j M/P.

GivenP processorspj , j = 0, . . . , P − 1, data is distributed so that processorpj contains
the data associated with the grid pointsrl e2π ik/N, k ∈ [1, N], andl ∈ [γ (j)+ 1, γ (j + 1)].
Figure 2 exemplifies the data distribution for a system with three processors(P = 3).

One optimized version of a sequentialN-point FFT algorithm is available on each pro-
cessor: Multiple Fourier transforms of the same length are performed simultaneously. The
M sequences of values assumed on theN grid points belonging to a circle are distributed
between processors so that each one performs one unique call to obtainM/P FFT trans-
forms. Overall, the FFT transforms contribute the most to the computational cost of the
algorithm and the above data-locality allows the intensive floating point operations to be

160 BORGES AND DARIPA

FIG. 2. Data distribution for the parallel version of the fast algorithm.

performed locally and concurrently. Thus, each FFT can be evaluated in place, without
communication. Other strategies for solving the multiple FFTs required in the algorithm
are discussed in [2].

Although Corollary 2.2 is formulated for the generic caser j > ri , the results in Corol-
lary 2.3 only require consecutive radii (i.e., terms of the formCl−1,l

n andDl ,l+1
n , l ∈ [γ (j)+

1, γ (j + 1)]) in processorpj . Therefore, the numerical integration for Eqs. (11), (12),
and (16) can be performed locally if one guarantees that all necessary data is available
within the processor. Notice thatpj already evaluates the Fourier coefficientsfn(rl), l ∈
[γ (j)+ 1, γ (j + 1)]. In the case of a numerical integration based on the trapezoidal rule
(20), only the Fourier coefficients forl = j M/P andl = (j + 1)M/P + 1 must be added to
the set of known Fourier coefficients for processorpj . That is, if the initial data is overlapped
so that each processor evaluates coefficients for radiirl , l ∈ [γ (j), γ (j + 1)+ 1], there is
no need for communication. Similarly, if the modified Simpson’s rule (21) is employed,
processorpj only needs to evaluate coefficients for radiirl , l ∈ [γ (j)− 1, γ (j + 1)+ 2].
The number of circles whose data overlap between any two neighbor processors remains
fixed regardless of the total number of processors in use. Consequently, this strategy does
not compromise the scalability of the algorithm.

Algorithm 3.1 was described based on the inherently sequential iterations from Corol-
lary 2.2 which are more suitable for a sequential implementation. In the case of a par-
allel algorithm, an even distribution of computational load is obtained by splitting the
computational work when performing recurrences (16) and (17) as described in Corol-
lary 2.3. We evaluate iterative sumsql , l ∈ [γ (j), γ (j + 1)], concurrently on all processors
pj , j = 0, . . . , P − 1, as follows. For the casen ≤ 0 let

q−γ (j)(n) = 0,

q−l (n) =
(

rl+1

rl

)n(
q−l−1(n)+ Cl−1,l

n

)
, l = γ (j)+ 1, . . . , γ (j + 1),

(22)

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 161

where we have definedr M+1 = 1, and for the casen ≥ 0 let

q+γ (j+1)+1(n) = 0,

q+l (n) =
(

rl−1

rl

)n(
q+l+1(n)+ Dl ,l+1

n

)
, l = γ (j + 1), . . . , γ (j)+ 1.

(23)

Since coefficientsCi−1,i
n (n ≤ 0) andDi,i+1

n (n ≥ 0) are already stored in processorpj when
i ∈ [γ (j)+ 1, γ (j + 1)], partial sumst−j andt+j can be computed locally in processorpj .
In [2] we have shown that the above computations can be used to define the following
partial sumsfor each processorpj :

t−j (n) = q−γ (j+1)(n), n ≤ 0,

t+j (n) = q+γ (j)+1(n), n ≥ 0.

Moreover, it follows from (22) and (23) that forn ≤ 0

t−0 (n) = r n
γ (1)+1

γ (1)∑
i=2

(
1

ri

)n

Ci−1,i
n ,

t−j (n) = r n
γ (j+1)+1

γ (j+1)∑
i=γ (j)+1

(
1

ri

)n

Ci−1,i
n ,

and forn ≥ 0

t+P−1(n) = r n
γ (P−1)

M−1∑
i=γ (P−1)+1

(
1

ri

)n

Di,i+1
n ,

t+j (n) = r n
γ (j)

γ (j+1)∑
i=γ (j)+1

(
1

ri

)n

Di,i+1
n .

Although sums as described above may seem to produce either fast overflows or fast under-
flows for large absolute values ofn, partial sumst−j andt+j can be obtained by performing
very stable computations (22) and (23) as described in [2]. Therefore, the algorithm proceeds
by performing the partial sums in parallel as represented in Fig. 3.

To combine partial sumst j andt+j evaluated on distinct processors, we define theaccu-
mulated sumŝs−j andŝ+j , j = 0, . . . , P − 1. Forn ≤ 0 let

ŝ−0 (n) = t−0 (n),

ŝ−j (n) =
(

rγ (j+1)+1

rγ (j)+1

)n

ŝ−j−1(n)+ t−j ,
(24)

and forn ≥ 0

ŝ+P−1(n) = t+P−1(n),

ŝ+j (n) =
(

rγ (j)

rγ (j+1)

)n

ŝ+j+1(n)+ t+j .
(25)

162 BORGES AND DARIPA

FIG. 3. Sums are evenly distributed across processors.

Therefore we have a recursive method to accumulate partial sumst−j andt+j computed in
processorspj . Accumulated sumŝs−j andŝ+j can now be used to calculate coefficientsCn

and Dn locally on each processor. Given a fixed radiusrl , the associated data belongs to
the processorpj such thatl ∈ [γ (j)+ 1, γ (j + 1)]. Computations inpj only make use of
accumulated sums from neighbor processors. Forn ≤ 0, local updates in processorp0 are
performed as described in Corollary 2.2. Local updates in processorspj , j = 1, . . . , P − 1,
use the accumulated sumsŝ−j−1 from the previous processor when obtaining termsv−n as
defined in Eq. (13):

v−n (rγ (j)+1) = ŝ−j−1(n)+ Cγ (j),γ (j)+1
n

(26)

v−n (rl) =
(

rl

rl−1

)n

v−n (rl−1)+ Cl−1,l
n .

Forn ≥ 0, local updates in processorpP−1 are also performed as described in Corollary 2.2.
Local updates in processorspj , j = 0, . . . , P − 2 use the accumulated sum̂s+j+1 from the
next processor to obtain termsv+n from Eq. (14):

v+n (rγ (j+1)) = −ŝ+j+1(n)− Dγ (j+1),γ (j+1)+1
n

(27)

v−n (rl) =
(

rl

rl+1

)n

v+n ((rl+1)+ Dl ,l+1
n .

The advantage of using Eqs. (26) and (27) over original recurrences in Corollary 2.2 is that
accumulated sumŝs−j and ŝ+j are obtained using partial sumst−j andt+j . Since all partial
sums can be computed locally (without message passing) and hence simultaneously, the
sequential bottleneck of the original recurrences is removed. The only sequential component
in this process is the message-passing mechanism to accumulate the partial sums.

The next step in the algorithm consists of combining coefficientsv+n andv−n to obtain
the componentvn of the solution as described in step 5 of Algorithm 3.1. Notice that for a
fixed radiusrl , coefficientsv−n (rl) andv+−n(rl), n ∈ [−N/2, 0] are stored in the same pro-
cessor. Therefore, computations in (17) can be performed locally and concurrently, without
any communication. Specifically, processorpj evaluates termsvn(rl), n ∈ [−N/2, N/2],
wherel ∈ [γ (j)+ 1, γ (j + 1)]. A final set of communications is employed to broadcast

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 163

FIG. 4. Message distribution in the algorithm. Two streams of neighbor-to-neighbor messages cross com-
munication channels simultaneously. Homogeneous and principal solution are combined after processorpP−1

broadcasts the boundary values ofv.

the valuesvn(R), n ∈ [−N/2, N/2], from pP−1 to all other processors so that the Fourier
coefficientsun of the solution can be evaluated by using Eq. (7), as represented in step 6 of
Algorithm 3.1. This broadcast process is represented in Fig. 4 by the second set of upward
arrows starting from processorpP−1.

The notation in Eqs. (24) and (25) will be simplified to allow a clear exposition of the
interprocessor communication present in our parallel implementation:

• Relations−j = s−j−1+ t−j represents the updating process in recurrence (24), and
• Relations+j = s+j+1+ t+j represents updating (25).

