
Physica A ( ) –

Contents lists available at SciVerse ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Some useful upper bounds for the selection of optimal profiles
Prabir Daripa ∗

Department of Mathematics, Texas A&M University, College Station, TX-77843, United States

a r t i c l e i n f o

Article history:
Received 4 January 2012
Received in revised form 19 February 2012
Available online xxxx

Keywords:
Optimal viscous profile
Enhanced chemical oil recovery
Upper bounds
Linear stability

a b s t r a c t

In enhanced oil recovery by chemical flooding within tertiary oil recovery, it is often
necessary to choose optimal viscous profiles of the injected displacing fluids that reduce
growth rates of hydrodynamic instabilities the most thereby substantially reducing
the well-known fingering problem and improving oil recovery. Within the three-layer
Hele–Shaw model, we show in this paper that selection of the optimal monotonic viscous
profile of the middle-layer fluid based on well known theoretical upper bound formula
[P. Daripa, G. Pasa, A simple derivation of an upper bound in the presence of a viscosity
gradient in three-layer Hele–Shaw flows, Journal of Statistical Mechanics (2006) 11.
http://dx.doi.org/10.1088/1742-5468/2006/01/P01014] agrees very well with that based
on the computation of maximum growth rate of instabilities from solving the linearized
stability problem. Thus, this paper proposes a very simple, fast method for selection of the
optimal monotonic viscous profiles of the displacing fluids in multi-layer flows.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In classical fluid mechanics, one encounters complex problems involving many unstable interfaces and modeling their
collective effects can be computationally very intensive. However, if such collective effects can be captured in a statistical
sense by a few systemparameter dependent data, then such data can be used as ameasure to compare such complex systems
having different values of one or more parameters. This way, one does not have to go through intensive computational
procedure to find changes in certain properties of the complex system as the parameters of the system change. This paper
addresses one such problem and shows the promise of the method for the first time on a prototype model problem arising
in the context of enhanced oil recovery. Then suggestions are made to further experiment with the proposed method on
problems which are extensions of this model problem.

Efficient oil recovery is an important component of energy related research. Initial stages of this recovery process involve a
primary recovery stage followed by a secondary displacement process in which the viscous oil in porous media is displaced
by the injection of another less viscous fluid, usually water. It is well known that this displacement process is basically
unstable (see Saffman and Taylor [1] and Chouke et al. [2]) which causes undesirable fingering problem. The next stage of
oil recovery is called enhanced oil recovery (EOR for short). There aremany EOR technologies, and one that is of interest here
is EOR by chemical flooding which involves a tertiary displacement process. There are many injection policies for EOR by
chemical flooding and the simplest one involves injection of one viscous displacing fluid for some time followed by water.
This displacement process is essentially unstable and basically involves a three-layer flow: oil followed by the viscous fluid
which in turn is followed bywater. Oil recovery from this displacement process depends on the viscous profile of themiddle
layer viscous fluid. Therefore, the selection of an optimal viscous profile that maximizes the oil recovery is a very important
problem in this kind chemical flooding scheme. This problem for this displacement process through a homogeneous porous
medium is equivalent to minimizing the maximum growth rate of instabilities. Since flow through a porous medium is
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Fig. 1. Three-layer fluid flow.

modeled using Darcy’s law, which also holds in the Hele–Shaw cell, it has been common practice to model this EOR process
using a three-layer Hele–Shawmodel with middle layer fluid having a variable viscous profile with a viscosity gradient that
is positive in the direction of basic flow. This is shown in Fig. 1.

For our purposes, an optimal viscous profile of the middle layer fluid in this three-layer Hele–Shaw flow is then defined
by the viscous profile that minimizes the maximum growth rate. We have recently numerically solved this problem. An
exhaustive detail of our numerical method and results have been presented in Daripa and Ding [3]. In Daripa and Ding [3],
the eigenvalue problem resulting from the linear stability analysis of the system of partial differential equations modeling
the three-layer Hele–Shaw flow is solved. The effect of various viscous profiles from four different monotonic families on
the stabilization of flow is investigated by computing the maximum growth rate for each viscous profile. The profile with
most stabilization capacity is found to be an exponential profile that supports viscosity jumps at both the two interfaces.
It is found that viscosity jump driven interfacial instabilities at both the interfaces as well as the fingering instability of
the middle layer participate almost equally in providing maximum stabilization or equivalently in minimizing the maximal
growth rate.

In this paper, we show the promise of a different, much easier and extremely fast approach for selection optimal profiles
based on theoretical upper bounds on the maximum growth rate obtained earlier by Daripa and Pasa [4]. In particular, both
approaches are used in this paper to determine the optimal viscous profile for flows that support only pure viscosity gradient
driven instability. It is found that selections based on these two approaches are in excellent agreement with each other. This
conclusion from this case study should have a bearing on the selection of optimal profiles for multi-layer flows involving
many viscous profiles.

