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Motivated by stability problems arising in the context of chemical enhanced oil
recovery, we perform linear stability analysis of Hele-Shaw and porous media flows
in radial geometry involving an arbitrary number of immiscible fluids. Key stability
results obtained and their relevance to the stabilization of fingering instability are
discussed. Some of the key results, among many others, are (i) absolute upper
bounds on the growth rate in terms of the problem data; (ii) validation of these
upper bound results against exact computation for the case of three-layer flows; (iii)
stability enhancing injection policies; (iv) asymptotic limits that reduce these radial
flow results to similar results for rectilinear flows; and (v) the stabilizing effect of
curvature of the interfaces. Multi-layer radial flows have been found to have the
following additional distinguishing features in comparison to rectilinear flows: (i)
very long waves, some of which can be physically meaningful, are stable; and (ii)
eigenvalues can be complex for some waves depending on the problem data, implying
that the dispersion curves for one or more waves can contact each other. Similar to
the rectilinear case, these results can be useful in providing insight into the interfacial
instability transfer mechanism as the problem data are varied. Moreover, these can
be useful in devising smart injection policies as well as controlling the complexity of
the long-term dynamics when drops of various immiscible fluids intersperse among
each other. As an application of the upper bound results, we provide stabilization
criteria and design an almost stable multi-layer system by adding many layers of fluid
with small positive jumps in viscosity in the direction of the basic flow. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4904983]

I. INTRODUCTION

There have been numerous studies on rectilinear and radial displacements of immiscible fluids
in a Hele-Shaw (HS) cell (see review articles1,2). The relation between the velocity and pressure
gradient in a Hele-Shaw cell for each phase is well known to be Darcy’s law, the same equation
that holds for fluid flow in porous media with an equivalent permeability. Because of this analogy
and accessibility of the Hele-Shaw cell setup in the laboratory, viscous fingering instability in
a Hele-Shaw cell has been studied experimentally, analytically, and numerically for over half a
century in order to get insight into the phenomenon of viscous fingering in porous media.

The viscous fingering instability occurs when a viscous fluid is displaced by another one of
lower viscosity in the confined geometry of a HS cell.3 This mechanism is widely viewed as a
paradigm for interfacial pattern formation in various physical systems. Instabilities at the moving
interface evolve and eventually form a variety of complex interfacial patterns through repeated
tip splitting. This problem is generic for many fields, including chemical enhanced oil recovery
(EOR), cell fragmentation, growth of tumors, mixing in multi-phase flow, crystal growth, and flow
in granular media. In the case of radial HS flow, the curvature of the interface acts as a source
term which further accentuates the tip splitting, forming more complex patterns. Over the past two
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decades, there have been many studies of radial Hele-Shaw flows in order to get important insight
into the onset and development of pattern forming processes. Some of these studies were carried
out with the goal of controlling and minimizing viscous fingering by various means including
time-dependent injection rates and the use of a non-Newtonian injection fluid. In this paper, we will
discuss another way to control viscous fingering by injecting a sequence of fluids whose stability is
the subject of this paper.

Radial fingering involving immiscible fluids in a Hele-Shaw cell was first experimentally and
theoretically studied by Paterson.4 Many studies have been performed since then on radial displace-
ment,5–10 but almost all involve two layers of fluids separated by one interface initially. Later
Cardoso and Woods11 studied linear stability of three-layer radial immiscible displacement and
studied formation of drops due to break up of the thin annular region. They studied the case where
the mobilities of three fluids were such that the inner interface is stable and the outer interface is
unstable. This way the thin annular region will break into droplets due to the growth of disturbances
on the outer interface. To date, there has not been any study of the multi-layer radial displacement
which we address in this paper.

Motivation for the study presented in this paper comes from many injection policies that are
in practice for EOR even though the study has much wider applicability and relevance. It is not so
uncommon to flood oil reservoirs with a sequence of different simple and complex fluids during
enhanced oil recovery in order to maximize productivity.12–22 One of the objectives behind such
practices in the context of EOR is to minimize fingering instability (viscous fingering). Such a
flooding process involves more than one interface depending on the number of injected immiscible
fluids. To effectively make use of such flooding strategies, it is necessary to understand the viscous
fingering mechanism in such a multi-layer setting. A first step in this direction is to perform linear
stability analysis of multi-layer porous media flows. Currently, there is not much theoretical work in
this direction except for a few recent works23–25 in rectilinear geometry. In this paper, we consider
multi-layer radial flows in a Hele-Shaw cell which is a simple model of flows around injection and
production wells in porous media. In particular, we perform linear stability analysis involving an
arbitrary number of fluid layers to obtain dispersion relations and upper bounds on the growth rate
which are then used to design more stable injection schemes. The results of this study are shown to
reduce to the results for rectilinear flows in appropriate limits.

Even though we study this problem in the EOR context, this study is relevant for many other
natural and industrial situations where multi-layer flows arise. For example, during volcanic erup-
tions magmas of various compositions and viscosities rise from the depth of fissures in the Earth’s
crust which can be viewed as multi-layered flows with mixing occurring between magmas of
different viscosities due to hydrodynamic instabilities. As stated in Cardoso and Woods,11 the extent
of mixing occurring during such ascent has a key role in controlling the composition of the magma,
which is an issue of central importance in petrology.26 There are many situations where instabilities
are desired as in drop formation through break up of various layers and in enhanced mixing between
miscible phases. In all these, an understanding of linear instability provides an insight into the
possible control mechanisms of viscous fingering, either to enhance it or suppress it.

The paper is laid out as follows. In Sec. II, we formulate the linear stability problem for
two-layer radial flows because the linearized stability equations, including the ones at the interface,
will be the building block for setting up the stability problem for multi-layer radial flows in Sec. III.
In Sec. III A, we first develop the eigenvalue problem for 3-layer radial flows from linear stability
analysis and then analyze this problem for the dispersion relation and upper bounds on the growth
rate. The treatment in this section becomes the building block for the stability analysis of the
multi-layer case with an arbitrary number of layers which is presented in Sec. III B. In Sec. III
B, we derive upper bounds on the growth rate for multi-layer radial flows. Section III C discusses
some special cases. In particular, we show how the previously obtained result on the upper bound on
the growth rate for the rectilinear geometry (see Ref. 23) can be recovered from the results obtained
in this paper for the multi-layer radial geometry. In Sec. IV, we show using the upper bounds on
the growth rate for multi-layer radial flows that an otherwise unstable two-layer radial flow can be
significantly stabilized by the addition of many layers of fluid with small positive jumps in viscosity.
Numerical results are presented in Sec. V. Finally, we conclude in Sec. VI.
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FIG. 1. Radial flow in a Hele-Shaw cell.

II. PRELIMINARIES

We start by deriving the equations for two-layer Hele-Shaw flows. Although this is done in
numerous other works4,7,11 with the use of the potential function, we follow an approach that does
not use the potential function. That is because our approach can be easily adapted to study flows
with variable viscosity fluids which do not have a potential function. This is of considerable interest
to EOR and will be the subject of a sequel to this paper.

We consider a Hele-Shaw flow in which two incompressible, immiscible fluids are present. The
less viscous fluid is injected into the center of the cell, displacing the more viscous fluid. We denote
the viscosity of the less viscous inner fluid by µi and the viscosity of the more viscous outer fluid by
µo (Figure 1).

By averaging across the gap, we may consider a two-dimensional flow domain in polar coordi-
nates,Ω  (r, θ) = R2. The fluid flow is governed by the following equations:

∇ · u = 0, ∇ p = −µ u. (1)

The first equation (1)1 is the continuity equation for incompressible flow, and the second equation
(1)2 is Darcy’s law.27 We start with the fluids separated by a circular interface with radius R0. Fluid
is then injected into the cell at the origin at a constant injection rate, Q. This set-up is shown in
Figure 2.

The equations admit a simple basic solution in which all of the fluid moves outward radially
with velocity ub


ubr ,u

b
θ


= (Q/2πr,0). The interface remains circular and its radius is given by

R(t) =

Qt/π + R2

0. The pressure, pb = pb(r), may be obtained by integrating equation (1)2. We

perturb the basic solution

ubr ,u

b
θ ,pb


by (ũr , ũθ, p̃) where the disturbances are assumed to be small.