The parallel algorithm adopts the successful approach investigated in [2, 3]. Processors
are divided into three groups: processorpP/2 is defined as themiddle processor(MP),
processorsp0, . . . , pP/2−1 are thefirst half processors (FP), andpP/2+1, . . . , pP−1 are in
thesecond half(SP) as represented in Fig. 4.

We define anegative stream(negative pipe): A message started from processorp0 con-
taining the valuess−0 = t−0 and passed to the neighborp1. Generically, processorpj re-
ceives the messages−j−1 from pj−1, updates the accumulated sums−j = s−j−1+ t−j , and
sends the new messages−j to processorpj+1. It corresponds to the downward arrows in
Fig. 4. In the same way, processors on the second half start computations for partial sums
s+. A positive streamstarts from processorpP−1: processorpj receivess+j+1 from pj+1

and sends the updated messages+j = s+j+1+ t+j to pj−1. The positive stream is formed
by the first set of upward arrows in Fig. 4. The resulting algorithm is composed of two
simultaneous streams of neighbor-to-neighbor communication, each one with messages
of length N/2. Note from Fig. 4 that negative and positive streams arrive at the middle
processor simultaneously because of the symmetry of the communication structure. In [2,
3] we describe an efficient interprocessor coordination scheme which leads local compu-
tational work being performed simultaneously with the message-passing mechanism. In
short, it consists of having messages arriving and leaving the middle processor as early as
possible so that idle times are minimized. Any processorpj in the first half (FP) obtains
the accumulated sums−j and immediately sends it to the next neighbor processorpj+1.

164 BORGES AND DARIPA

Computations for partial sumst+j only start after the negative stream has been sent. It cor-
responds to evaluatingt+j within region A of Fig. 4. Similarly, any processorpj in the
second half (SP) performs all the computations and message-passing work for the positive
stream prior to the computation of partial sumst−j in region B. This mechanism minimizes
delays because of interprocessor communication. In fact, in [2] we compare this approach
against other parallelization strategies by presenting complexity models for distinct parallel
implementations. The analysis shows the high degree of scalability of the algorithm.

The parallel algorithm presented here is certainly based on decomposing the domain into
full annular regions and hence, it has some analogy with domain decomposition method.
But this analogy is superficial because domain decomposition methods by its very name
have come to refer to methods which attempt to solve the same equations in every subdo-
main, whereas our algorithmdoes notattempt to solve the same equation in each annular
subdomain separately. Thus our algorithm is not a classical domain decomposition method.
Interpreting otherwise would be misleading. In fact, decomposing a circular domain into
full annular domains and then attempting to solve the equation in each subdomain in the
spirit of domain decomposition method would not be very appealing for a very large number
of domains because the surface-to-volume area becomes very large. Our algorithm is not
based on this principle in its entirety, even though there is some unavoidable similarity.

4.2. Complexity of the Parallel Algorithm

To analyze the overhead resulting from interprocessor coordination in the parallel algo-
rithm we adopt a standard communication model for distributed memory computers. For
the timing analysis we considerts as the message startup time andtw the transfer time for a
complex number. To normalize the model, we adopt constantsc1 as the computational cost
for floating point operations in the FFT algorithm, andc2 to represent operation counts for
the other stages of the algorithm. To obtain the model, we analyze the timing for each stage
of the algorithm:

• Each processor performs a set ofM/P Fourier transforms in(c1/2)(M/P)N log2 N
operations.
• Radial integralsCi,i+1

n and Di−1,i
n are obtained using(c2/4)(M/P)N operations for

the trapezoidal rule (and(c22/3)(M/P)N for Simpson’s rule).
• Each group ofM/P partial sumst+ andt− takes(c2/4)(M/P)(N/2) operations on

each processor.
• Positive and negative streams start from processorspP−1 and p0, respectively, and

each processor forwards (receive and send) a message of lengthN/2 toward the middle
node (see Fig. 4). The total time is 2((P − 1)/2)(ts + (N/2)tw).
• The second group ofM/P partial sumst+ andt− is performed in(c2/4)(M/P)(N/2)

operations.
• Positive and negative streams restart from the middle node and arrive inp0 andpP−1,

respectively, after 2((P − 1)/2)(ts + (N/2)tw) time units for communication.
• Termsv−, v+, andv are computed in(c2/4)(M/P)N operations.
• Boundary conditions are broadcast in(ts + Ntw) log2 P time units.
• Principal solutionv and boundary conditions are combined in(c2/4)(M/P)N opera-

tions.
• (c1/2)(M/P)N log2 N operations are used to apply inverse Fourier transforms.

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 165

Therefore, the parallel timingTP for the parallel fast algorithm is given by

TP = M N

P
(c1 log2 N + c2)+ (2(P − 1)+ log2 P)ts + N(P − 1+ log2 P) tw. (28)

To obtain an asymptotic estimate for the parallel timing, we drop the computational terms
of lower order in (28) which leads to

Tasymp
P = c1

M N

P
log2 N + 2Pts + N Ptw. (29)

The performance of the parallel algorithm can be observed by comparing Eq. (29) against
the timing estimate for the sequential algorithm. In the case of a sequential implementation,
we have the following stages:

• M Fourier transforms are performed in(c1/2)M N log2 N operations.
• Radial integralsCi,i+1

n andDi−1,i
n are obtained after(c2/4)M N operations.

• Termsv−, v+ andv are computed in(c2/4)M N operations.
• Principal solutionv and boundary conditions are combined in(c2/4)M N operations.
• M inverse Fourier transforms take(c1/2)M N log2 N computations.

Summarizing, the sequential timingTs is given by

Ts = c1M N log2 N + 3

4
c2M N, (30)

with asymptotic model

Tasymp
s = c1M N log2 N. (31)

From Eqs. (28) and (30) one can observe that most of the parallel overhead is attributed
to the communication term in Eq. (28). An immediate consequence is that overheads are
mainly the result of increasing the number of angular grid pointsN. No communication
overhead is associated with the number of radial grid pointsM . We use the asymptotic
estimates to obtain the speedupS for the parallel algorithm

S= Tasymp
s

Tasymp
P

= c1M N log2 N

c1
M N
P log2 N + 2Pts + N Ptw

(32)

= P
c1M N log2 N

c1M N log2 N + P2(2ts + Ntw)
(33)

and the corresponding efficiency

E = S

P
= 1

1+ P2(2ts + Ntw)/c1M N log2 N
, (34)

which shows that the efficiency decays quadratically in the number of processorsP.
Different problem sizes correspond to distinct levels of granularity, which implies that

there is an optimal number of processors associated with each granularity. Since message
lengths depend onN and computational work depends also onM , the theoretical model can

166 BORGES AND DARIPA

be used to estimate the best performance for a given problem. The number of processors
for which the asymptotic parallel running timeTasympt

P achieves its minimum is determined

by ∂T
asympt
P
∂P = 0. In the case of (29), we have

Pasymp
opt =

√
c1M N log2 N

2ts + Ntw
, (35)

which can be understood as an approximation for the optimal value ofP which maximizes
the efficiency (34) for given values ofM andN.

4.3. Comparison with a Matrix Transposition-based Algorithm

Although the recursive relations in Corollary 2.2 are very appropriate to a sequential
algorithm, these may introduce excessive communications on parallel implementation. The
major difference is that if one attempts to evaluate recurrences (13) and (14), data must
be reverted in all processors. In fact, steps3 and4 in Algorithm 3.1 show that each co-
efficient v−n (rl) depends on all termsCi−1,i

n with i ∈ [2, l], and each coefficientv+n (rl)

depends on all termsDi,i+1
n with i ∈ [l ,M − 1]. Consequently a message-passing mech-

anism must be used to exchange coefficients of the formCi−1,i
n and Di,i+1

n across pro-
cessors. Figure 5 shows data being reverted in all processors for the case whereP = 4.
Initially each processor contains data for evaluatingM/P Fourier transforms. It corre-
sponds to each row on Figure 5(a). To calculate recurrences locally, each processor must
exchange distinct data of sizeN M/P2 with all P − 1 remaining processors. At the end of
the communication cycle, processorpj contains all the termsCi−1,i

n and Di,i+1
n with n ∈

[j N/P − N/2, (j + 1)N/P − N/2]. Figure 5(b) describes the communication pattern.
Rows are divided intoP blocks of sizeN M/P2 so that processorpj exchanges distinct data-
blocks with different processors. The data-transfer pattern involves an all-to-all personalized
communication as in a parallel matrix transposition procedure. For a mesh architecture the

FIG. 5. Coordination pattern based on all-to-all personalized communication: (a)M/P Fourier transforms
are evaluated locally; (b) each two processors exchange blocks of sizeM N/P2.

