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POLYMER FLOODS: A CASE STUDY OF NONLINEAR
WAVE ANALYSIS AND OF INSTABILITY CONTROL
IN TERTIARY OIL RECOVERY*

PRABIR DARIPAtT, JAMES GLIMMTti, BRENT LINDQUISTY, AND OLIVER MCBRYANT§

Abstract. Polymer flooding in oil reservoir simulation is considered in two space dimensions. The wave
structures associated with such a process give rise to interesting phenomena in the nonlinear regime which
have direct bearing on the efficiency of oil recovery. These waves influence and can prevent surface instabilities
of the fingering mode. In this paper we resolve these waves by a front tracking method. We consider the
fingering problem and the issue of oil recovery for the polymer flood. The details of these two phenomena
depend on the separation between the waves and upon the viscosity contrast between the oil, water and
polymer. We identify a nonlinear transfer of instability between adjacent waves and a nonlinear enhancement
of recovery due to successive waves. The conclusions produced by this work are also pertinent to tracer
flooding.

One interesting conclusion applies to polymer injection followed by pure water injection. In this case
the instability is transferred to the polymer-water interface, and the pure water region can break through
the polymer to achieve direct contact with the oil. The polymer is left in narrow ribbons parallel to the main
flow field and is by-passed by pure water. The effect of narrow regions of by-passed polymer can be simulated
by the front tracking method and is not equivalent to numerical or physical diffusion, which would distribute
the polymer more uniformly and retard the breakthrough of water through the polymer layer.
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displacement, nonlinear waves, tertiary oil recovery
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1. Introduction. Polymer flooding of oil reservoirs is known to be an effective
method of tertiary oil recovery [38], [41]. Such a process involves injection of water
thickened with polymer (possibly after the reservoir has been flooded with pure water
during a secondary recovery phase). Since a polymer-thickened aqueous phase is more
viscous than pure water, an increase in the net oil recovery is achieved through (1)
inhibition of the growth rate of the fingering instability and (2) an increase of the
saturation level behind the polymer-treated aqueous bank. The study of these two
effects is the subject of this paper, namely instability control and nonlinear wave
analysis. We consider banks formed in the displacement process to be interfaces across
which the aqueous saturation and/or the polymer concentration effectively change
discontinuously. The polymer model studied here gives rise to a rich wave structure
in the flow field including several such discontinuity interfaces as well as smoothly
varying rarefaction waves. The recovery properties of the polymer flood can be under-
stood in terms of this wave structure and its relation to the parameter space of the
problem. We perform a study of the fingering instability for the interfaces present in
the polymer flood. See [5] for a treatment of a related problem in stratified Hele-Shaw
flow.
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Front tracking, as developed by the authors and co-workers [9], [14]-[22] is the
numerical method used in this study. The idea of this method is to use a moving lower
dimensional grid (a system of curves in two dimensions) to represent solution discon-
tinuities. The method uses analytic or asymptotic solutions directly within the computa-
tional process; these tools give extraordinarily sharp resolution to the dominant solution
features. This is accomplished by the use of mathematical analysis and physical
understanding directly within the computational algorithm.

This circle of ideas has been applied in other contexts, usually where solutions
of high quality are of critical importance and where conventional difference methods,
which excel for smooth solutions, perform poorly. For example, we note that the
dominant engineering code for the study of deformations in metals at high strain rates
uses master-slave interfaces to resolve shear bands [27], [44]. The only satisfactory
numerical treatment of moving artificial heart valves [39] uses moving points to
represent the valve position. A complicated flow pattern about a convex body was
given in [49] using front tracking methods. Several interface methods have been
developed for two fluid, incompressible Euler flow. Besides the more general front
tracking approach [23], we mention various pure interface methods, such as boundary
integral methods and vortex methods [6], [7], [29], [33], [47] and complex variable
methods [34]. A simplified early version of front tracking was successfully combined
with adaptive grid methods [12]. Hoegh-Krone and co-workers also report progress
with front tracking in two dimensions [24]. The one-dimensional front tracking code
of Swartz and Wendroff [45] has given the only satisfactory solution of the Noh
problem [36]. Plohr’s one-dimensional tracking [40] has given three orders of magnitude
improvement in the accuracy of the solution of the McCall [32] problem. P. Charrier
and B. Tessieras [8] write, with reference to their one-dimensional front tracking
method, “The quality of the results obtained by front tracking schemes (high resolution
in discontinuity, high precision in regular zones, no dissipation in the shock) justifies
interest in the method.” The contributions of Lazarus [31] should also be cited.