We plug these into equations (1) and only keep terms that are linear with respect to disturbances.
Since equations (1) are, in fact, linear, the disturbances satisfy the same equations. Therefore,

∂ũr
∂r
+
ũr
r
+

1
r
∂ũθ
∂θ
= 0,

∂ p̃
∂r
= −µũr , 1

r
∂ p̃
∂θ
= −µũθ. (2)

FIG. 2. Two-layer radial Hele-Shaw flow.
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We investigate the growth of these disturbances by the method of normal modes. Since the basic
solution is time dependent, due to the time dependence of the position of the interface, the growth
rate is also time dependent. We consider the following ansatz for the disturbances:

(ũr , ũθ, p̃) = ( f (r), τ(r),ψ(r))einθ+
 t
0 σ(s)ds, (3)

where n denotes the wavenumber of the disturbance. Plugging this ansatz into equations (2)1 and
(2)3 gives

τ(r) = i
n
( f (r) + r f ′(r)), ψ(r) = −rµ

n2 ( f (r) + r f
′(r)). (4)

We then cross-differentiate the pressure equation, (2)2 and (2)3. Taking ∂
∂θ

of (2)2 and ∂
∂r

of (2)3
yields

∂2p̃
∂r∂θ

= −µ∂ũr
∂θ

,
∂2p̃
∂θ∂r

=
1
r
∂ p̃
∂θ
− rµ∂ũθ

∂r
.

Setting these equal gives

− µ
∂ũr
∂θ
=

1
r
∂ p̃
∂θ
− rµ∂ũθ

∂r
. (5)

We use the ansatz (3) in equation (5) and get

− i µ n f (r)einθ+
 t
0 σ(s)ds =

in
r
ψ(r)einθ+

 t
0 σ(s)ds − rµτ′(r)einθ+

 t
0 σ(s)ds. (6)

Using (4) in (6), we get: −i µ n f (r) = −µ i
n
( f (r) + r f ′(r)) − rµ i

n
(2 f ′(r) + r f ′′(r)). With some alge-

braic manipulation, we get the following ordinary differential equation for f (r):
r3 f ′(r)′ − n2 − 1


r f (r) = 0. (7)

The solution must also satisfy linearized kinematic and dynamic interface conditions. Let η̃(θ, t) be
the disturbance of the interface. Then the position of the interface is given by η(θ, t) = R(t) + η̃. The
linearized kinematic condition is given by

∂η̃

∂t
= ũr(R) − η̃ Q

2πR2 , (8)

where ũr is continuous at r = R. Consistent with the ansatz (3), we assume η̃ = η̃0 einθ+
 t
0 σ(s)ds for

some constant η̃0. We use this in (8) along with the ansatz (3)1 for ũr and get

η̃(θ, t) = f (R)
σ + Q

2πR2

einθ+
 t
0 σ(s)ds. (9)

Next, we consider the linearized dynamic interface condition

p+(η) − p−(η) = −T
(

1
R
− η̃

R2 −
1
R2

∂2η̃

∂θ2

)
,

where T is the interfacial tension and the “+” and “−” superscripts denote the right and left limit
values, respectively. The values of the pressure are given within linear approximation by

p+(η) = p+b(R) + p̃+(R) + η̃
∂p+

b

∂r
(R), p−(η) = p−b(R) + p̃−(R) + η̃

∂p−
b

∂r
(R).

The pressure of the basic solution satisfies p+
b
(R) − p−

b
(R) = −T/R. Additionally, since the pressure

of the basic solution satisfies equation (1)2 with ur = Q/(2πr), we have that
∂p+

b
∂r
= −Qµ+/(2πr) and

∂p−
b

∂r
= −Qµ−/(2πr). Therefore,


p̃+(R) − η̃Qµ+

2πR


−

p̃−(R) − η̃Qµ−

2πR


= T

η̃ + ∂2η̃

∂θ2

R2 . (10)
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Plugging the ansatz into this interface condition, we get

ψ
+(R) − f (R)

σ + Q

2πR2

Qµ+

2πR

 −
ψ
−(R) − f (R)

σ + Q

2πR2

Qµ−

2πR


=

T
R2


f (R)

σ + Q

2πR2

+
∂2

∂θ2


f (R)
σ + Q

2πR2


 .

Using (4), the equation becomes

−
Rµ+(R)

n2 ( f (R) + R( f +)′(R)) − f (R)
σ + Q

2πR2

Qµ+

2πR


−
−

Rµ−(R)
n2 ( f (R) + R( f −)′(R)) − f (R)

σ + Q

2πR2

Qµ−

2πR

 =
T
R2

1 − n2

σ + Q

2πR2

f (R).

Multiplying by
(
σ + Q

2πR2

)
Rn2 and rearranging gives

(
σ +

Q
2πR2

)
R3{µ−( f −)′(R) − µ+( f +)′(R)}

=

(
σ +

Q
2πR2

)
R2(µ+ − µ−) + Qn2

2π
(µ+ − µ−) − T n4 − n2

R


f (R).

(11)

The eigenvalue problem is given by the equations (7) and (11). Two linearly independent solutions
of (7) are f (r) = rn−1 and f (r) = r−n−1. Since we require that f (r)→ finite as r → 0 and f (r)→ 0
as r → ∞, the solution of the eigenvalue problem is given by

f (r) =

f (R)
( r
R

)n−1
, r < R

f (R)
(
R
r

)n+1

, r > R
.

By differentiating these equations, we get

( f −)′(r) = f (R)
R

(n − 1)
( r
R

)n−2
, ( f +)′(r) = − f (R)

R
(n + 1)

(
R
r

)n+2

.

We plug these into (11) and use that µ− = µi and µ+ = µo to get
(
σ +

Q
2πR2

)
R3

µi

f (R)
R

(n − 1) + µo
f (R)
R

(n + 1)


=

(
σ +

Q
2πR2

)
R2(µo − µi) +

Qn2

2π
(µo − µi) − T n4 − n2

R


f (R).

Solving this equation for σ gives the classical result for the growth rate of the interfacial disturbance
of the two-layer radial Hele-Shaw problem4

σ =
Qn

2πR2

µo − µi
µo + µi

− Q
2πR2 −

T
µo + µi

n

n2 − 1


R3 . (12)

Several facts are obvious from this formula: (i) short waves are stable for any non-zero value
of T as expected; (ii) very long waves on the circular interface of any radius are stable when
T = 0; (iii) there are very long waves with wavenumber below a critical value for which the circular
interface of very small radius is stable for finite values of T . This is due to the high curvature
of the interface when the stabilization effect of interfacial tension overcomes the destabilization
effect of mobility jump across the interface; These effects (ii) and (iii) are different from that
in rectilinear flow; (iv) the most dangerous wavenumber, n = nm, is easily found and is given
by nm =


QR(µo − µi)/(6πT) + 1/3. The most dangerous wavenumber nm is a monotonically
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FIG. 3. Three-layer flow.

decreasing function of interfacial tension T . The corresponding maximum growth rate, σM, can
easily be found from (12) with n = nm.

Finally, (v) there exists an optimal value of T = To which minimizes σM. This value is given
by To = QR(µo − µi)/4π and easily follows from taking the derivative of (12) with n = nm with
respect to T and setting it to zero. However, this minimization of σM is performed over all positive
values of n. The only physically relevant values of the wavenumber n are positive integers. It can
be seen from equation (12) that for any n > 1, σ decreases monotonically as T increases. It can
be checked from the formula for nm in item (iv) above that nm = 1 when T = To. Also, σ(n) is a
decreasing function of n for all n > nm. Therefore, when T ≥ To, n = 1 will be the most unstable
wave and hence from (12), minσM = −(Qµi)/(πR2(µo + µi)). This means that the flow is actually
stable since σM < 0 when T > To regardless of the radius of the circular interface. This leads to a
possibly new and important observation. A circular interface of any radius R moving outward at any
velocity displacing a fluid of viscosity µo is stable if interfacial tension T = QR(µo − µi)/4π where
Q is the volumetric injection rate of the displacing fluid having viscosity µi.