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 167

estimated communication timing [15] is given by

Ttranspose
comm = 2(

√
P − 1)

(
2ts + M N

P
tw

)
. (36)

Therefore, interprocessor communication introduces a delay of order 4M N/
√

P. Com-
paratively, the stream-based algorithm generates a delay of orderP N. In a large-scale
application, clearlyM À P because of practical limitations on the number of available
processors which makeP N¿ 4M N/

√
P. It implies that the stream-based algorithm must

scale up better than the second approach because of a smaller communication overhead.

4.4. Comparison with Other Methods

Fourier analysis cyclic reduction (FACR) solvers encompass a class of methods for the
solution of Poisson’s equation on regular grids [12, 24, 25]. In two-dimensional problems,
one-dimensional FFTs are applied to decouple the equations into independent triangular
systems. Cyclic reduction and Gaussian elimination (or another set of one-dimensional
FFTs and inverse FFTs) are used to solve the linear systems. In the FACR(`) algorithm,
` preliminary steps of block-cyclic reduction are performed to decrease the number or the
length of the Fourier coefficients. The reduced system is solved by the FFT method and by`

steps of block back-substitution. In particular; for` = 0 we have the basic FFT method, and
` = 1 corresponds to a variant of the original FACR algorithm [12]. The basic idea of the
FACR(̀) method relies on switching to Fourier analysis in the middle of cyclic reduction
to reduce the operation count when compared with either pure Fourier analysis or cyclic
reduction. Formally, the optimal choicè∼ log2(log2 N) makes the asymptotic operation
count for FACR(̀) beO(N2 log2 log2 N) in anN × N grid, which is an improvement over
the estimateO(N2 log2 N) associated with the basic FFT method (FACR(0)) and cyclic
reduction.

A parallel implementation of the FACR(`) solver must take into account the effect of
the choice of̀ on the degree of parallelism of the algorithm [25]. At` = 0, the method
performs a set of independent sine transforms and solves a set of independent tridiago-
nal systems, which makes the choice` = 0 ideally suited for parallel computations. The
parallel implementation of the matrix decomposition Poisson solver (MD-Poisson solver)
presented in [21] follows this concept: A block-pentadiagonal system is solved on a ring ofP
processors using Gaussian elimination without pivoting, so that only neighbor-to-neighbor
communication is required. The complexity of the method on a ring ofP processors is
O(N2/P log2 N) if one disregards communication overhead [21]. For` > 0, the degree of
parallelism of the FACR(̀) algorithm decreases at each additional stage of cyclic reduc-
tion. For example, in [14] a parallel variant of the FACR(`) algorithm exploits the numerical
properties of the tridiagonal systems generated in the method. Factorization is applied based
on the convergence properties of these systems. However, this approach can lead to severe
load-imbalance on a distributed memory architecture because convergence rates may be
different for each system, resulting in idle processors. Cyclic allocation must be used to
diminish load-imbalance. Moreover, it is also known from [14] that any two-dimensional
data partitioning would produce communication overhead because of the data transposition.

The previous observations show that our parallel Poisson solver is competitive with other
current techniques. Typically, the best parallel solvers are defined using an one-dimensional

168 BORGES AND DARIPA

processor array configuration because of the unbalanced communication requirements for
the operations performed along the different coordinates of the grid.

5. NUMERICAL RESULTS

In this section, numerical results for the algorithms presented in the previous sections are
given. To achieve portability, we used MPI [19] for the communication library. Currently,
major computer vendors provide MPI implementations regardless of the memory model
adopted on each platform. It allows easy implementation and portability.

Of particular importance to the following results is the accuracy of the methods for a
given number of Fourier coefficientsN and a number of circlesM used for the domain
discretization. For sufficiently smooth data only a few number of Fourier coefficients are
needed to guarantee an accurate representation of the solution in a finite Fourier space.
However, if the actual function presents rapid variations, then a high-frequency component
may appear to be the same as a lower frequency component when using a limited number
of samples. In other words, aliasing may occur. Similarly, the numerical integration method
adopted to evaluate one-dimensional radial integrals presents an error term depending on
the number of circles defined during the discretization of the domain. For instance, the
trapezoidal rule presents an error of orderO(δr 2), whereδr = R/M for a disk of radiusR.
If a three-point-based integration method is adopted, such as the variant of the Simpson’s
rule presented in Section 3, one would expect convergence of orderO(δr 3). It suggests
that there is a tradeoff when making a choice for the discretization parametersM andN.
Numerical results in Section 5.1 demonstrate the accuracy of our solver.

Timing performance is also a critical issue in scientific computing. To increase memory
bandwidth and decrease latency of memory access, more recent computer architectures
are based on memory hierarchy structures. Under the principle of locality of reference,
the data most recently accessed is likely to be referenced again in the near future. Modern
computers present a cache memory at the top of the hierarchy: A smaller and faster memory
is connected to the processor to hold the most recently accessed data. The function of the
cache is to minimize the number of accesses to other slower levels on the memory hierarchy.
Understanding and exploiting the memory hierarchy is a fundamental issue when obtaining
high performance for numerical applications. A good utilization of data cache depends not
only on the data partitioning but also on how the computational work is performed. The
fast algorithm was designed to take advantage of data cache. In Section 5.2, we present
sequential and parallel timings for the fast algorithm.

5.1. Accuracy of the Poisson Solver on Disks

Seven problems were tested to determine the accuracy and efficiency of the Poisson solver
for Dirichlet and Neumann problems defined on the unit diskB = B(0; 1). Problems 3 and
4 were also solved for disksB(0; R) with R 6= 1. Numerical experiments were carried out
using double precision representation. The first four problems present solutions smooth
enough to make the number of circlesM as the dominant parameter for the accuracy of the
method. The last three problems were taken to exemplify the importance of the number of
Fourier coefficientsN in use. For each problem, we present only the solutionu(x, y) in B
so that the right hand side termf and the boundary conditions can easily be obtained from
u. The only exception occurs in Problem 7.

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 169

TABLE II

Problem 1—Relative Errors in Norms ‖ · ‖∞ and ‖ · ‖2 Using a Fixed Number

of Fourier CoefficientsN = 64

Relative errors for problem 1

Trapezoidal rule Simpson’s rule

Dirichlet Neumann Dirichlet Neumann

M ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2

64 2.6e-5 4.6e-5 7.0e-4 5.7e-4 4.4e-6 6.3e-6 4.4e-6 6.3e-6
128 6.4e-6 1.1e-5 1.7e-4 1.4e-4 5.5e-7 7.9e-7 5.5e-7 7.9e-7
256 1.6e-6 2.8e-6 4.3e-5 3.5e-5 6.9e-8 9.9e-8 6.9e-8 9.9e-8
512 3.9e-7 6.9e-7 1.1e-5 8.7e-6 8.6e-9 1.2e-8 8.6e-9 1.2e-8

1024 9.8e-8 1.7e-7 2.7e-6 2.2e-6 1.1e-9 1.5e-9 1.1e-9 1.5e-9
2048 2.5e-8 4.3e-8 6.7e-7 5.4e-7 1.3e-10 1.9e-10 1.3e-10 1.9e-10

PROBLEM 1. The solution of the first problem [13] is given by

u(x, y) = 3ex+y(x − x2)(y− y2)+ 5.

Table I presents relative errors in the norm‖ · ‖∞ when solving the Dirichlet problem
for distinct values ofN and M . Specifically, each row corresponds to a fixed value ofN
taken as 64, 128, 256, 512, 1024, or 2048. Similarly, each column corresponds to a fixed
value ofM ranging from 64 to 2048. Entries marked with a dash represent no available data
because of memory limitations. The trapezoidal rule was used for numerical integration in
the radial direction.

Clearly, the dominant parameter is the number of circlesM . Functionsf andu are smooth
on each circle of the discretization, and consequently 64 Fourier coefficients are enough
to represent these functions. The only variations in Table I occurs when we increase the
number of circles, which increases the accuracy of the numerical integration in the radial
directions. The same behavior is observed for the relative errors in the norm‖ · ‖2 and
for the associated Neumann problem. Table II summarizes relative errors in norm‖ · ‖∞
and in norm‖ · ‖2 when the Dirichlet and Neumann problems are solved using a constant
number of Fourier coefficientsN = 64. Since the Fourier space representation presents
high accuracy foru and f , convergence rates are determined by the numerical integration
adopted in the radial direction. In fact, one can observe in Table II that the ratio between
two consecutive errors in the same columns for the trapezoidal rule is constant and equals
4, that is, the two-points-based integration results in quadratic convergence. For the case of
three-points-based integration derived from Simpson’s rule, the ratio is constant and equals
8, which implies cubic convergence.