A list of what has been regarded as the essential scientific obstacles to front
tracking was given in [9]. At the time of the writing of that paper and especially since
then, many of these obstacles have been overcome. It seems correct to state that the
scientific proof of principle for front tracking as a generic method for adaptive resolution
of solution discontinuities has been achieved, in large part due to the work of the
authors and co-workers, and that this proof of principle has been confirmed by
subsequent investigations of a number of other workers on a wide range of problems.
It was preceded by the adaptation of this method to specific computations by several
workers, in particular Richtmyer and Morton {43] and Moretti [35].

The paper is organized as follows. In § 2 the governing equations of the polymer
flooding process are presented. In § 3 the wave structure associated with the polymer
flooding process is briefly described and some complications for front tracking
algorithms implied by this wave structure are discussed. The results of our numerical
experiments on core floods and quarter five-spot geometries appear in § 4.

2. The polymer model. A model of a polymer flood process in which the pclymer
acts solely as a device for controlling the viscosity of one of two incompressible,
immiscible phases (which we refer to as the aqueous and oil phases) is described by
the following system [25], [41]:

(1a) s, +V - (§f(s, ¢)) = source terms,

(1b) (sc),+V - (¢f(s, ¢)) = source terms,
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(1¢) V - ¥ =source terms,
(1d) D=—A(s, c)Vp.

Here s is the saturation (volume fraction) of the aqueous phase, ¢ is the concentra-
tion of polymer added to the aqueous phase, ¥ is the total seepage velocity, p is the
pressure, A(s, c¢) is the total mobility, and f(s, ¢) is the fractional flow function relating
the aqueous seepage velocity to the total seepage velocity.

Equations (1a) and (1b) are, respectively, the mass conservation laws for the
aqueous phase and the polymer, (1c) is the incompressibility condition, and (1d) is
Darcy’s law relating the total seepage velocity to the pressure gradient. In this model,
the polymer has been assumed to be completely miscible in the aqueous phase and
completely immiscible in the oil phase. Further, the following effects have been
neglected: volumetric swelling of the aqueous phase with added polymer, diffusion of
the polymer, adsorption of the polymer onto the reservoir rock, capillarity and gravity.
For a model of polymer flooding with adsorption effects included see [26]. The reservoir
is assumed to be homogeneous, although this restriction is relaxed in § 4.2.

The total mobility A and the fractional flow function f are defined as

(2) A(s, €)= do(8)tAa(s, 0),  f(s,0)=Aa(s, €)/A(s, ©),

where A(s) and A, (s, ¢) are, respectively, the mobilities of the oil and aqueous phases.
For our purposes the mobilities are taken as follows:
2 2
s (1-53)
(3) Aa(s, ) =—"=,  Aols)= .
Va(c) Vo

The quantities v,(c) and v, are, respectively, the viscosities of the aqueous and
oil phases. We assume the viscosity of the aqueous phase depends linearly on the
polymer concentration

(4) va(c) =, (1+puc),

where v, is the pure water viscosity and the coefficient u characterizes the particular
polymer used as a thickening agent.