III. LINEAR STABILITY ANALYSIS FOR MULTI-LAYER RADIAL FLOWS

A. Three-layer flows

We now wish to extend the results of Sec. II to flows that contain three layers of fluid
(Figure 3). Each fluid region is initially separated from the neighboring fluid regions by a circular
interface. The least viscous fluid, with viscosity µi, is injected into the Hele-Shaw cell with constant
injection rate Q. The most viscous fluid, with viscosity µo, is the outermost fluid. The intermediate
fluid has viscosity µ1 where µi < µ1 < µo. The basic solution consists of all fluid moving outward
radially with velocity ub = (Q/2πr,0). The interfaces remain circular with R0 denoting the radius
of the inner interface and R1 denoting the radius of the outer interface. These radii are given

by R0(t) =

Qt/π + R2

0(0) and R1(t) =

Qt/π + R2

1(0). The pressure is obtained by integrating
equation (1)2.

Equation (7) holds within each layer of fluid. Therefore, the solution, f (r), is of the form

f (r) =

A1rn−1 + B1r−(n+1), r < R0

A2rn−1 + B2r−(n+1), R0 < r < R1

A3rn−1 + B3r−(n+1), r > R1

.
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In order to ensure that the disturbances go to zero as r → ∞ and to avoid a singularity at r = 0, we
require that B1 = 0 and A3 = 0. Therefore,

( f −)′(R0) =
(n − 1) f (R0)

R0
, ( f +)′(R1) = − (n + 1) f (R1)

R1
. (13)

Using the interface condition (11) at the inner interface along with (13)1, we get

σ +
Q

2πR2
0

 µ1R3
0( f +)′(R0) = −


E0 +

Qµ1

2π
− σR2

0(nµi − µ1)

f (R0), (14)

where

E0 =
Qn2

2π
(µ1 − µi) − Qn

2π
µi − T0

n4 − n2

R0
, (15)

and T0 denotes the interfacial tension at the inner interface. For the outer interface, we use (13)2 to
get

σ +
Q

2πR2
1

 µ1R3
1( f −)′(R1) =


E1 − Qµ1

2π
− σR2

1(µ1 + nµo)

f (R1), (16)

where

E1 =
Qn2

2π
(µo − µ1) − Qn

2π
µo − T1

n4 − n2

R1
, (17)

and T1 denotes the interfacial tension at the outer interface.

1. Dispersion relation

Recall that the form of f (r) in the region R0 < r < R1 is f (r) = A2rn−1 + B2r−(n+1). Plugging
this form into (14) and simplifying yields

E0 +
Qn
2π

µ1 + σR2
0n(µ1 − µi)


Rn

0 A2 +


E0 − Qn

2π
µ1 − σR2

0n(µ1 + µi)

R−n0 B2 = 0. (18)

Likewise, we use (16) to find that
E1 − Qn

2π
µ1 − σR2

1n(µo + µ1)

Rn

1 A2 +


E1 +

Qn
2π

µ1 − σR2
1n(µo − µ1)


R−n1 B2 = 0. (19)

The solvability of the above system (18)-(19) gives

aσ2 + bσ + c = 0, (20)

where

a = − (µ1 − µi)(µo − µ1)
(
R0

R1

)n
− (µ1 + µi)(µo + µ1)

(
R1

R0

)n
,

b =
(µ1 − µi)

E1

nR2
1

+
Qµ1

2πR2
1

 − (µo − µ1)
E0

nR2
0

+
Qµ1

2πR2
0



(
R0

R1

)n

+
(µ1 + µi)

E1

nR2
1

− Qµ1

2πR2
1

 + (µo + µ1)
E0

nR2
0

− Qµ1

2πR2
0



(
R1

R0

)n
,

c =
E0

nR2
0

+
Qµ1

2πR2
0


E1

nR2
1

+
Qµ1

2πR2
1


(
R0

R1

)n
−

E0

nR2
0

− Qµ1

2πR2
0


E1

nR2
1

− Qµ1

2πR2
1


(
R1

R0

)n
.

Therefore, σ is given by the expression

σ± =
−b ±

√
b2 − 4ac

2a
. (21)
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FIG. 4. Plot of the real part of the growth rate σR versus the wavenumber n for R0 = 20, R1 = 30, µi = 2, µ1 = 5, µo = 10,
Q = 10, T0 = 1, and T1 = 1.

Here, there are two values of the growth rate, σ+ and σ−, which corresponds to the number of
interfaces in the flow. However, it should be stressed that these values do not correspond to the
stability of the individual interfaces, but instead characterize the stability of the system as a whole.

A typical plot of the real part of σ, denoted σR, versus the wavenumber n is given in Figure 4.
Here, we used the values R0 = 20, R1 = 30, µi = 2, µ1 = 5, µo = 10, Q = 10, T0 = 1, and T1 = 1.
In this case, σ is real for all n. Note that both modes are stable for short waves due to interfa-
cial tension. Also, the wave with wavenumber n = 1 is stable. It can be shown that when n = 1,
a,b,c < 0 for any values of the parameters. Therefore, the wave whose wavelength is the entire
circumference of the interface is always stable. This stands in stark contrast to rectilinear flow in
which long waves are unstable. Therefore, we can conclude that the curvature has the effect of
stabilizing long waves. We also note that there are exactly two values of n for which σ+R = 0. We
refer to the greater of these values as the maximum neutral wavenumber and the lesser of these as
the minimum neutral wavenumber. The difference between these values is the unstable bandwidth.
Note that it is possible for σ to be complex. The imaginary part of sigma corresponds to the phase
speed of the wave. Consider, for example, the values R0 = 9, R1 = 11, µi = 2, µ1 = 8, µo = 10,
Q = 1, T0 = 1, and T1 = 1. Then, for a range of wavenumbers, σ is complex. In particular, for n = 3
we get σ = −0.0019 ± 0.0002i. Figure 5 shows σR versus the wavenumber n. σ is complex when
the two curves coincide. This is a unique feature of multi-layer radial flows because σ is always
real for both two-layer radial flow and multi-layer rectilinear flow. Notice that in our example, the
complex σ has a negative real part. Therefore, this complex growth rate corresponds to a stable
wave. We believe this to be the only case in which σ is complex.

FIG. 5. Plot of the real part of the growth rate σR versus the wavenumber n for R0 = 9, R1 = 11, µi = 2, µ1 = 8, µo = 10,
Q = 1, T0 = 1, and T1 = 1.
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We now consider this solution in some limiting cases. First, consider the thick-layer limit when
R1 >> R0. In this case, the terms that are multiplied by (R1/R0)n dominate those that are multiplied
by (R0/R1)n. Therefore,

a → −(µ1 + µi)(µo + µ1)
(
R1

R0

)n
, (22)

b→
(µ1 + µi)

E1

nR2
1

− Qµ1

2πR2
1

 + (µo + µ1)
E0

nR2
0

− Qµ1

2πR2
0



(
R1

R0

)n
, (23)

c → −
E0

nR2
0

− Qµ1

2πR2
0


E1

nR2
1

− Qµ1

2πR2
1


(
R1

R0

)n
. (24)

Using (22)-(24),

b2 − 4ac →
(µ1 + µi)

E1

nR2
1

− Qµ1

2πR2
1

 − (µo + µ1)
E0

nR2
0

− Qµ1

2πR2
0




2 (
R1

R0

)2n
.

We denote σ+ = (−b +
√
b2 − 4ac)/(2a) and σ− = (−b −

√
b2 − 4ac)/(2a). Then after some alge-

braic manipulation we obtain

σ+ =
Qn

2πR2
0

µ1 − µi
µ1 + µi

− Q
2πR2

0

− T0

µ1 + µi

n

n2 − 1


R3

0

, (25)

σ− =
Qn

2πR2
1

µo − µ1

µo + µ1
− Q

2πR2
1

− T1

µo + µ1

n

n2 − 1


R3

1

. (26)

Note that σ+ is the two-layer growth rate at the inner interface and σ− is the two-layer growth rate
at the outer interface. This is what we expect since the interfaces do not interact in the thick-layer
limit.

Next we consider the thin-layer limit. Fix R and consider the limit as R0,R1→ R. Then, in
particular, (R0/R1)n, (R1/R0)n → 1 for all n. In addition,

E0→ Qn2

2π
(µ1 − µi) − Qn

2π
µi − T0

n4 − n2

R
, (27)

E1→ Qn2

2π
(µo − µ1) − Qn

2π
µo − T1

n4 − n2

R
, (28)

and after some simplification

a → −2µ1(µo + µi), (29)

b→ 2µ1

(
E0

nR2 +
E1

nR2 −
Q

2πR2 (µo + µi)
)
, (30)

c = 2µ1
Q

2πR2

(
E0

nR2 +
E1

nR2

)
. (31)

Using (29)-(31)

b2 − 4ac →


2µ1

(
E0

nR2 +
E1

nR2 +
Q

2πR2 (µo + µi)
)2

.