In Section 2, we briefly review from our earlier works (see Daripa and Pasa [5], Daripa [6]) the model, the formulation of
the eigenvalue problem arising from linear stability analysis of the uniform flow and the formula for the upper bound on the
maximum growth rate. We also list here four families of viscous profiles and the upper bounds for these viscous profiles.
In Section 3, we show and compare results on optimal profiles determined by the two methods: one based on numerical
computation of the maximum growth rate σmax and the other based on upper bound formulas. Finally, we conclude in
Section 4.

2. Preliminaries

The model is a three-layer flow with two fronts taken to be at x = 0 and x = −L. Fluid upstream x = −∞ is assumed to
have a velocity (U, 0). In the left-most layer, −∞ < x ≤ −L, viscosity of the fluid (water usually) is a constant denoted by
µl and that of the fluid (oil usually) in the right-most layer, x > 0, is denoted by a constantµr . The middle layer, with length
L, contains a fluid (to be called polysolution henceforth) of variable viscosity µ(x)(µl < µ(x) < µr). The interfacial tension
at the leading front separating oil from polysolution is denoted by T0, and that at the trailing front separating water from
polysolution is denoted by T1. The fluid flow in this three-layer model is described by the following governing equations in
each of the three-layers.

∇ · u = 0, ∇p = −µ u,
Dµ
Dt

= 0, (1)

where ∇ =


∂
∂x ,

∂
∂y


and D

Dt is the material derivative. The first Eq. (1)1 is the continuity equation for incompressible flow,
the second Eq. (1)2 is Darcy’s law (Darcy [7]), and the third Eq. (1)3 is the advection equation for viscosity. The above
system (1) admits a simple basic solution, namely the whole fluid set-up moves with speed U in the x direction and the two
interfaces, namely the one separating the left layer from the middle-layer and the other separating the right layer from the
middle-layer, are planar, i.e. parallel to the y-axis. The pressure corresponding to this basic solution is obtained by integrating
(1)2. In a framemovingwith velocity (U, 0), the above system is stationary alongwith two planar interfaces separating these
three fluid layers, and the smooth viscous profile µ(x) of the middle-layer fluid satisfies µl < µ(x) < µr . Here and below,
with slight abuse of notation, the same variable x is used in the moving reference frame. In linearized stability analysis by
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normal modes, disturbances (denoted by tilde variables below) in the moving reference frame are written in the form

(u,v,p,µ) = (f (x), ψ(x), φ(x), h(x)) e(iky+σ t), (2)

where k is the wave number and σ is the growth rate. We then insert this disturbance form into the linearized disturbance
equations obtained from (1) and also into the linearized dynamic and kinematic interfacial conditions (see Ref. [5]). After
some algebraic manipulation, we obtain the following differential equation in terms of the eigenfunction f (x) and the first
derivative of viscosity µx in the middle layer:

− (µfx)x + k2µf = λk2Uµxf , x ∈ (−L, 0) (3)

with boundary conditions

fx(0) = (λe + q)f (0), fx(−L) = (λr + s)f (−L), (4)

where λ = 1/σ and e, q, r, s are defined by

e = {(µr − µ(0))Uk2 − T0k4}/µ(0), q = −µrk/µ(0) ≤ 0,
r = {(µl − µ(−L))Uk2 + T1k4}/µ(−L), s = −µlk/µ(−L) ≥ 0.


(5)

For a given choice of values of T0, T1,U, L, µl, µr and themiddle layer viscosity profileµ(x), the eigenvalue problem defined
by (3)–(5) is solved numerically on a finite difference grid for the dispersion relation σ(k) from which σmax = maxk σ(k) is
obtained for a given viscous profile µ(x).

In Daripa and Pasa [4] (see also [6]), we have derived the following formula for the upper bound σu on the maximum
growth rate σmax in a strict inequality form.

σ < σu = max


2T0
µr


U(µr − µ(0))

3T0

3/2

,
2T1
µl


U(µ(−L)− µl)

3T1

3/2

,U max
x


µx(x)
µ(x)


. (6)

Notice that the upper bound σu is independent of the length L of the middle layer whereas the exact maximum growth rate
σmax depends on L. In spite of this, we will see that selection based on the upper bound is good for all values of L because
σmax for various L are in tandem (see Section 3) with each other as well in tandem with σu.

In Daripa [8], we have validated the formula (6) for σu. Computation of σmax involves numerically solving the eigenvalue
problem which is relatively more time consuming than evaluating σu from the formula (6). In this paper, we will show that
values of σu and σmax are in tandem with each other for all viscous profiles used. Thus this property can be used for the
purpose of selection of optimal viscous profile, i.e., a viscous profile that gives the lowest value of the maximum growth
rate σmax over a given class of viscous profiles. This approach is certainly computationally very advantageous over the direct
method based on computing σmax from solving the eigenvalue problem numerically. We justify this contention in this paper
by comparing selections by these two methods of the optimal profiles from following four families of monotonic viscous
profiles. These profiles are defined so that they have two end point viscosities µ(0) at x = 0 and µ(−L) at x = −L. Below
we use the notation µ̂r := µr/µl.