In many core flood studies the injection of tracer particles along with an aqueous
phase is also of practical interest. Tracer particles do not change the phase viscosities,
so the model (1)-(4) with u =0 describes injection of tracer particles of concentration
c¢. Equation (1b) becomes decoupled from system (1) and the tracer particles are
advected passively with the background water flow. The waves which arise in tracer
flow are the same as for the polymer problem. Front tracking therefore provides a
method of following these tracer fronts without numerical diffusion.

3. The solution of the Riemann problem. The front tracking algorithm has been
extensively described elsewhere [18], [20], [22]. It requires the solution of the Riemann
problem (RP) for the hyperbolic system (1a), (1b) in order to advance the tracked
discontinuities in the solution. In two space dimensions, as considered here, the
propagation of a tracked discontinuity is achieved by local splitting of the hyperbolic
operator in normal and tangential directions. As the solution is smooth in the tangential
direction on each side of a discontinuity, it suffices to look at the RP solution in one
space dimension, corresponding to an analysis of the propagation of the discontinuity
in the normal direction. Equations (1a) and (1b) in one space dimension can be written
as

(5) s+ (sg(s,0))x=0, b+ (bg(s, b)).=0,
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where b = sc is the polymer volume fraction, and g(s, b) = f(s, b)/s is the water particle
velocity. For the study of the RP solution, the seepage velocity ¢ and the source terms
in (5) have been respectively set to one and zero without any loss of generality. The
global existence of a solution to the above system for arbitrary, but nearly constant,
initial data has been proven in [46] and the RP solution. can be found in [25], [28].
We briefly review the solution here.

The wave structure of the above system can be understood in terms of the waves
associated with the flooding of a reservoir by pure water. For the case of one-
dimensional flooding of a reservoir by pure water, the hyperbolic equation is a single
scalar conservation law
(6) s+ (f(s)), =0,
the familiar Buckley-Leverett equation. For the case of a nonlinear fractional flow
function f(s) € C? having at most a finite number of inflection points (as in immiscible
flow), the Riemann problem solution is described in terms of a single family of waves
consisting of both rarefaction waves (across which s varies smoothly) and shock waves
(across which s varies discontinuously). For the case of a fractional flow function
linear in s (as in miscible flow), the RP solution consists only of contact discontinuities,
across which s jumps discontinuously. No smoothly varying region can occur for the
saturation field in miscible flow unless it is present in the initial data.

The Riemann problem solution to (5) is constructed by using the elementary waves
associated with the system. There are two families of waves, referred to as the C and
S families. The smoothly varying waves (rarefactions) are found by rewriting (5) as

(7) U+A(U)U, =0,
where U = (s, b) and A(U) is the Jacobian matrix:

a(sg(s, b), bg(s, b))
a(s, b) ’

The eigenvector fields e and e, and corresponding eigenvalues A € and A, of A(U)
then determine the rarefaction wave structure. The discontinuous waves (shocks) are
obtained from the jump conditions which are a generalization of the Rankine-Hugoniot
relation.

The S family of waves is identical to that obtained for the immiscible case described
above. It consists of rarefaction waves and shocks across which s changes, continuously
and discontinuously respectively, but across which ¢ = b/s remains constant.

The C family is a degenerate field, analogous to the case of miscible flow mentioned
above, consisting solely of contact discontinuities. Across the contact discontinuity,
both s and ¢ change such that the function g(s, b) remains constant. Since the polymer
is completely miscible in water, there can be no smooth variation in polymer concentra-
tion unless such variation is present in the initial data. The functions c¢(s, b) and g(s, b)
are, respectively, referred to as the Riemann invariants of the S and C fields.

For a system of equations that are strictly hyperbolic, the waves passing through
any point in phase space can be strictly ordered according to their corresponding
speeds. For the polymer flood (5), there is a line in phase space, the transition line 7,
along which the speeds of the S and C families of waves are identical. Hence the
system (5) fails to satisfy the condition of strict hyperbolicity and a generalized entropy
condition due to Lax [30] is applied to obtain a unique solution. One consequence of
this failure of strict hyperbolicity is that no two states that lie on opposite sides of the
transition line in phase space can be connected solely by a contact discontinuity of
the C family.