Then

σ+ =
4µ1


Q

2πR2 (µo + µi)


−4µ1(µo + µi)
= − Q

2πR2 , (32)

which is independent of n and stable, and

σ− =
Qn

2πR2

µo − µi
µo + µi

− Q
2πR2 −

T0 + T1

µo + µi

n

n2 − 1


R3 . (33)
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This expression is the growth rate of a single interface at R separating fluids with the viscosities of
the outer and inner fluids and with its interfacial tension equal to the sum of the interfacial tensions
of the two interfaces.

2. Upper bounds on the growth rate

To obtain upper bounds on σR we take the Ordinary Differential Equation (7), multiply by
σ +Q/(2πr2) µ1 f ∗(r), and integrate from R0 to R1. Then

 R1

R0


r3 f ′(r)′ f ∗(r)(σµ1 +

Qµ1

2πr2

)
dr − n2 − 1

  R1

R0

r | f (r)|2
(
σµ1 +

Qµ1

2πr2

)
dr = 0.

Using integration by parts on the first term and using the interface conditions (14) and (16), we get
E1 − Qµ1

2π
− σR2

1(µ1 + nµo)

| f (R1)|2 +


E0 +

Qµ1

2π
− σR2

0(nµi − µ1)

| f (R0)|2

− σµ1

 R1

R0

r3| f ′(r)|2dr + n2 − 1
  R1

R0

r | f (r)|2dr


− Qµ1

2π

 R1

R0

r | f ′(r)|2dr + n2 − 1
  R1

R0

| f (r)|2
r

dr

+
Qµ1

2π

 R1

R0

2 f ′(r) f ∗(r)dr = 0.

(34)

But note that | f (r)|2′ = ( f (r) f ∗(r))′ = f ′(r) f ∗(r) + f (r)( f ∗(r))′. (35)

Therefore,
 R1

R0

2 f ′(r) f ∗(r)dr =
 R1

R0

| f (r)|2′ + f ′(r) f ∗(r) − f (r)( f ∗(r))′dr

= | f (R1)|2 − | f (R0)|2 +
 R1

R0

f ′(r) f ∗(r) − f (r)( f ∗(r))′dr.

Using this expression in (34) and solving the resulting equation for σ gives

σ =
E0| f (R0)|2 + E1| f (R1)|2 + Qµ1

2π I0 − Qµ1
2π I1

R2
0(nµi − µ1)| f (R0)|2 + R2

1(µ1 + nµo)| f (R1)|2 + µ1I2
, (36)

where

I0 =
 R1

R0

f ′(r) f ∗(r) − f (r)( f ∗(r))′dr, (37)

I1 =
 R1

R0

(
r | f ′(r)|2 + n2 − 1

 | f (r)|2
r

)
dr, (38)

I2 =
 R1

R0


r3| f ′(r)|2 + n2 − 1


r | f (r)|2 dr. (39)

Note that I1 and I2 are both real and positive for a non-zero f (r). Also note that the integrand of I0 is
the difference of complex conjugates and is thus purely imaginary. Let σR denote the real part of σ
and σi denote the imaginary part. Then

σR =
E0| f (R0)|2 + E1| f (R1)|2 − Qµ1

2π I1
R2

0(nµi − µ1)| f (R0)|2 + R2
1(µ1 + nµo)| f (R1)|2 + µ1I2

(40)

and

iσi =

Qµ1
2π I0

R2
0(nµi − µ1)| f (R0)|2 + R2

1(µ1 + nµo)| f (R1)|2 + µ1I2
. (41)

We wish to bound σR. We do this by invoking the following lemma.
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Lemma 1. Let f (r) solve the differential equation (7) and I2 be defined by (39). Then

I2 ≥ n g(R0,R1)
(
λ1R2

0| f (R0)|2 + λ2R2
1| f (R1)|2

)
+ R2

0| f (R0)|2 − R2
1| f (R1)|2, (42)

where

g(r, s) =

s
r

n −  r
s

n
s
r

n
+

r
s

n , (43)

for any λ1, λ2 > 0 such that λ1 + λ2 ≤ 1.

Proof. If f (r) solves (7), then
r3 f ′(r)′ =

n2 − 1

r f (r).

Using the product rule,
r3 f ′(r) f ∗(r)′ = r3| f ′(r)|2 + r3 f ′(r)′ f ∗(r) = r3| f ′(r)|2 + n2 − 1


r | f (r)|2.

Therefore,

I2 =
 R1

R0


r3 f ′(r) f ∗(r)′dr = R3

1 f
′(R1) f ∗(R1) − R3

0 f
′(R0) f ∗(R0). (44)

The solution to (7) can be written as

f (r) =

f (R1)

(
R0
R1

)n−1 − f (R0)
 (

r
R0

)−n−1
+

f (R0)

(
R0
R1

)n+1 − f (R1)
 (

r
R1

)n−1

(
R0
R1

)2n − 1
. (45)

Using expressions for f ′(R0) and f ′(R1) derived from (45) in equation (44) and then after some
algebraic manipulation, we get

I2 =
n(R2

1| f (R1)|2 + R2
0| f (R0)|2)

g(R0,R1)
− 2nR0R1[ f ∗(R0) f (R1) + f (R0) f ∗(R1)](

R1
R0

)n −
(
R0
R1

)n

+ R2
0| f (R0)|2 − R2

1| f (R1)|2,
where g(·, ·) has been defined in (43). But

f ∗(R0) f (R1) + f (R0) f ∗(R1) = 2Re( f (R0) f ∗(R1)) ≤ 2| f (R0)|| f (R1)|.
Therefore,

I2 >
n(R2

1| f (R1)|2 + R2
0| f (R0)|2)

g(R0,R1)
− 4nR0R1| f (R0)|| f (R1)|(

R1
R0

)n −
(
R0
R1

)n + R2
0| f (R0)|2 − R2

1| f (R1)|2.

Let b = ln
((

R1
R0

)n)
, ζ = R0| f (R0)|, and χ = R1| f (R1)|. Then

I2 > n F(ζ, χ) + ζ2 − χ2, (46)

where

F(ζ, χ) = 1
sinh(b)


ζ2 cosh(b) − 2ζ χ + χ2 cosh(b) .

We recall from Daripa23 the following result:

F(ζ, χ) ≥ tanh(b)(λ1ζ
2 + λ2χ

2),
which holds for any λ1 + λ2 ≤ 1. Inserting this equality in (46), we obtain

I2 ≥ n tanh(b) λ1ζ
2 + λ2χ

2 + ζ2 − χ2.

By reinserting the values of b, ζ , and χ, we obtain Lemma 1.
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We now use this inequality in expression (40). Since the denominator is now positive, we may
also ignore the negative term in the numerator. Therefore,

σR <
E0| f (R0)|2 + E1| f (R1)|2

nR2
0 (µi + µ1λ1g(R0,R1)) | f (R0)|2 + nR2

1 (µo + µ1λ2g(R0,R1)) | f (R1)|2
.

We consider four cases:

1. If E0 < 0 and E1 < 0, then σR < 0.
2. If E0 < 0 and E1 > 0, then we can neglect the negative term E0| f (R0)|2 in the numerator and the

corresponding positive term in the denominator to get

σR <
E1

nR2
1 (µo + µ1λ2g(R0,R1))

.

3. If E0 > 0 and E1 < 0, we neglect the negative term E1| f (R1)|2 in the numerator and the corre-
sponding positive term in the denominator to get

σR <
E0

nR2
0 (µi + µ1λ1g(R0,R1))

.

4. If E0 > 0 and E1 > 0, then all terms are positive. We use the following inequality which holds
for any N if Ai > 0, Bi > 0, and Xi > 0 for all i = 1, . . . ,N . Then

N

i=1

AiXi

N

i=1

BiXi

≤ max
i


Ai

Bi


.

By using this inequality with N = 2, we get

σR < max
E0

nR2
0 (µi + µ1λ1g(R0,R1))

,
E1

nR2
1 (µo + µ1λ2g(R0,R1))

 . (47)

Clearly, the upper bound (47) holds for the second and third cases above. Therefore, it holds for all
unstable modes.