PROBLEM 2. The solution of this problem has a discontinuity in the “2.5” derivative
[13]:

u(x, y) = (x + 1)5/2(y+ 1)5/2− (x + 1)(y+ 1)5/2

− (x + 1)5/2(y+ 1)+ (x + 1)(y+ 1).

170 BORGES AND DARIPA

TABLE III

Problem 2—Relative Errors in Norms ‖ · ‖∞ and ‖ · ‖2 Using a Fixed Number

of Fourier CoefficientsN = 64

Relative errors for problem 2

Trapezoidal rule Simpson’s rule

Dirichlet Neumann Dirichlet Neumann

M ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2

64 3.4e-5 1.7e-4 2.2e-4 5.4e-4 3.2e-6 1.3e-5 3.5e-6 1.2e-5
128 8.2e-6 4.2e-5 5.4e-5 1.3e-4 4.2e-7 1.5e-6 4.5e-7 1.5e-6
256 2.0e-6 1.0e-5 1.3e-5 3.3e-5 5.6e-8 1.9e-7 5.9e-8 1.9e-7
512 4.9e-7 2.6e-6 3.3e-6 8.1e-6 7.7e-9 2.3e-8 8.3e-9 2.3e-8

1024 1.2e-7 6.4e-7 8.2e-7 2.0e-6 1.4e-9 2.9e-9 1.7e-9 2.9e-9
2048 3.1e-8 1.6e-7 2.0e-7 5.1e-7 5.5e-10 4.2e-10 9.3e-10 4.6e-10

As in the previous problem, the dominant parameter is the number of circlesM . Table III
presents relative errors for the Dirichlet and Neumann problems in a discretization with a
constant number of Fourier coefficientsN = 64. Note that quadratic and cubic convergence,
resulting from distinct integration schemes, still holds.

PROBLEM 3. This problem was originally designed for the ellipse centered at (0, 0) with
major and minor axes of 2 and 1 [20]. One interesting property is the presence of symmetry
for all four quadrants:

u(x, y) = ex + ey

1+ xy
.

Relative errors for the Dirichlet and Neumann problems can be found in Table IV. The
number of Fourier coefficients was kept constantN = 64. Again, the ratio between two
consecutive errors in norm‖ · ‖2 is constant and equals either 4 or 8. The same problem
was also solved for the diskB(0; 0.5), and the relative errors forN = 64 are presented in

TABLE IV

Problem 3—Relative Errors UsingR = 1 and a Fixed Number

of Fourier CoefficientsN = 64

Relative errors for problem 3 (R= 1)

Trapezoidal rule Simpson’s rule

Dirichlet Neumann Dirichlet Neumann

M ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2

64 1.2e-4 1.3e-4 6.0e-4 3.0e-4 2.4e-5 1.9e-5 2.5e-5 2.0e-5
128 2.9e-5 3.2e-5 1.5e-4 7.6e-5 3.2e-6 2.5e-6 3.2e-6 2.5e-6
256 7.6e-6 8.0e-6 3.8e-5 1.9e-5 6.2e-7 3.1e-7 6.2e-7 3.2e-7
512 1.9e-6 2.0e-6 9.5e-6 4.7e-6 1.3e-7 4.0e-8 1.3e-7 4.0e-8

1024 5.1e-7 5.0e-7 2.3e-7 1.2e-6 3.0e-8 5.2e-9 3.0e-8 5.2e-9
2048 1.3e-7 1.2e-7 5.9e-7 2.9e-7 7.2e-9 7.2e-10 7.2e-9 7.2e-10

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 171

TABLE V

Problem 3—Relative Errors UsingR = 0.5 and a Fixed Number

of Fourier CoefficientsN = 64

Relative errors for problem 3 (R= 0.5)

Trapezoidal rule Simpson’s rule

Dirichlet Neumann Dirichlet Neumann

M ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2

64 3.1e-5 1.0e-5 3.1e-5 1.0e-5 3.7e-6 6.0e-7 3.7e-6 6.0e-7
128 8.2e-6 2.4e-6 8.2e-6 2.5e-6 9.0e-7 1.0e-7 9.0e-7 1.0e-7
256 2.2e-6 5.9e-7 2.2e-6 6.1e-7 2.2e-7 1.8e-8 2.2e-7 1.8e-8
512 5.9e-7 1.5e-7 5.9e-7 1.5e-7 5.5e-8 3.7e-9 5.5e-8 3.2e-9

1024 1.6e-7 3.6e-8 1.6e-7 3.7e-8 1.4e-8 5.6e-10 1.4e-8 5.6e-10
2048 4.2e-8 9.0e-9 4.2e-8 9.3e-9 3.4e-9 9.9e-11 3.5e-9 9.8e-11

Table V. As it was expected, the accuracy is higher forR= 0.5 because of larger density
of points in the domain discretization.

PROBLEM 4. In contrast with Problem 3, here we adopt a solution without symmetries:

u(x, y) = x3ex(y+ 1) cos(x + y3).

Table VI presents relative errors for the Dirichlet and Neumann problems in the disk
B(0; 1). The same problem was solved in the larger diskB(0; 2), and the numerical results
are shown in Table VII. Clearly, the solution in the larger domain (even using twice the
number of Fourier coefficients) presents a lower accuracy when compared with the same
number of circles forB(0; 1).

TABLE VI

Problem 4—Relative Errors UsingR = 1 and a Fixed Number

of Fourier CoefficientsN = 64

Relative errors for problem 4 (R= 1)

Trapezoidal rule Simpson’s rule

Dirichlet Neumann Dirichlet Neumann

M ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2

64 1.3e-4 2.5e-4 8.6e-4 1.3e-3 2.2e-5 5.5e-5 2.3e-5 5.5e-5
128 3.2e-5 6.1e-5 2.1e-4 3.3e-4 2.8e-6 6.7e-6 2.7e-6 6.8e-6
256 7.8e-6 1.5e-5 5.3e-5 8.2e-5 3.4e-7 8.4e-7 3.4e-7 8.4e-7
512 1.9e-6 3.7e-6 1.3e-5 2.0e-5 4.2e-8 1.0e-7 4.3e-8 1.0e-7

1024 4.8e-7 9.2e-7 3.2e-6 5.1e-6 5.3e-9 1.3e-8 5.3e-9 1.3e-8
2048 1.2e-7 2.3e-7 8.2e-7 1.2e-6 6.6e-10 1.6e-9 6.6e-10 1.6e-9

172 BORGES AND DARIPA

TABLE VII

Problem 4—Relative Errors UsingR = 2 and a Fixed Number

of Fourier CoefficientsN = 128

Relative errors for problem 4 (R= 2)

Trapezoidal rule Simpson’s rule

Dirichlet Neumann Dirichlet Neumann

M ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2

64 6.1e-4 1.6e-3 3.6e-3 6.7e-3 2.9e-4 4.7e-4 3.1e-4 4.7e-4
128 1.4e-4 3.7e-4 9.0e-4 1.6e-3 3.6e-5 4.9e-5 3.7e-5 4.9e-5
256 3.4e-5 9.2e-5 2.3e-4 4.0e-4 4.4e-6 5.5e-6 4.4e-6 5.6e-6
512 8.3e-6 2.3e-5 5.8e-5 9.8e-5 5.4e-7 6.6e-7 5.5e-7 6.6e-7

1024 2.1e-6 5.7e-6 1.5e-5 2.4e-5 6.7e-8 8.0e-8 6.8e-8 8.1e-8
2048 7.3e-7 1.8e-6 4.3e-6 6.2e-6 8.4e-9 9.9e-9 8.4e-9 9.9e-9

PROBLEM 5. To analyze the effect of growing derivatives in our method we consider
the solution

u(x, y) = sin(απ(x + y)).

This solution and the respective functionf (x, y) = −2α2π2 sin(απ(x + y))present rapidly
growing derivatives for large values ofα [23]. In Tables VIII and IX we present relative
errors in the norm‖ · ‖∞ when solving the Dirichlet problem forα = 5 andα = 20, re-
spectively. Here we have adopted the trapezoidal rule for evaluating the radial integrals.
For the caseα = 5 the dominant parameter is the number of circlesM regardless of the
number of Fourier coefficients in use. In fact, quadratic convergence depending onM can
be observed in Table VIII. For the larger valueα = 20 functions,u and f oscillate rapidly,
and the derivatives increase in absolute value. The Fourier spaces of dimensionN = 64
and N = 128 do not allow a good representation ofu and f as one can observe on the
first two rows of relative residual in Table IX. However, forN = 256 or larger, the Fourier
space provides a good representation of these functions, and the quadratic convergence on
M resumes (rows 3, 4, 5, and 6 in Table IX). This problem shows the importance of using
Fourier representation when dealing with rapidly oscillating functions.