(i) Linear viscosity profiles:

µ(x) =
µ(0)− µ(−L)

L
x + µ(0), −L < x < 0. (7)

For this viscous profile (7), it follows from (6) that

σ < σ lin
u = max


2T0
µr


U(µr − µ(0))

3T0

3/2

,
2T1
µl


U(µ(−L)− µl)

3T1

3/2

,
U
L


µ̂r − 1


. (8)

The superscript ‘lin’ on σu means the bound is for linear profile. Similarly below ‘exp’, ‘poly’ and ‘sin’ denote exponential,
polynomial, and sinusoidal profiles respectively.

(ii) Exponential viscosity profiles:

µ(x) = µ(−L) exp {α(x + L)} , where α =
1
L
ln

µ(0)
µ(−L)

. (9)

For this exponential profile (9), from (6) we have

σ < σ exp
u = max


2T0
µr


U(µr − µ(0))

3T0

3/2

,
2T1
µl


U(µ(−L)− µl)

3T1

3/2

,
U
L
ln


µ̂r


. (10)
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(a) L = 1. (b) L = 10.

Fig. 2. Plots (L/U) ∗ σmax for four viscosity profiles versus µr/µl for pure viscosity-gradient driven instability. σmax is the maximum growth rate for the
most optimal profile. The other parameter values are T0 = T1 = U = 1. On screen view of these figures are recommended for clarity of the plots.

(iii) Polynomial viscosity profiles:

µ(x) =
(µ(0)− µ(−L))

L2
(x + L)2 + µ(−L). (11)

For the polynomial viscosity profile (11),

σ < σ poly
u = max


2T0
µr


U(µr − µ(0))

3T0

3/2

,
2T1
µl


U(µ(−L)− µl)

3T1

3/2

,
U
L


µ̂r − 1


. (12)

(iv) Sine viscosity profiles:

µ(x) = (µ(0)− µ(−L)) sin
πx
2L


+ µ(0). (13)

Note that the constant viscosity profile is a spacial case of the above sine profile when µ(0) = µ(L), For this sine viscosity
profile (13),

σ < σ sin
u = max


2T0
µr


U(µr − µ(0))

3T0

3/2

,
2T1
µl


U(µ(−L)− µl)

3T1

3/2

,
Uπ
2L

(µ̂r − 1)
2µ̂r − 1


. (14)

We recall the dimensional parameters of the problem: namely µl, µr , T0, T1,U and L. In all our computations below we
have used T0 = T1 = U = 1. Unless otherwise indicated or obvious from presentation of results, we have used mostly
µl = 2, µr = 10, L = 1. Maximum growth rate is computed for all the above viscous profiles withµ(−L) andµ(0) fixed at
µl and µr respectively so that both interfaces are individually stable.

3. Fast method for selection of optimal viscous profiles

The maximum growth rates σmax for all four monotonic viscous profiles with no viscosity jumps at the interfaces are
computed by solving the eigenvalue problem by the finite difference method mentioned after Eq. (5) in Section 2. On the
other hand, the upper bounds σu for these same viscous profiles are evaluated from exact formulas given in the previous
section. Plots of normalized σmax versus µr/µl are shown in Fig. 2(a) when L = 1 and in Fig. 2(b) when L = 10. Fig. 3 shows
plots of normalized σu versus viscosity ratio µr/µl.

Notice that the trends and qualitative natures of the plots in Figs. 2 and 3 are in tandemwith each other even though the
quantitative data are different. Moreover, the trends of the plots in Fig. 2(a) and (b) are same and computations show that it
holds for all other values of L. Even though the quantitative data between Figs. 2 and 3 are different, they do not have much
bearing since only the trend in the data as the profiles change is important for our purposes. Among other observations
that can be made from these figures, we see that both methods select the exponential profile as the optimal profile over
all values of viscosity ratio µ̂ = µr/µl. Since the method based on the upper bound formula is the easiest one to use, it is
recommended that the upper bound formula should be used in the selection of optimal profiles. This method is obviously
very fast and accurate.
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Fig. 3. Plots of normalized upper bounds (σu ∗ L/U) on growth rates for exponential, linear, polynomial and sine viscous profiles versus the viscosity ratio
µr/µl for pure viscosity-gradient driven instability.

4. Conclusions

In this paper, we have shown using a three-layer case study that selection of the optimal profile of the middle-layer fluid
based on the theoretical upper bound formula agrees with that based on the exact computation of minimized maximum
growth rates. Even though the results presented are for caseswith no jumps in viscosity at interfaces, experiments show that
they hold when the viscosity jumps at interfaces are allowed. The success of the method based on the upper bound formula
in selecting the optimal profile for the three-layer case is a proof of the principle that the collective effects of interfacial and
layer (fingering) instabilities are very well captured by the upper bound formulas for their application to the problem of
selection of optimal profiles. Upper bound formulas for multi-layer flows with arbitrary number of displacing fluids which
are generalizations of the three-layer formula (6) have beenpresented anddiscussed inDaripa [6]. These formulas essentially
are compact statistical descriptions of the cumulative effects of many interfacial and layer interactions in such flows on
hydrodynamic instabilities. The three-layer case study presented here for the selection of optimal profile should be a guide
to others to experiment with the proposed method based on upper bound formulas for the selection of optimal profiles of
many internal-layer fluids in multi-layer flows.
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