We now see the results for several different combinations of λ1 and λ2. First, consider λ1
= λ2 = 0. Note that this minimizes the denominator and thus gives the worst possible upper bound
among all choices of λ ′is. This choice yields the upper bound

σR < max
E0

nR2
0µi

,
E1

nR2
1µo

 . (48)

Then it is easily seen from the maximum value that each of the two terms take over all waves that
the absolute upper bound is given by

σu
R = max



Qn0

2πR2
0

(
µ1 − µi

µi

)
− Q

2πR2
0

− T0
n3

0 − n0

R3
0

1
µi

 ,
Qn1

2πR2
1

(
µo − µ1

µo

)
− Q

2πR2
1

− T1
n3

1 − n1

R3
1

1
µo


 , (49)

where n0 =

QR0(µ1 − µi)/(6πT0) + 1/3 and n1 =


QR1(µo − µ1)/(6πT1) + 1/3. Compare these

values to the value of nm in the case of two-layer flow (see Sec. II). Note that n0 and n1 correspond
to the values of nm for flows with only the inner and outer interface, respectively. We find that the
absolute upper bound is minimized by the choice of interfacial tensions

T0 =
QR0(µ1 − µi)

4π
, T1 =

QR1(µo − µ1)
4π

. (50)
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As in the two-layer case, these values of T0 and T1 are the values of interfacial tension that corre-
spond to n0 = n1 = 1. Therefore, for all values of T0 and T1 that are greater than the expressions
given in (50) will have n = 1 as their most unstable wave and the absolute upper bound will become

σu
R = max




Q
2πR2

0

(
µ1 − 2µi

µi

) ,


Q
2πR2

1

(−µ1

µo

)
 (51)

which is independent of T0 and T1 and negative whenever µ1 < 2µi.
For improved estimates, we can choose nonzero values for λi. Of particular interest is λ1 = 1

and λ2 = 0, which minimizes the term corresponding to the inner interface. This gives the upper
bound

σR < max
E0

nR2
0 (µi + µ1g(R0,R1))

,
E1

nR2
1µo

 . (52)

Conversely, we can consider λ1 = 0 and λ2 = 1 which minimizes the term corresponding to the
outer interface and get

σR < max
E0

nR2
0µi

,
E1

nR2
1 (µo + µ1g(R0,R1))

 . (53)

Note that both σ+ and σ− given by (21) will satisfy these upper bounds.

B. Multi-layer flows

We now consider the case of an arbitrary number of fluid layers (see Figure 6). Let there be
N intermediate layers of fluid—and thus N + 2 total layers of fluid—with N + 1 interfaces at R0 <
R1 < · · · < RN−1 < RN . The respective interfacial tensions are T0, . . . ,TN . As before, the fluid in the
inner region has viscosity µi and the fluid in the outer region has viscosity µo. For j = 1, . . .N, the
fluid in the annulus Rj−1 < r < Rj has viscosity µ j. We assume that µi < µ1 < µ2 < · · · < µN < µo.

Equation (7) holds within each layer of fluid. Therefore, the solution, f (r), is of the form

f (r) =

A0rn−1 + B0r−(n+1), r < R0

Ajrn−1 + Bjr−(n+1), Rj−1 < r < Rj, 1 ≤ j ≤ N
AN+1rn−1 + BN+1r−(n+1), r > RN

, (54)

where the interface conditions are given by equation (11) at each r = Rj. As in the three-layer
problem, we require that B0 = 0 and AN+1 = 0 so that the disturbances go to zero as r → ∞, and

FIG. 6. N-layer flow.
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there is no singularity at r = 0. Using (54) in (11) leads to the following expressions for the interface
conditions on the inner and outermost interfaces:

σ +
Q

2πR2
0

 µ1R3
0( f +)′(R0) = −


E0 +

Qµ1

2π
− σR2

0(nµi − µ1)

f (R0), (55)

σ +
Q

2πR2
N

 µNR3
N( f −)′(RN) =


EN − QµN

2π
− σR2

N(µN + nµo)

f (RN), (56)

where

E0 =
Qn2

2π
(µ1 − µi) − Qn

2π
µi − T0

n4 − n2

R0
, EN =

Qn2

2π
(µo − µN) − Qn

2π
µo − TN n4 − n2

RN
.

For the intermediate interfaces, we have for j = 1, . . . ,N − 1

σ +
Q

2πR2
j

 R
3
j(µ j( f −)′(Rj) − µ j+1( f +)′(Rj))

=


E j +

Q
2π

(µ j+1 − µ j) + σR2
j(µ j+1 − µ j)


f (Rj),

(57)

where

E j =
Qn2

2π
(µ j+1 − µ j) − Tj

n4 − n2

Rj
.

Note that there are (2N + 2) constants to be determined in equation (54). The function f (r) must be
continuous across each of the N + 1 interfaces. This leaves N + 1 free constants. The set of N + 1
interface conditions gives a system of the form Ax = 0 where x is a vector of length N + 1 and
A is a square matrix. For this equation to have nontrivial solutions, we need det(A) = 0. Since the
interface conditions are linear in σ, this results in an N + 1 degree polynomial for σ. Therefore,
there are at most N + 1 distinct values of σ for each wavenumber n.

We now return to equation (7) which holds for Rj−1 < r < Rj for any 1 ≤ j ≤ N . We multiply
by


σ +Q/(2πr2) µ j f ∗(r) and integrate from Rj−1 to Rj to get

 R j

R j−1

(
r3 f ′(r)′ f ∗(r) − n2 − 1


r | f (r)|2

) (
σµ j +

Qµ j

2πr2

)
dr = 0.

Following the procedure from the three-layer case, we use integration by parts on the first term and
insert the interface conditions. Then we sum these expressions over all values of j to get

E0 +
Qµ1

2π
− σR2

0(µ1 − nµi)

| f (R0)|2

+

N−1

j=1


E j +

Q
2π

(µ j+1 − µ j) + σR2
j(µ j+1 − µ j)


| f (Rj)|2

+


EN − QµN

2π
− σR2

N(µN + nµo)

| f (RN)|2

−
N

j=1

µ j

 R j

R j−1

r3| f ′(r)|2
(
σ +

Q
2πr2

)
dr

 +
Q
2π

N

j=1

µ j

 R j

R j−1

2 f ′(r) f ∗(r)dr


−
N

j=1



n2 − 1

  R j

R j−1

r | f (r)|2
(
σ +

Q
2πr2

)
dr

 = 0.

Using that
 R j

R j−1

2 f ′(r) f ∗(r)dr = | f (Rj)|2 − | f (Rj−1)|2 +
 R j

R j−1

f ′(r) f ∗(r) − f (r)( f ∗(r))′dr
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and solving for σ gives the expression

σ =

N

j=0

E j | f (Rj)|2 +
Q
2π

J0 − Q
2π

J1

N

j=0

Fj | f (Rj)|2 + J2

, (58)

where F0 = R2
0(nµi − µ1), Fj = R2

j(µ j − µ j+1) for 1 ≤ j ≤ N − 1, FN = R2
N(µN + nµo) and

J0 =

N

j=1

µ j

 R j

R j−1

f ′(r) f ∗(r) − f (r)( f ∗(r))′dr
 ,

J1 =

N

j=1

µ j

 R j

R j−1

(
r | f ′(r)|2 + n2 − 1

 | f (r)|2
r

)
dr

 ,

J2 =

N

j=1

µ j

 R j

R j−1


r3| f ′(r)|2 + n2 − 1


r | f (r)|2 dr .

Again, J0 is the difference of complex conjugates and is purely imaginary. Therefore,

σR =

N

j=0

E j | f (Rj)|2 − Q
2π

J1

N

j=0

Fj | f (Rj)|2 + J2

. (59)

Lemma 1 implies that for any j = 1, . . . ,N ,
 R j

R j−1


r3| f ′(r)|2 + (n2 − 1)r | f (r)|2 dr

≥ n g(Rj−1,Rj)
(
λ j,1R2

j−1| f (Rj−1)|2 + λ j,2R2
j | f (Rj)|2

)
+ R2

j−1| f (Rj−1)|2 − R2
j | f (Rj)|2,

for any λ j,1, λ j,2 ≥ 0 such that λ j,1 + λ j,2 ≤ 1, where g(·, ·) has been defined in (43). Therefore,

J2 ≥
(
λ1,1µ1 n g(R0,R1)R2

0 + µ1R2
0

)
| f (R0)|2

+

N−1

j=1

R2
j

(
λ j,2µ j n g(Rj−1,Rj) + λ j+1,1µ j+1 n g(Rj,Rj+1) + (µ j+1 − µ j)

)
| f (Rj)|2

+

(
λN,2µN n g(RN−1,RN)R2

N − µNR2
N

)
| f (RN)|2.