(8) A(U)=
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The solution to a Riemann problem in one space dimension can be described as
the traversal of phase space {U = (s, ¢)} from a left state U, to a right state Ug.' The
path in phase space consists of a sequence of elements each of which has physical
manifestation as an elementary wave in the #, x plane. The reader is referred to [25]
for the exact construction of the phase space path from any left state (s, c.) to any
right state (sg, cg) for the RP solution to (5). We comment here on the two cases of
interest for the numerical studies described in § 4. Consider the RP for which the right
state U, is pure oil (5o =0, ¢, =0) and the left state U, is an aqueous state of nonzero
polymer concentration. The solution path in phase space (Fig. 3.1) contains, in addition
to other waves, a C-contact and an S-shock which travel at the same speed. If, however,
the right state contains connate water (so # 0) the two discontinuities split with the
S-shock travelling faster. Thus an intermediate layer of polymer free water tends to
separate a right state Up with sp # 0, co =0 from a left state Up with sp #0, cp #O0.
The second case consists of the RP describing the transition from a left state of pure
water Uy, =(1,0) to the polymer-thickened aqueous state Up defined above. The
solution path in phase space (also shown in Fig. 3.1) consists of an S-wave rarefaction
fan from the state U, to an intermediate state U**=(s** 0) and a C-contact
discontinuity from U** to Up.

s

S

2

F1G. 3.1. Two solution paths in phase space: (a) from a left state Up describing a polymer thickened
aqueous phase typical to reservoir tertiary-recovery practices, to a right state Uy, describing a state of pure oil.
The C- and S-shocks described respectively by the paths designated C, and S, travel at the same speed. (b)
from a left state Uy, describing pure water, to a right state Up as in (a). The transition line is labelled 7.

The greater complexity of the wave structure of the Riemann problem solution
for the polymer flood complicates the problem of labelling and identifying the waves
in a tracking algorithm. Since currently only the discontinuity waves are tracked, in
the discussion that follows we shall refer only to shocks of the S and C families.

! Although the fundamental variables for the conservation form (5) are s and b, the solution is drawn
easiest in (s, ¢) space.
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The Riemann problem solution for (5) can contain at most one C-contact and
two S-shocks (for the case of quadratic permeability functions used in (3)). While
identification of the C-contact is unambiguous, each S-shock must be further labelled
before it can be uniquely identified. There does not appear to be a logically consistent
global label, holding for all time and all points on an S-shock once it has been created,
to uniquely identify an S-shock. This is particularly true in flows where shocks begin
to interact with each other or move under the influence of nonconstant reservoir
conditions, i.e., flow hysteresis induced by varying directions of flooding. We propose
that a local labelling system is required, one that can change spatially along any given
wave front and in time.

We present an abstract formulation of this problem. Let & be the state space, or
the space of dependent variables for the system (5). For an n X n system, ¥ < ®". Then
a wave family can be regarded as an n+1 dimensional surface contained in ¥ X &,
defined by the set of all pairs (U, Ug) connected by this family of waves. There are
two connected surfaces, defining the S- and C-waves. However, no finer global
distinction between S-waves can be imposed, as all S-waves can be continuously
deformed into one another. Thus further labelling has the character of local coordinate
systems on a manifold and must be done by overlapping charts. Similar problems arise
in the scalar Buckley-Leverett flow with gravity, where two inflection points in the
flux function allow a double shock to occur within the single mode of the problem
[42]. Some nonconvex stress-strain relations in elasticity give rise to a similar shock
splitting. Shock splitting within a single mode is observed also in the elastic-plastic
regime of strong shock waves in metals.