TABLE VIII

Problem 5—Relative Errors in Norm ‖ · ‖∞ Taking α = 5

Relative errors for Problem 5 (Dirichlet andα = 5)

N\M 64 128 256 512 1024 2048

64 1.3e-2 3.4e-3 8.4e-4 2.1e-4 5.2e-5 1.4e-5
128 1.3e-2 3.4e-3 8.4e-4 2.1e-4 5.2e-5 1.3e-5
256 1.3e-2 3.4e-3 8.4e-4 2.1e-4 5.2e-5 —
512 1.3e-2 3.4e-3 8.4e-4 2.1e-4 — —

1024 1.3e-2 3.4e-3 8.4e-4 — — —
2048 1.3e-2 3.4e-3 — — — — —

Note.The number of circlesM is the dominant parameter.

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 173

TABLE IX

Problem 5—Relative Errors in Norm ‖ · ‖∞ Taking

α = 20

Relative errors for Problem 5 (Dirichlet andα = 20)

N\M 64 128 256 512 1024 2048

64 2.5e+1 2.5e+1 2.5e+1 2.5e+1 2.5e+1 2.5e+1
128 2.2e+0 2.1e+0 2.1e+0 2.0e+0 2.0e+0 2.0e+0
256 2.7e-1 6.5e-2 1.6e-2 4.0e-3 1.0e-3 —
512 2.7e-1 6.5e-2 1.6e-2 4.0e-3 — —

1024 2.7e-1 6.5e-2 1.6e-2 — — —
2048 2.7e-1 6.5e-2 — — — —

Note.The number of Fourier coefficients is the dominant parameter
for small values of N.

PROBLEM 6. To better understand the importance of the use of Fourier representation
for functions with rapid variations, let

u(x, y) = 10φ(x)φ (y),

whereφ(x) = e−100(x−1/2)2(x2− x). The solution has a sharp peak at(0.5, 0.5), and it
is very small for(x − 0.5)2+ (y− 0.5)2 > 0.01 [20]. Figure 6 shows the analytical so-
lution u. For a small number of Fourier coefficientsN = 64 aliasing occurs and errors
of order 10−4 dominate the circle of radiusr = 0.5 even if large values ofM are used.
In fact, Fig. 7 presents the function error forN = 64 andM = 256 when solving the

FIG. 6. Problem 6—Analytical solution.

174 BORGES AND DARIPA

FIG. 7. Problem 6—Errors for 64 Fourier coefficients and 256 circles.

Dirichlet problem using the trapezoidal rule. If the number of coefficients is increased to
N = 128, the Fourier space provides a better approximation, and the aliasing effect de-
creases drastically as one can observe in Fig. 8. Although the maximum error persists
with order 10−4 in a neighborhood of (0.5, 0.5), globally it decreases for the larger value
N = 128: Figure 9 contains the errors when only observing the grid points inB(0; 1) on the
segment(−√2/2,−√2/2) to (

√
2/2,
√

2/2). Specifically, we say that the radial position
is equal to−1 for the point(−√2/2,−√2/2), and it is 1 for the point(

√
2/2,
√

2/2). The
linear plot of the errors presented in Figure 9(a) shows that forN = 128 the local error at
(0.5, 0.5) persists in the same order but the aliasing effect is negligible at(−0.5,−0.5).
Moreover, the log-scale shown in Fig. 9(b) shows the global convergence of the algorithm.
Similar results hold for the Neumann problem as shown in Fig. 10.

PROBLEM 7. The last problem presents discontinuities on the boundary conditions. The
formulation is best described in polar coordinates

1u = f, in B = B(0; 1),
u = g, on ∂B,

where

f (reiα) = −4r 3(cos2 α · sinα + sin3 α) sin(1− r 2)− 8r sinα cos(1− r 2),

and

g(eiα) =


0, α ∈ (0, π),
1, α ∈ (π, 2π),
1
2 α ∈ {π, 2π},

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 175

FIG. 8. Problem 6—Errors for 128 Fourier coefficients and 256 circles.

In this case we have the solutionu given by

u(reiα) = 1

2
+ sin(r (1− r 2) sin(α))− 2

π

∞∑
k=1

r 2k−1 sin(2k− 1)α

2k− 1
, (37)

and the actual input data is expressed in Cartesian coordinates as

f (x, y) = −4(x2y+ y3) sin(1− x2− y2)− 8y cos(1− x2− y2).

Figure 11 presents the actual solution of Problem 7 obtained by expanding the summation
in (37) up to the machine precision on each point of theM × N discretization of the domain
B(0; 1). The rapid variations in the points (1, 0) and(−1, 0) produce considerable errors
when the Dirichlet problem is solved using 64 Fourier coefficients and 256 circles, as shown
in Fig. 12. Nevertheless, the use of a larger number of Fourier coefficients for representing
the solution preserves the locality of the errors caused by rapid variations of the solution:
Fig. 13 contains the errors when increasing the number of coefficients to 128; and Fig. 14
presents errors for 256 Fourier coefficients. Although the magnitude of the maximum error
remains constant, the solution obtained by the algorithm converges globally. As an example,
Fig. 15 contains the errors when only observing the grid points inB(0; 1) laying on the
segment from(0,−1) to (0, 1). In this case we say that the radial position is equal to
−1 for the point(0,−1), and it is 1 for the point (0, 1). The linear plot of the errors
presented in Fig. 15(a) shows convergence as the number of Fourier coefficients increases
from 64 to 128, and to 256. The log-scaling in Fig. 15(b) shows the rate of convergence.
Global convergence can also be assessed by evaluating the global error without considering
the points close to(−1, 0) and (1, 0). Table X presents the relative errors in the domain

176 BORGES AND DARIPA

FIG. 9. Problem 6—Errors for the Dirichlet problem when considering the one-dimensional section of the
disk B(0; 1) from (−√2/2,−√2/2) to (

√
2/2,
√

2/2): (a) The aliasing effect disappears forN = 128; (b) global
convergence also occurs as it can be noticed at the center of the graph.

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 177

FIG. 10. Problem 6—Errors for the Neumann problem when considering the one-dimensional section of the
disk B(0; 1) from (−√2/2,−√2/2) to (

√
2/2,
√

2/2): (a) the aliasing effect disappears forN = 128; (b) global
convergence also occurs as it can be noticed at the center of the graph.

178 BORGES AND DARIPA

TABLE X

Problem 7 - Relative Errors in Norm ‖ · ‖∞

Relative errors for Problem 7

N\M 64 128 256 512 1024 2048

64 3.1e-3 3.0e-3 3.1e-3 3.1e-3 3.1e-3 3.1e-3
128 5.6e-4 5.5e-4 5.6e-4 5.5e-4 5.6e-4 5.6e-4
256 1.4e-4 1.4e-4 1.4e-4 1.4e-4 1.4e-4 —
512 3.7e-5 3.5e-5 3.5e-5 3.5e-5 — —

1024 1.7e-5 9.3e-6 8.6e-6 — — —
2048 1.6e-5 4.3e-6 — — — —

Note. Errors were taken only over the points inB(0; 1)− (B0.01(1; 0) ∪
B0.01(−1; 0)).

B(0; 1)− (B0.01(1, 0) ∪ B0.01(−1, 0)). As the number of Fourier coefficients increases,
convergence is observed.

5.2. Timing Performance of the Fast Algorithm

The computational results in this section were obtained on the HP V-Class [10] which
is supported on the HP PA-8200 processor. The PA-8200 is based on the RISC Precision
Architecture (PA-2.0) and runs at speeds of 200 or 240 MHz with 2 MBytes of data cache
and 2 MBytes of instruction cache.

FIG. 11. Problem 7—Analytical solution.

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 179

FIG. 12. Problem 7—Errors for 64 Fourier coefficients and 256 circles.

FIG. 13. Problem 7—Errors for 128 Fourier coefficients and 256 circles.

180 BORGES AND DARIPA

FIG. 14. Problem 7—Errors for 256 Fourier coefficients and 256 circles.