Using this expression in place of J2 and ignoring the negative integral term in the numerator, we get

σR <

N
j=0 E j | f (Rj)|2

N
j=0 nR

2
jG j | f (Rj)|2

, (60)

where

G0 = λ1,1µ1g(R0,R1) + µi,

G j = λ j,2µ jg(Rj−1,Rj) + λ j+1,1µ j+1g(Rj,Rj+1), 1 ≤ j ≤ N − 1

GN = λN,2µNg(RN−1,RN) + µo
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for any choice of λ j,k’s such that λ j1 + λ j2 ≤ 1 for all j. In particular this means that for all unstable
modes,

σR < max
0≤ j≤N


E j

nR2
jG j

 . (61)

Note that when N = 1, this corresponds with the three-layer upper bound, (47), where λ1 = λ1,1 and
λ2 = λN,2.

C. Special cases

In this section, we show how to construct appropriate limits in order to recover well-known
results for rectilinear flows and a special case for radial flows. This analysis in turn establishes a
connection between instabilities in radial and rectilinear geometries.

1. Connection to rectilinear flow

The curvature of the interface is an important physical aspect of this radial flow configuration.
However, as more fluid is injected into the cell, the curvatures of the interfaces decrease. In partic-
ular, as the radius of a circular interface goes to infinity, the curvature goes to zero. Additionally,
since an interface at Rj moves with velocity Q/(2πRj), the inner interfaces move faster than the
outer interfaces. Therefore, if interfaces are located at Rj and Rk, then the ratio Rj/Rk approaches 1
as more fluid is pumped into the cell.

In light of this information, we investigate the zero curvature limit. Let Rj → ∞ for 0 ≤ j ≤ N
such that Rj/Rk → 1 for all 0 ≤ j, k ≤ N and also Q,n → ∞ such that Q/(2πR0) and n/R0 are con-
stants. We denote these constants by U and k, respectively. Note in particular that since R0/Rj → 1
for all j, Q/(2πRj)→ U and n/Rj → k. The equation (7) is rewritten as

f ′′(r) + 3
r
f ′(r) + 1 − n2

r2 f (r) = 0.

In any of the intermediate layers, we will have R0 < r < RN . Therefore, r → ∞ such that n/r → k.
Taking this limit, we are left with

f ′′(r) − k2 f (r) = 0. (62)

Now consider the boundary condition (11) at R = Rj and divide by R3
j . Then

σ +
Q

2πR2
j



µ−( f −)′(Rj) − µ+( f +)′(Rj)



=


σ

Rj
+

Q
2πR3

j

 (µ
+ − µ−) + Qn2

2πR3
j

(µ+ − µ−) − Tj
n4 − n2

R4
j

 f (Rj).

Taking the prescribed limits gives

σ

µ−( f −)′(Rj) − µ+( f +)′(Rj)


=

Uk2(µ+ − µ−) − Tjk4 f (Rj).

Therefore,

µ−( f −)′(Rj) f (Rj) − µ+( f +)′(Rj) f (Rj) =
Uk2(µ+ − µ−) − Tjk4

σ
| f (Rj)|2. (63)

Equations (62) and (63) agree with the equations derived by Daripa23 for rectilinear flow in a
Hele-Shaw cell.

Next, consider a three-layer radial flow. Recall that σ is the solution to a quadratic equation
aσ2 + bσ + c = 0 given by (20). We now require that R0/R1 = exp(−L/R0) for some constant L.
This ensures that R0/R1→ 1 as R0,R1→ ∞. Then, (R0/R1)n = exp(−nL/R0) = exp(−kL). Using
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this limit along with the previously imposed limits, we get

a = e−kL(µ − µi)(µ − µo) − ekL(µ + µi)(µo + µ),
b =


ekL(µ + µi) + e−kL(µ − µi)


ξ − ekL(µo + µ) + e−kL(µ − µo)


τ,

c = τξ(ekL − e−kL),
where τ = − Uk(µ − µi) − T0k3 and ξ =


Uk(µo − µ) − T1k3. This agrees with the exact solution

found for rectilinear flow by Daripa.24

2. Stable inner interface

Recall from equation (9) that the amplitude of the disturbance of an interface at r = R at any
time t is given by

f (R)
σ + Q

2πR2

e
 t
0 σ(s)ds.

Therefore, imposing the condition f (R) = 0 gives a completely stable interface. Consider three-
layer flow in which the inner interface is stable. This is a reasonable assumption if µi >> µ1. The
new eigenvalue problem is defined by




r3 f ′(r)′ − n2 − 1


r f (r) = 0, R0 ≤ r ≤ R1,

f (R0) = 0,

σ +
Q

2πR2
1

 µ1R3
1( f −)′(R1) =


E1 − Qµ1

2π
− σR2

1(µ1 + nµo)

f (R1).

(64)

A solution that satisfies the interface condition at r = R0 must take the form

f (r) = C
Rn

0
rn−1 − CRn

0r
−(n+1)

for some constant C. Plugging this into the interface condition (64)3, we get

σ +
Q

2πR2
1

 µ1R1


(n − 1)

(
R1

R0

)n
+ (n + 1)

(
R0

R1

)n

=


E1

R1
− Qµ1

2πR1
− σR1(µ1 + nµo)

 (
R1

R0

)n
−
(
R0

R1

)n
,

where E1 is given by (17). Solving for σ gives

σ = − Q
2πR2

1

+

Qn

2πR2
1
(µo − µi) − T1

n3−n
R3

1

µ1

(
R1
R0

)n
+

(
R0
R1

)n

(
R1
R0

)n
−
(
R0
R1

)n + µo

,

which agrees with the result obtained by Cardoso and Woods.11

IV. STABILIZATION

We now show that the flow may be stabilized by the addition of many layers of fluid with small
positive jumps in viscosity. First, we consider the upper bound (60) with λ j,k = 0 for all j and k.
Then G j = 0 for 1 ≤ j ≤ N − 1 and

σR <

N
j=0 E j | f (Rj)|2

nR2
0µi | f (Rj)|2 + nR2

N µo | f (Rj)|2
.
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FIG. 7. Plots of exact dispersion relations and the upper bounds (see Eq. (47)) of the growth rate for several different values
of λ1 and λ2. The parameter values are R0 = 20, R1 = 30, µi = 2, µ1 = 5, µo = 10, Q = 10, T0 = 1, and T1 = 1.

We now use the following fact: If E j < 0 for 1 ≤ j ≤ N − 1, then

σR < max


E0

nR2
0µi

,
EN

nR2
N µo


< max



Qn

2πR2
0

(
µ − µi
µi

)
− Q

2πR2
0

− T0
n3 − n
R3

0

1
µi
 ,


Qn

2πR2
N

(
µo − µ

µo

)
− Q

2πR2
N

− TN n3 − n
R3
N

1
µo


 ,

where µ is any value such that µ1 ≤ µ ≤ µN . The last inequality above follows since µ1 − µi
≤ µ − µi and µo − µN ≤ µo − µ. This is the three-layer upper bound when the intermediate layer
viscosity is µ. Therefore, this is an improvement over the three-layer upper bound if E j < 0 for
1 ≤ j ≤ N − 1. We consider these terms. Recall that

E j =
Qn2

2π
(µ j+1 − µ j) − Tj

n4 − n2

Rj
.