One such proposal for the polymer flood would use the orientation of the total
seepage velocity as a label, since the flow direction can be reversed along a given shock
front, either at distinct times or at distinct points at the same time. Given the velocity
orientation at a point on the shock front, each side of the shock at this point can be
uniquely labelled as the ahead or behind side. A point on an S-shock would then be
referred to as a point of direct (back) flow if the saturation decreases (increases) as
the shock is crossed from the behind to the ahead side. Analysis of all possible Riemann
problem solutions for the polymer flood show that at most one back flow S-shock will
appear. However, two direct flow S-shocks can appear in the solution but are distin-
guished by their ahead and behind side states. The ahead and behind states for a direct
flow S-shock will either lie solely to the left of, or solely to the right of, the transition
line in phase space. In either case one state may lie on the transition line. Thus a
complete labelling system for the discontinuity waves would involve a quadruple of
labels for each point of a tracked shock: namely its family affiliation (S or C); its flow
direction, which can be specified relative to the tangent vector 7 of the oriented
discontinuity curve as sgn (& X f - 7), where £ is the unit vector out of the computational
plane; the orientation O of the solution gradient with respect to the total fluid velocity,
namely @ =sgn (—Vs - §) usually referred to as direct flow for positive O and backwards
flow for negative 0; and, for the case of direct flow S-shocks, a position designation
in phase space (left or right of the transition line 7). Such issues are not important
for the constant flow studies done here.

4. Results. Three sets of calculations were performed using the polymer model
described above. The first series of calculations studied the development of single
fingers in polymer floods of rectangular cores. The second series studied the growth
of fingers and oil recovery efficiency in quarter five spot floods of homogeneous
reservoirs. The final series compared the fingering and recovery behavior as a function
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of increasing polymer concentration in quarter five spot floods of heterogeneous
Ieservoirs.

4.1. Fingering in core floods. There is a transfer of instability between adjacent
fronts in reservoir recovery processes. In addition, a succession of fronts produces
recovery levels different from those anticipated by a study of single fronts alone. Both
phenomena are aspects of nonlinear wave coupling and interactions which we explore
in the present section.

It is useful for further analysis to understand the growth rates of S- and C-waves
in isolation which arise in the polymer problem. A C-wave in isolation is identical to
the Hele-Shaw interface which has been extensively studied [1]-[4], [13], [37], [48]
and will not be discussed here. We first discuss the growth and recovery behavior of
single fingers in isolation for the S-wave. We consider the displacement of pure oil by
pure water—a process occurring via an S-wave shock followed by an S-wave rarefaction
fan. The calculations are done in a slab core flood geometry, a rectangular domain
x€[0, X1, y €[0, Y], with no-flow boundaries on the sides y =0, Y, inflow at the lower
boundary x =0 and outflow at x=X.

The stability of an S- or C-wave discontinuity is governed by the frontal mobility
ratio, M,

EA(SB’ CB)
4 A(sa, CA),

€)]

where A(s, ¢) is defined in (2) and the states (sg, cg) and (sa, c4) are respectively
defined immediately behind and ahead of the discontinuity. The dependence of Mfc
(for the C-wave discontinuity) and M (for the S-wave shock) on the viscosity ratio

14

Vp

I

(10) r

is shown in Fig. 4.1 for the system (1)-(4). M] and Mf have the following properties:
M7=2 for0<r<,
Mf =1 forr=3 (assuming S,=0,Sz=1),
and
Mfc =r,
Mf=1 forr=1.

The critical mobility ratio M, = 1 marks the limit of stability for planar S and C shocks
to a small amplitude disturbance connecting two piecewise constant states. Since the
linearized growth rate is proportional to (M;—1) (see [11], [14], [19]) and M}: is
unbounded, the C-wave can be more unstable than the S-wave. To understand the
nonlinear wave coupling of S- and C-waves, we first consider the large amplitude
instability of S-waves (also see [10], [14]) over a range of control parameters to which
the linearized theory does not apply. (As mentioned earlier the C-wave is analogous
to the Hele-Shaw interface for which the reader is referred to [1]-[4], [13], [37], [48].)