To observe the computational complexity of the fast algorithm, we ran the sequential
code in a single node of the V-Class using seven distinct problem sizes. Table XI presents
sequential timings when solving the Dirichlet and Neumann problems. Each row corre-
sponds toM = N taken as 32, 64, 128, 256, 512, 1024, or 2048. Results are shown for
the two numerical integration schemes discussed in Section 3: the trapezoidal rule and the

TABLE XI

Timings and Estimates for the Constantc1 for the Sequential Algorithm When Using

Either Trapezoidal or Simpson’s Rule

Sequential timings and estimated constantc1

Trapezoidal rule Simpson’s rule

Dirichlet Neumann Dirichlet Neumann

M=N Time (sec.) c1 Time (sec.) c1 Time (sec.) c1 Time (sec.) c1

32 6.6e-4 1.2e-7 6.4e-4 1.2e-7 8.0e-4 1.5e-7 7.9e-4 1.5e-7
64 3.5e-3 1.4e-7 3.2e-3 1.3e-7 3.8e-3 1.5e-7 3.3e-3 1.3e-7

128 1.5e-2 1.3e-7 1.3e-2 1.1e-7 1.5e-2 1.3e-7 1.4e-2 1.2e-7
256 7.1e-2 1.3e-7 7.0e-2 1.3e-7 7.4e-2 1.4e-7 7.1e-2 1.3e-7
512 2.0e+0 8.7e-7 3.2e+0 1.3e-6 1.9e+0 8.3e-7 1.9e+0 8.1e-7

1024 1.5e+1 1.5e-6 1.5e+1 1.5e-6 1.5e+1 1.4e-6 1.5e+1 1.4e-6
2048 7.8e+1 1.6e-6 7.6e+1 1.6e-6 7.8e+1 1.7e-6 7.6e+1 1.6e-6

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 181

FIG. 15. Problem 7—Errors when considering the one-dimensional section of the diskB(0; 1) from (0,−1)
to (0, 1): (a) convergence is observed as the number of Fourier coefficients increases; (b) the same errors observed
in log-scaling.

182 BORGES AND DARIPA

modified Simpson’s rule. Additionally, for each running time we estimate the constantc1 in
(31) which determines normalized timing per grid point spent on the sequential algorithm.
Specifically,

c1 = t

N2 log2 N
,

wheret represents the running times shown on the table. Overall, it shows an extremely
low constant associated with the complexity of the algorithm. In fact, one can observe that
c1 isO(10−7) as observed forN = 32, 64, 128, and 256. It results from the data locality
in Algorithm 3.1: It presents a low ratio of memory references over float point operations.
For the larger casesN = 512, 1024 and 2048, one can observe slightly increasing values
of c1 because of the fact that all data cannot be stored in cache. It is due to the fact that
some steps of Algorithm 3.1 basically involve two data structures formed byMN complex
numbers in double precision. For the case in whichN = M = 256 we have 2562× 16× 2
bytes, which can be maintained into the 2 MBytes of data cache. Conversely, for the cases
N = 512, 1024, and 2048, multiple accesses between data cache and shared memory are
expected.

Estimate (31) can also be understood as the computational complexity of the algorithm
based on floating point operations counting. In our current implementation, computa-
tions taken into account in (31) correspond to two sets of 4M N/2 log2 N + 3 log2 N +
4(2N − 1) multiplications and 6M N/2 log2 N + 4(2N − 1) additions. It leads to a total
of 20M N/2 log2 N + 16(2N − 1)+ 6 log2 N operations. Asymptotically, the sequential
algorithm presents computational complexity

10M N log2 N

floating point operations, which essentially correspond to the the metric of two radix-2
Cooley–Turkey FFT implementations [17] applied overM data sets of sizeN.

To observe the scalability of the algorithm, we ran the parallel solver for the Dirichlet
problem using the trapezoidal rule for numerical integration. Timings were taken for two
sets of data. For a fixed numberN = 2048 of angular grid points, three distinct numbers
of radial grid points were employed:M = 512, 1024, and 2048. Fig. 16(a) presents plots
for the actual running times when allocating 2, 4, 6, 8, 10, 12, 14, and 16 processors. For
the second set, Fig. 16(b) contains the timings for three distinct numbers of angular grid
points(N = 512, 1024, and 2048) on a discretization with a fixed number of radial grid
pointsM = 2048. An immediate observation is that larger levels of granularity correspond
to more computational work performed locally on each processor and, therefore, better
performance for the algorithm. In fact, the problem of sizeM = N = 2048 scales better
than the smaller cases. Nevertheless, savings in computational timings for an increasing
number of processors can be observed even for the smaller problems because of the low
overhead for interprocessor communication through the shared memory.

To infer the degree of parallelism of our implementation of the fast Poisson solver,
we present speedups in a coarse-grained data distribution. Note that the algorithm takes
advantage of data cache for small or even medium problem sizes. It means that com-
paring the running time for a single processor against the time obtained in a multipro-
cessor architecture may indicate super-linear speedups as a result of smaller amounts of
data assigned to each node of the multiprocessor system. Data may reside on cache for a

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 183

FIG. 16. Scalability of the parallel implementation of the fast solver for the Dirichlet problem: (a) timings
for a fixed number of angular pointsN = 2048 and distinct number of radial pointsM = 512, 1024, and 2048;
(b) timings for a fixed number of radial pointsM = 2048 and distinct number of angular pointsN = 512, 1024,
and 2048. All plots in (a) and (b) are log–log plots.

184 BORGES AND DARIPA

TABLE XII

Speedups for the Parallel Algorithm for a Problem

of SizeM = N = 2048

Speedups forM = N = 2048

Number of processors Timing (sec.) Speedup Efficiency

1 78 1.0 1.00
2 43 1.8 0.91
4 22 3.5 0.89
6 15 5.2 0.87
8 11 7.1 0.88

10 9.7 8.0 0.81
12 8.3 9.4 0.78
14 7.8 10 0.71
16 7.0 11 0.69

sufficiently large number of processors. To overcome this problem, we compare running
times for problem sizeM = N = 2048 to guarantee that multiple accesses occur between
data cache and shared memory even when 16 processors are in use. Table XII presents the
timings for the parallel algorithm using up to 16 processors. The timing for a single processor
was extracted from Table XI. SpeedupS is defined as the ratio of the time required to solve
the problem on a single processor, using the purely sequential Algorithm 3.1, to the time
taken to solve the same problem usingP processors. EfficiencyE indicates the degree of
speedup achieved by the system and is defined asE = S/P. The lowest admissible value for
efficiencyE = 1/P corresponds to leavingP − 1 processors idle and having the algorithm
executed sequentially on a single processor. The maximum admissible value for efficiency
E = 1 indicates all processors devoting the entire execution time to perform computations
of the original Algorithm 3.1 without any overlapping. Speedup and efficiency are shown in
Table XXII. These results demonstrate that the additional computational work introduced
by using partial sums, as described in Section 4.1, does not increase the complexity of the
algorithm. By comparing the asymptotic estimate for the parallel running time (29) against
the full estimate (28), one can observe that this extra computational work does not increase
the asymptotic estimate.

We see that efficiency and speedup of the parallel algorithm gradually decrease with an
increasing number of processors, which is quite expected. However, at the rate it does so
may raise some questions about whether our method scales well or not. This issue can be
properly addressed by looking at how the parallel algorithms for this class of problems
perform in general. We have already addressed this issue in Section 4.2 where Eq. (34)
shows that the efficiency is approximatelyO(1/(1+ cP2)) which is consistent with the
data in Table XXII. It is worth pointing out that an efficiency of 69% or speedup of 11 for
an approximate four million points (see last line in Table XII) for this class of problems is
not atypical. This is because the algorithm (see Section 4) uses two sets of data: Data set in
the radial direction need to be constructed from the data set in the circumferential direction,
and this requires communication among various processors. This communication cost is
perhaps somewhat large, but this is not so unusual with problems of this kind. In fact, we
have shown in Section 4.4 that FACR-based methods also present the same behavior. Table

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 185

XII shows that our algorithm scales well and is very competitive when compared with other
current approaches.

6. CONCLUSIONS

In this paper, we presented a fast algorithm for solving the Poisson equation with either
Dirichlet or Neumann conditions. The resulting algorithm presents a lower computational
complexity when compared against standard procedures based solely on numerical integra-
tion. The method is based on exact analysis which provides a more accurate algorithm. The
representation of the solution using Fourier coefficients and convolution properties provide
a very accurate numerical solution, even for problems with sharp variations on inhomoge-
neous terms. We also have shown that the mathematical foundation of the algorithm allows
us to define high-order one-dimensional integration schemes without increasing the number
of grid points on the domain.

From a computational point of view, data locality was preserved leading to an efficient use
of cache. By reformulating the inherently sequential recurrenœs present in the sequential
algorithm, we were able to obtain a parallel version of the solver characterized by a reduced
amount of communication, and message lengths depending only on the number of Fourier
coefficients being evaluated. We have shown that the new approach can be defined in a
way that it presents the same numerical stability as in the sequential algorithm. The parallel
solver is very suited for distributed and shared memory systems. A timing model for the
algorithm was presented to provide a better understanding of the algorithm and to provide
performance prediction.