We investigate the zeros of this function. The only nonzero values of n for which E j = 0 occur when
Q(µ j+1 − µ j)/2π − Tj(n2 − 1)/Rj = 0. The positive value of n that satisfies this, which we denote
n j, is given by n j =


QRj(µ j+1 − µ j)/(2πTj) + 1. By observing that E j is negative for large enough

n, we can deduce that E j < 0 for all n > n j. Note that E j > 0 for n = 1 whenever µ j+1 − µ j > 0.
However, by choosing sufficiently small jumps in viscosity at the intermediate interfaces, we can
ensure that E j < 0 for all n ≥ 2. In particular, this is true when n j < 2. This is satisfied when

(µ j+1 − µ j) <
6πTj

QRj
. (65)

Note that this expression does not depend on the thickness of the layer. Therefore, we can include
many thin layers, each with a small jump in viscosity. To see this, consider the situation in which the
innermost interface is at R0 and the outermost interface is at RN (where the value of N is yet to be
determined). We fix some values for µ1 and µN . We assume that the minimum value of interfacial
tension between any two layers of fluid is given by some number T = minTj. Then, let N be the
unique integer such that

(N − 2) < (µN − µ1)QRN

6πT
≤ (N − 1). (66)

Then, we let

Rj = R0 +

(
RN − R0

N

)
j, 1 ≤ j ≤ N − 1, (67)
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FIG. 8. A plot of the maximum value of the growth rate (see Eq. (21)) versus the viscosity of the intermediate layer, µ1. In
the left plot, T1 is held constant at T1 = 1 while T0 varies. In the right plot, T0 is held constant at T0 = 1 while T1 varies. The
other parameter values are R0 = 20, R1 = 22, µi = 2, µo = 10, and Q = 10.

µ j+1 = µ j +
6πT
QRN

, 1 ≤ j ≤ N − 2. (68)

Since, 6πT/(QRN) < 6πTj/(QRj) for all 1 ≤ j ≤ N − 1, it is clear that (68) ensures that (µ j+1
− µ j) < 6πTj/(QRj) for 1 ≤ j ≤ N − 2. It remains to show that this holds for the interface between
the fluids of viscosity µN−1 and µN . Note that (68) can be rewritten as µ j+1 = µ1 + 6πT j/(QRN).
Therefore, µN−1 = µ1 + (N − 2)6πT/(QRN). Using this equality, (66), and some algebraic manip-
ulation one obtains 0 < µN − µN−1 < 6πT/(QRN). Therefore, (65) holds for all 1 ≤ j ≤ N − 1,
and this system has the property that E j < 0 for all n ≥ 2. Since this can be done for arbi-
trary values of µ1 and µN , we may choose these values to be such that the destabilizing terms
(Qn/2πR2

0) ((µ1 − µi)/µi) and (Qn/2πR2
N) ((µo − µN)/µo) in the upper bounds are arbitrarily small.

As an example of this procedure, consider the values Q = 10, µi = 2, µo = 10, R0 = 20, and
RN = 30. We choose fluids for the innermost and outermost intermediate layers so that µ1 = 2.05,
µN = 9.96, and T0 = TN = 1. With these choices, the terms E0 and EN will be negative for all
n ≥ 1. If all other fluids can be chosen so that Tj ≥ 1 for all j, then, according to equation (66),
N = 127. Using 128 evenly spaced interfaces with radii given by (67) and fluid viscosity jumps of
π/50 ≈ 0.063, E j < 0 for all 1 ≤ j ≤ N − 1 and n ≥ 2.

V. NUMERICAL RESULTS

We now use the dispersion relation that we found in Sec. III A 1 to numerically investigate the
effect of different parameters on the growth rate in three-layer flow.

FIG. 9. Plots of the neutral wavenumbers and most dangerous wavenumber, nm, versus the viscosity of the intermediate
layer, µ1, for R0 = 20, R1 = 22, µi = 2, µo = 10, Q = 10, T0 = 1, and T1 = 1.
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FIG. 10. A plot of the unstable bandwidth versus µ1 for R0 = 20, R1 = 22, µi = 2, µo = 10, Q = 10, T0 = 1, and T1 = 1.

A. Validation of the upper bounds

First, we wish to validate the upper bound (47). In Figure 7, we plot the same dispersion
curves as in Figure 4, labeled σ+R and σ−R, but include the upper bound using several different
values of λ1 and λ2. The parameter values are R0 = 20, R1 = 30, µi = 2, µ1 = 5, µo = 10, Q = 10,
T0 = 1, and T1 = 1. The first upper bound we plot uses the values λ1 = λ2 = 0. This upper bound
is given in equation (48). Recall that this is the worst upper bound. We can see that the upper
bound is, in fact, an upper bound because it is greater than both σ+R and σ−R everywhere inside the
unstable band. Recall that equation (47) consists of two terms, one corresponding to each inter-
face. The discontinuity in the slope of the upper bound corresponds to the point where the term
corresponding to the inner interface is equal to the term corresponding to the outer interface. We
call this wavenumber n∗. When n < n∗, the term corresponding to one of the interfaces is larger,
and when n > n∗, the term corresponding to the other interface is larger. Therefore, in essence, one
region corresponds to wavenumbers where the inner interface is more unstable and the other region
corresponds to wavenumbers where the outer interface is more unstable. Note that qualitatively, σ+R
has a similar shape to the upper bound. We also plotted the upper bound that comes from the values
λ1 = λ2 = 1/2. This gives equal stabilization to the inner and outer interfaces. Note that this upper
bound is an improvement over the previous upper bound, but has a similar shape. For the particular
values of the parameters chosen here, the term corresponding to the inner interface is greater for
n < n∗. Since this is the region where the growth rate is the largest, and, in fact, contains most of the
unstable band, we optimize the upper bound by minimizing this term. Therefore, the maximal upper
bound is given when λ1 = 1 and λ2 = 0. Clearly this upper bound is better than the previous two
choices of the λ’s for the most unstable wavenumbers.

FIG. 11. A plot of the maximum growth rate versus interfacial tension for R0 = 20, R1 = 30, µi = 2, µ1 = 3, µo = 10, and
Q = 10.
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FIG. 12. A plot of the maximum growth rate versus the curvature of the interface for two-layer flow. The parameter values
are µi = 2, µo = 10, Q = 10, and T = 1.

B. The effect of the middle layer viscosity

Recall that we use nm to denote the wavenumber of the most dangerous wave and σM to denote
its growth rate. We now investigate the behavior of σM under changes in the viscosity of the middle
layer, µ1. We allow µ1 to vary between µi and µo, which are 2 and 10, respectively. Here, we use the
values R0 = 20 and R1 = 22 so that there will be sufficient interaction between the interfaces, and
we use Q = 10. Figure 8 shows the results. The plot on the left uses the value T1 = 1 and has curves
corresponding to T0 = 1,2, . . . ,5. The right plot uses T0 = 1 and T1 varies between 1 and 5. For each
set of values T0 and T1, there is a value of µ1 within this range that minimizes σM. We would expect
this because values near µi result in a large destabilizing jump in viscosity at the outer interface and
values near µo result in a large destabilizing jump in viscosity at the inner interface. As T0 increases
in comparison to T1, the value of µ1 that minimizes σM increases because the stabilizing effect
of interfacial tension on the inner interface counteracts the destabilizing effect of a larger viscous
jump. Similarly, as T1 increases in comparison to T0, the value of µ1 that minimizes σM decreases.

In Figure 9, we plot the values of the maximum neutral wavenumber, minimum neutral
wavenumber, and nm versus µ1 for the values T0 = T1 = 1 (which corresponds to the solid line in
each of the two plots in Figure 8). The unstable band consists of those wavenumbers between the
maximum and minimum neutral waves. Note first that there is a value of µ1 that minimizes nm. This
value, seen as the minimum point of the middle curve in Figure 9, is relatively close to the value that
minimizes σM. However, there is a different value of µ1 that minimizes the unstable bandwidth. To
see this, we plot the unstable bandwidth versus µ1 in Figure 10.

FIG. 13. Plots of the neutral wavenumbers and most dangerous wavenumber, nm, versus the radius of the interface for
two-layer flow. The parameter values are µi = 2, µo = 10, Q = 10, and T = 1.
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FIG. 14. Plots of the neutral wavenumbers and most dangerous wavenumber, nm, versus
√
R. The parameter values are

µi = 2, µo = 10, Q = 10, and T = 1.