APPENDIX: MATHEMATICAL PROOFS

Proof of Theorem 2.1.We recall that the solutionw of the homogeneous problem (3)
can be derived by using the Poisson integral formula [9]

w(r, α) = 1

2π

2π∫
0

ϕ(τ) K

(
r

R
, α − τ

)
dτ, 0< r < R,

where the boundary conditions are defined by

ϕ(τ) = g(τ)− v(R, τ), (38)

and the Poisson kernel is

K (ρ, τ) = 1− ρ2

1+ ρ2− 2ρ cosτ
, 0≤ ρ < 1. (39)

A Fourier representation ofw is obtained by considering

K (ρ, τ) = 1− ρ2

(1− ρ cosτ)2+ (ρ sinτ)2
= 1− |z|2
|1− z|2

186 BORGES AND DARIPA

for z= ρei τ = ρ(cosτ + i sinτ). Thus,

K (ρ, τ) = 1− zz̄

(1− z)(1− z̄)
= Re(1− zz̄− z̄+ z)

(1− z)(1− z̄)

= Re

(
(1+ z)(1− z̄)

(1− z)(1− z̄)

)
= Re

(
1+ z

1− z

)
.

Since|z| < 1

K (ρ, τ) = Re((1+ z)(1+ z+ z2+ · · ·))

= Re(1+ 2(z+ z2+ · · ·)) =
+∞∑

n=−∞
ρ|n|einτ .

Consequently, for the Fourier representationK (ρ, τ) =∑
n

Kn(ρ)einτ we have

Kn(ρ) = ρ|n|. (40)

Letw(r, α) =∑
n
wn(r)einα, where

wn(r) = 1

2π

2π∫
0

ϕ(τ)

 1

2π

2π∫
0

K

(
r

R
, α − τ

)
e−inα dα

dτ

= 1

2π

2π∫
0

ϕ(τ)

 1

2π

2π∫
0

K

(
r

R
, α − τ

)
e−in(α−τ) dα

e−inτ dτ

= 1

2π

2π∫
0

ϕ(τ)Kn

(
r

R

)
e−inτ dτ = ϕn Kn

(
r

R

)
,

and

ϕn = 1

2π

2π∫
0

ϕ(τ)e−inτ dτ. (41)

Equation (40) leads to

wn(r) = ϕn Kn

(
r

R

)
=
(

r

R

)|n|
ϕn. (42)

The principal solutionv defined by the integral in (5) can be evaluated by considering
the splitting of the domain defined by

0Är = B(0; r),
r−εÄr+ε = B(0; r + ε)− B(0; r − ε),
r−εÄ∗r+ε = r−εÄr+ε − B(x; ε),

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 187

and

rÄ1 = B(0; 1)− B(0; r).

Therefore,

v(x) =
∫
B

f (η)
1

2π
log |x − η| dη = 1

2π
lim
ε→0

∫
B−B(x;ε)

f (η) log |x − η| dη

= 1

2π
lim
ε→0


∫

0Är−ε

f (η) log |x − η| dη +
∫

r−εÄ∗r+ε

f (η) log |x − η| dη

+
∫

r+εÄR

f (η) log |x − η| dη
 ,

and forx = reiα, the Fourier decomposition is given by

vn(r) = 1

4π2


∫

0Är

f (η)

2π∫
0

log |x − η| e−inαdα dη +
∫

rÄR

f (η)

2π∫
0

log |x − η| e−inαdα dη


+ 1

2π

2π∫
0

(
1

2π
lim
ε→0

Iε

)
e−inα dα,

where

Iε =
∫

r−εÄ∗r+ε

f (η) log |x − η| dη.

Since

|Iε| ≤ sup
η∈r−εÄ∗r+ε

f (η) sup
η∈r−εÄ∗r+ε

| log |x − η‖ π((r + ε)2− (r − ε)2)

= − sup
η∈r−εÄ∗r+ε

f (η) 4πε logε,

we have lim
ε→0
|Iε| = 0. If η = ρei τ andθ = α − τ , then

vn(r) = 1

2π


∫∫
0Är

ρ f (ρ, τ)e−inτ

 1

2π

2π−τ∫
−τ

log |x − η|e−inθdθ

 dτ dρ


+ 1

2π


∫∫
rÄR

ρ f (ρ, τ)e−inτ

 1

2π

2π−τ∫
−τ

log |x − η|e−inθdθ

 dτ dρ

 .

188 BORGES AND DARIPA

It implies

vn(r) =
r∫

0

fn(ρ) G̃n(r, ρ) ρ dρ +
R∫

r

fn(ρ) G̃n(r, ρ) ρ dρ 0≤ r ≤ R, (43)

where fn andG̃n are thenth Fourier coefficients off andG̃, respectively, with

G̃(r, ρ, θ) = log |x − η| = log |r 2+ ρ2− 2rρ cosθ |1/2.

To deriveG̃n we defineζ = ρ

r e−i θ for r > ρ, andξ = r
ρ
ei θ for r < ρ, then

log |x − η| =
{

log(r |1− ζ |), r > ρ,

log(ρ|1− ξ |), r < ρ.
(44)

Moreover, since|ζ | < 1 for r > ρ

log |1− ζ | = 1

2
(log(1− ζ)+ log(1− ζ̄)) = −

∞∑
n=1

ζ n

2n
−
∞∑

n=1

ζ̄ n

2n

= −
∞∑

n=1

1

2n
(ζ n + ζ̄ n) = −

∞∑
n=1

|ζ |n
2n

(e−inθ + einθ)

= −
∑
n6 =0

|ζ ||n|
2|n| e

inθ .

A similar result hold for log|1− ξ | whenr < ρ. Equation (44) leads to

log |x − η| =
{

logr −∑n6=0
1

2|n|
(
ρ

r

)|n|
einθ , r > ρ,

logρ −∑n6 =0
1

2|n|
(

r
ρ

)|n|
einθ , r < ρ.

(45)

Using the above decomposition, Eq. (43) can be rewritten as in (8) withpn andqn as defined
in (9) and (10).

Recall that the solution of the Dirichlet problem (1) is given by

u = v + w.

Therefore, the Fourier coefficientsun(r) of u(r, ·) are obtained from (42) as

un(r) = vn(r)+ wn(r) = vn(r)+
(

r

R

)|n|
ϕn, (46)

and from (38) we obtain (7).

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 189

Proof of Corollary 2.2 We first want to show that recurrences (13) and (14) evaluate

v−n (r) =
r∫

0

ρ

2n

(
r

ρ

)n

fn(ρ) dρ, n < 0, (47)

v+n (r) = −
R∫

r

ρ

2n

(
r

ρ

)n

fn(ρ) dρ, n > 0. (48)

If n < 0, then

v−n (r j) =
(

r j

r i

)n
ri∫

0

ρ

2n

(
ri

ρ

)n

fn(ρ) dρ + Ci, j
n =

r j∫
0

ρ

2n

(
r j

ρ

)n

fn(ρ) dρ,

which implies (47). Ifn > 0, the same argument holds for (48). From Theorem 2.1 we have

vn(r) =


∫ r

0
ρ

2n

(
r
ρ

)n
fn(ρ) dρ + ∫ R

r
ρ

2n

(
ρ

r

)n
fn(ρ) dρ, n < 0,∫ r

0 ρ logr f0(ρ) dρ + ∫ R
r ρ logρ f0(ρ) dρ, n = 0,∫ r

0
−ρ
2n

(
ρ

r

)n
fn(ρ) dρ + ∫ R

r
−ρ
2n

(
r
ρ

)n
fn(ρ) dρ, n > 0.

(49)

Consequently, ifn < 0 we have from (47)

vn(ri) = v−n (ri)−
R∫

ri

ρ

−2n

(
ri

ρ

)−n

fn(ρ) dρ,

and sincefn = f−n, Eq. (48) leads to

vn(ri) = v−n (ri)+ v+−n(ri)

as in (15). The proof is similar forn > 0 sincevn(ri) = v−n(ri).

Proof of Corollary 2.3. For n = 0 we have

l∑
i=2

Ci−1,i
0 =

rl∫
0

ρ f0(ρ) dρ and
M−1∑
i=l

Di,i+1
0 =

R∫
rl

ρ logρ f0(ρ) dρ,

thusv0(rl) is given as in (49). Ifn < 0, Eq. (11) and (47) give

l∑
i=2

(
rl

r i

)n

Ci−1,i
n =

rl∫
0

ρ

2n

(
rl

ρ

)n

fn(ρ) dρ = v−n (rl),

and Eqs. (12) and (48) lead to

M−1∑
i=l

(
ri

rl

)n

Di,i+1
−n = −

R∫
rl

ρ

−2n

(
rl

ρ

)−n

f−n(ρ) dρ = v+n (rl).

190 BORGES AND DARIPA

From Corollary 2.2 the above terms sum up

vn(rl) = v−n (rl)+ v+n (rl).

The proof is similar for the casen > 0.

Proof of Theorem 2.2.Consider the normal derivative of the principal solutionv obtained
from the gravitational potential (5)

α(x) = ∂v

∂En(x) =
∫
B

f (η)
∂

∂EnG(x, η)dη, x ∈ ∂B,

where the normal derivative for the Green’s function (6) on∂B is given by

∂

∂EnG(x, η) = 1

2π

∂

∂En log |x − η| =
〈2(x1− η1, x2− η2),

1
|x| (x1, x2)〉

4π |x − η|2 = 〈x, x − η〉
2πR|x − η|2 ,

with x = (x1, x2) andη = (η1, η2). One can rewrite the above derivative as

∂

∂EnG(x, η) = 1

4πR

2〈x, x − η〉 + 〈η, η〉 − 〈η, η〉
〈x − η, x − η〉

= 1

4πR

〈x, x − η〉 − 〈η, x − η〉 + 〈x, x〉 − 〈η, η〉
〈x − η, x − η〉

= 1

4πR

〈x − η, x − η〉 + 〈x, x〉 − 〈η, η〉
〈x − η, x − η〉

= 1

4πR

(
1+ R2− |η|2
|x − η|2

)
= 1

4πR
+ 1

4πR

R2− |η|2
|x − η|2

for x ∈ ∂B. Therefore, ∂
∂En G(x, η) can be expanded in the same way as the Poisson kernel

(39) by noticing that

∂

∂EnG

(
x

R
,
η

R

)
= 1

4πR
+ 1

4πR

1− γ 2

1+ γ 2− 2γ cosθ

for x = Reiα andη = ρei τ , whereθ = α − τ, γ = |η|R , and 0< γ ≤ 1. That is,

∂

∂EnG

(
x

R
,
η

R

)
= 1

4πR
+ 1

4πR

+∞∑
n=−∞

(
ρ

R

)|n|
einθ .

Therefore, forn 6= 0 we have

αn = 2π

R∫
0

ρ

4πR

(
ρ

R

)|n|
fn(ρ) dρ = 1

2R

R∫
0

ρ

(
ρ

R

)|n|
fn(ρ) dρ,

and comparing the above equation against the Fourier coefficients ofv given in (8) as

vn(R) =
R∫

0

−ρ
2|n|

(
ρ

R

)|n|
fn(ρ) for n 6= 0

A FAST PARALLEL ALGORITHM FOR THE POISSON EQUATION ON A DISK 191

we have

αn = −|n|
R
vn(R) for n 6= 0. (50)

To obtain the solutionu of the Neumann problem (18) in the formu = v + w as before,
we need to define boundary conditionsϕ of the homogeneous Dirichlet problem

1w = 0 in B

w = ϕ on ∂B,

which corresponds to the Neumann conditions

∂

∂Enw(R) = ψ −
∂

∂Env(R) = ψ − α (51)

on ∂B. From the relation given in (42) we obtain

∂

∂Enwn(R) = |n|
R
ϕn,

and from equations (50) and (51) we have

ϕn = R

|n|
∂

∂Enwn(R) = R

|n| (ψn − αn) = R

|n|ψn + vn(R), for n 6= 0.

Consequently, to solve the Neumann problem (18) the above definition for the boundary
conditionϕ is used in (46) leading to the Fourier coefficients described in (19) forn 6= 0.

For the casen = 0, ψ0 is uniquely defined by the compatibility condition derived from
Green’s theorem:

ψ0 = 1

2π

2π∫
0

ψ(τ) dτ = 1

2π

∫
B

1u(η) dη = 1

2π

∫
B

f (η) dη =
R∫

0

ρ f0(ρ) dρ.

ACKNOWLEDGMENTS

This material is based in part upon work supported by the Texas Advanced Research Program under Grant
TARP-97010366-030. We sincerely thank the referees for their constructive criticisms.

REFERENCES

1. J. Anderson, S. Amarasingle, and M. S. Lam, Data and computation transformations for multiprocessors,
in Proceedings 5th Symposium on Principles and Practice of Parallel Programming(ACM SIGPLAN, July
1995).

2. L. Borges and P. Daripa, A parallel version of a fast algorithm for singular integral transforms,Numer. Algor.
23, 71 (2000).

3. L. Borges and P. Daripa, A parallel solver for singular integrals, inProceedings of PDPTA’99—International
Conference on Parallel and Distributed Processing Techniques and Applications(Las Vegas, Nevada, June
28–July 1, 1999), Vol. III, pp. 1495–1501.

4. W. Briggs, L. Hart, R. Sweet, and A. O’Gallagher, Multiprocessor FFT methods,SIAM J. Sci. Stat. Comput.
8, 27 (1987).

192 BORGES AND DARIPA

5. W. Briggs and T. Turnbull, Fast Poisson solvers for mimd computers,Parallel Comput.6, 265 (1988).

6. T. F. Chan and D. C. Resasco, A domain-decomposed fast Poisson solver on a rectangle,SIAM J. Sci. Stat.
Comput.8, S14 (1987).

7. P. Daripa, A fast algorithm to solve the Beltrami equation with applications to quasiconformal mappings,J.
Comput. Phys.106, 355 (1993).

8. P. Daripa and D. Mashat, Singular integral transforms and fast numerical algorithms,Numer. Algor.18, 133
(1998).

9. M. D. Greenberg,Application of Green’s Functions in Science and Engineering(Prentice Hall, New York,
1971).

10. Hewlett-Packard,HP 9000 V-Class Server Architecture, 2dn ed. (Hewlett-Packard, March 1998).

11. R. Hockney and C. Jesshope,Parallel Computers: Archithecture, Programming and Algorithms(Hilger,
Bristol, 1981).

12. R. W. Hockney, A fast direct solution of Poisson equation using Fourier analysis,J. Assoc. Comput. Mach.8,
95 (1965).

13. E. Houstis, R. Lynch, and J. Rice, Evaluation of numerical methods for ellipitic partial differential equations,
J. Comput. Phys.27, 323 (1978).

14. L. S. Johnsson and N. P. Pitsianis, Parallel computation load balance in parallel FACR, inHigh Performance
Algorithms for Structured Matrix Problems, edited by P. Arbenz, M. Paprzycki, A. Sameh, and V. Sarin (Nova
Science Publishers, Inc., 1998).

15. V. Kumar, A. Grama, A. Gupta, and G. Karypis,Introduction to Parallel Computing(Benjamin/Cummings,
Redwood City, CA, 1994).

16. J.-Y. Lee and K. Jeong, A parallel Poisson solver using the fast multipole method on networks of workstations,
Comput. Math. Appl.36, 47 (1998).

17. C. V. Loan, Computational Frameworks for the Fast Fourier Transform (Soc. for Industr. & Appl. Math.,
Philadelphia, 1992).

18. A. McKenney, L. Greengard, and A. Mayo, A fast Poisson solver for complex geometries,J. Comput. Phys.
118, 348 (1995).

19. P. Pacheco,Parallel Programming with MPI(Morgan Kaufmann, San Francisco, CA, 1997).

20. J. Rice, E. Houstis, and R. Dyksen, A population of linear, second order, elliptic partial differential equations
on rectangular domains, I, II,Math. Comput.36, 475 (1981).

21. A. Sameh, A fast Poisson solver for multiprocesors, inElliptic Problem Solvers II,edited by G. Birkhoff and
A. Schoenstadt (Academic Press, Orlando, 1984) pp. 175–186.

22. J. Singh, W. Weber, and A. Gupta, SPLASH: Stanford parallel applications for shared-memory,Comput. Arch.
News20, 5 (1992).

23. G. Sköllermo, A Fourier method for the numerical solution of Poisson’s equation,Math. Comput.29, 697
(1975).

24. P. N. Swarztrauber, The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete
solution of Poisson’s equation on a rectangle,SIAM Rev.19, 491 (1977).

25. C. Temperton, On the FACR(l) algorithm for the discrete Poisson equation,J. Comput. Phys.34, 315 (1980).

	1. INTRODUCTION
	2. MATHEMATICAL PRELIMINARIES
	TABLE I

	3. THE SEQUENTIAL ALGORITHM
	FIG. 1.

	4. THE PARALLEL ALGORITHM
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.

	5. NUMERICAL RESULTS
	TABLE II
	TABLE III
	TABLE IV
	TABLE V
	TABLE VI
	TABLE VII
	TABLE VIII
	TABLE IX
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	TABLE X
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.
	TABLE XI
	FIG. 15.
	FIG. 16.
	TABLE XII

	6. CONCLUSIONS
	APPENDIX: MATHEMATICAL PROOFS
	ACKNOWLEDGMENTS
	REFERENCES