C. The effect of interfacial tension

Next, we investigate the effect of the interfacial tension on σM. We use the same interfacial
tension at each interface and denote T = T0 = T1. We also use the values R0 = 20, R1 = 30, µi = 2,
µ1 = 3, µo = 10, and Q = 10. Figure 11 shows the results. Note that the values that minimize the
three layer upper bounds as given in (50) are T0 = 15.9155 and T1 = 167.1127. Therefore, we know
from (51) and our choice of µ1 that when T > 167.1127, σM < 0. We see from Figure 11 that, in
fact, σM < 0 for much smaller values of T . Also, σM decreases much more rapidly for small values
of T and appears to approach a fixed value in the large T limit. This agrees with our analysis of the
two-layer case in Sec. II which shows that for large T , n = 1 is the most dangerous wavenumber and
the value of the growth rate at n = 1 is independent of T .

D. The effect of the curvature of the interfaces

We now investigate the stability of the system for different values of the curvature of the
interfaces. To elucidate the results for three-layer flows, we begin by investigating the effect of
curvature in two-layer radial flows. Recall the expression for the growth rate, (12). Also, recall
that nm =


QR(µo − µi)/(6πT) + 1/3. Therefore, as R→ 0, the wave corresponding to n = 1 is

the most dangerous wave. The growth of this wave is given by σM = −(Qµi)/(πR2(µo + µi)). In
the limit as R→ 0, σM decreases without bound like −1/R2. Therefore, the flow is stable as the
curvature of the interface increases to infinity. To investigate the limit as R→ ∞, we use (12) with
n = nm. Since nm is proportional to

√
R, this expression goes to zero as R→ ∞ at the rate R−

3
2 .

FIG. 15. A plot of the maximum growth rate versus the curvature of the inner interface for three-layer flow. The parameter
values are µi = 2, µ1 = 6, µo = 10, Q = 10, T0 = 1, and T1 = 1.
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FIG. 16. Plots of the neutral wavenumbers and most dangerous wavenumber, nm, versus the radius of the inner interface for
three-layer flow. The parameter values are µi = 2, µ1 = 6, µo = 10, Q = 10, T0 = 1, and T1 = 1.

Therefore, σM goes to zero as the curvature of the interface goes to zero. Physically, this results
from the fact that the velocity of the interface goes to zero as R→ ∞. However, between these
two limiting cases, the dependence of σM on the curvature is not monotonic. Figure 12 shows σM

versus the curvature of the interface using the values µi = 2, µo = 10, Q = 10, and T = 1. We see
that for large values of the curvature, the flow is stable. For small values of the curvature, the flow
is unstable, but there is a finite value of curvature for which the flow is most unstable. We can
also see the effect of the curvature on the unstable band and nm. Figure 13 shows the values of the
two neutral wavenumbers and nm versus R. As predicted by the expression for nm above, we see
that as the interface moves outward and the curvature decreases, nm increases. Additionally, this is
true for the maximum neutral wavenumber. This, combined with the fact that the minimum neutral
wavenumber remains relatively fixed as R increases, means that the decrease in curvature results
in an increase in the unstable bandwidth. To investigate the exact rate of this increase in nm and
the unstable bandwidth, we plot nm and maximum neutral wavenumber against

√
R in Figure 14.

Note that after an initial period, the growth of each of these values is linear. Therefore, when the
interfaces are far from the origin, the unstable bandwidth and nm increase proportional to

√
R.

Next, we consider three-layer flow. We adjust the curvature of the inner interface while preserv-
ing the area of the fluid region between the interfaces. This is consistent with the basic solution
whose stability we are investigating. Therefore, as the curvature of the inner interface decreases,
so does the curvature of the outer interface. For Figures 15-17, we fix the area of the middle layer
at 300π. We use viscosity µ1 = 6 for the middle layer and interfacial tension T0 = T1 = 1. As the
interfaces move farther away from the origin, there are several factors at play. First, the curvature
of each interface is reduced. Also, the distance between the interfaces decreases, resulting in greater

FIG. 17. A plot of the maximum neutral wavenumber and most dangerous wavenumber, nm, versus
√
R0. The parameter

values are µi = 2, µ1 = 6, µo = 10, Q = 10, T0 = 1, and T1 = 1.
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interaction between the interfaces. Figure 15 shows σM versus the curvature of the inner interface.
We see similar behavior to the two-layer case. As the curvature goes to zero, σM approaches zero.
There is some finite value of curvature for which the flow is most unstable. When the curvature
is large, the flow is stable. The primary difference occurs for large values of curvature. Recall that
in the two-layer case, σM behaves like −1/R2 in the large curvature limit. However, the curve in
Figure 15 decays much more slowly for large values of curvature. This is due to the fact that the
outer interface’s curvature does not increase without bound. Therefore, it adds to the instability of
the system as a whole. We also plot the neutral wavenumbers as well as nm versus the position of
the inner interface. This plot is in Figure 16. As in two-layer flow, nm and the maximum neutral
wavenumber increase with R0, while the minimum neutral wavenumber remains relatively constant.
Figure 17 shows that as R0 becomes large, the unstable bandwidth and nm increase proportional to√
R0.

VI. CONCLUSIONS

In this paper, we investigate the instability of multi-layer radial Hele-Shaw flows in which each
layer of fluid has a constant viscosity. We obtain the following key results.

1. We provide a new formulation (see Sec. II) of the eigenvalue problem for two-layer radial
Hele-Shaw flows. While previous formulations,4,7,11 which only treat restricted cases, make use
of the potential function, the current formulation does not. The advantage of this approach is
that it can be extended to flows with variable viscosity fluids, which is the subject of a separate
work in progress. Our formulation is able to reproduce the results previously found with the
potential function approach.

2. We perform linear stability analysis of the multi-layer radial flows and obtain the associated
eigenvalue problem. We perform analysis on this eigenvalue problem and obtain some results,
some of which are summarized below.

3. We give an exact expression for the growth rate, σ, for three-layer flows (see Eq. (21)). Unlike
two-layer radial flow (see Sec. II) and multi-layer rectilinear flow (see Ref. 23), σ can be
complex for three-layer radial flow. We also investigate (see Sec. III A) the thin-layer and
thick-layer limit solutions. In the thick-layer limit, the two values of σ are simply the two-layer
growth rates of each interface. When the width of the middle layer is small, the unstable growth
rate coincides with the two-layer growth rate that comes from the innermost and outermost
fluid, with interfacial tension that is the sum of the interfacial tensions of the two interfaces.

4. Upper bounds are found for the real part of σ, denoted by σR, of the three-layer flow (see
Eq. (47)). The upper bounds depend on two parameters, λ1 and λ2. When both are zero, we
are able to find exact expressions for the wavenumbers that maximize the terms in the upper
bound. These wavenumbers are the same as that of the most dangerous wave for each of the
two individual interfaces in the two-layer setting. The use of these wavenumbers allows us to
find an absolute upper bound on σR. Additionally, we give values of interfacial tension (see
Eq. (50)) that minimize the upper bounds and can completely stabilize the flow. Their formulas
coincide with the value of To in the two-layer setting (see Sec. II).

5. We extend the three-layer upper bounds to flows with an arbitrary number of fluid layers (see
Eq. (61)). Using this upper bound, we are able to show that the use of many thin layers of fluid
with sufficiently small positive jumps in viscosity (in the direction of the basic velocity) at the
interfaces improves upon the upper bound for the three-layer case. This indicates that it is likely
that the addition of many layers of fluid with slowly varying viscosities is a good strategy for
stabilization of the flow.

6. We reproduce several old results as limiting cases of the expression for σ. In particular, we
obtain the growth rate of rectilinear Hele-Shaw flows found by Daripa.23,24 We also show the
result of Cardoso and Woods11 by assuming that the inner interface is stable.

7. We numerically investigate the theoretical results for three-layer flows. We are able to validate
the upper bounds and investigate the significance of the parameters λ1 and λ2. We also show
that there are values of the middle layer viscosity that minimize both the instability of the most
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dangerous wave and the unstable bandwidth. We show that the flow is completely stable for
large enough values of interfacial tension.

8. We investigate the effect of curvature on the system. It is well known that rectilinear flow is al-
ways unstable when less viscous fluids are driving more viscous fluids.23,24 This does not hold
for radial flow in which the basic flow has curvature. We show that for large values of curva-
ture, the flow is stable. The effect of curvature on the system is found to be non-monotonic, as
there is a finite value of curvature that maximizes the instability of the flow. As the interfaces
move far away from the origin and the curvature goes to zero, σM goes to zero because the
velocity of the interface goes to zero. This is consistent with two-layer flows as evident by
Eq. (12).
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