In Fig. 4.2, we show the development of a single S-wave finger over a sequence
of times. It corresponds to the displacement of pure oil by pure water for the case
r=10 (M =1.4). The initial sine wave perturbation has its amplitude equal to its
wavelength. In Fig. 4.2 and all subsequent relevant figures, the amplitude (height) of
a perturbation finger shall be measured normalized with respect to its initial wavelength,
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FiG. 4.1. The frontal mobility ratio M, for the S-wave and C-wave shocks of the polymer model as a
function of viscosity ratio r of the fluid ahead of the front to that behind the front.

-

FI1G. 4.2. Growth of fingers in immiscible flow: The leftmost frame shows the initial interface separating
two constant states of S=1 ahead and S =0 behind. Successive frames show the time development of this
interface and the rarefaction waves behind this leading interface which is an S-shock. Level curves of saturation
in the rarefaction zone are shown for three values of saturation. The initial viscosity ratio of the behind to ahead
Sluid is 1:10.



POLYMER FLOODS: NONLINEAR WAVE ANALYSIS 361

which for all calculations shown here is the width of the calculational domain. The
plots also show the S-wave family rarefaction fan which develops and trails behind
the leading S-wave shock defining the finger. The contours for saturations equalling
0.8, 0.6 and 0.4 are given in each plot. In Fig. 4.3 we plot the finger growth versus
fractional area behind the front for several values of r. The initial growth is seen to
be linear in time in this large amplitude regime, rather than the exponential growth
found in the linear (small perturbation) regime. The front is unstable even for M, <1
(see the curve for r =2, M, =0.845), the finger achieving a finite growth in finite time.

We now consider displacement by a succession of two interfaces and contrast the
growth and recovery behavior to that of single interfaces acting in isolation. For the
calculations shown here (pure oil displaced by a layer of polymer-thickened water
followed by the continued injection of pure water) the discontinuity separating the
pure oil from the polymer-thickened water consists (as mentioned in § 3) of an S-wave
shock and a C-wave contact discontinuity travelling at precisely the same speed. It is
important to realize, however, that as long as the saturation ahead of this composite
discontinuity remains zero, the composite wave acts exactly as if it consisted of a single
S-wave shock for a water-oil displacement flood of a viscosity ratio r closer to unity. For
this reason we shall refer to the leading discontinuity in the remainder of this discussion
as an S-wave shock. The trailing discontinuity separating the polymer-thickened water
layer from the pure water is a C-wave contact discontinuity.

Assume the properties of the fluids ahead of the S-wave and behind the C-wave
remain fixed. There remain two essential parameters in this problem. The first is the
dimensionless separation between the two discontinuities. The influence of one discon-
tinuity on the other will be a decreasing function of separation between them. When

Height

0 0.25 0.50 0.75 1.00
Area behind the front

F1G. 4.3. Finger height (normalized wrt wavelength) as a function of area behind the front for different
values of viscosity ratio across an S-wave discontinuity.
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the separation is sufficiently large, the stability of each discontinuity is independent
of the other and is governed by individual growth rates. When the separation becomes
small enough, the stability of the combined interfaces is effectively governed by a
single mobility ratio M.4 defined as the ratio of mobilities for the fluid immediately
behind the C-wave to the fluid immediately ahead of the S-wave. The second essential
parameter is the viscosity of the intermediate fluid between the discontinuities. An
increase in the viscosity of the intermediate fluid, caused by an increase of the polymer
concentration, makes the forward S-wave discontinuity more stable and makes the
C-wave discontinuity less stable. Thus in the two interface problem, there is a level
of instability, which can be transferred from one interface to another by a change in
the properties of the intermediate fluid.

From these two observations, one predicts the following behavior for the unstable
regime of the two interface problem under consideration. The more unstable C-wave
will finger with a higher velocity than the S-wave ahead of it, overtake the leading
discontinuity, after which the two waves interact and move as a composite, with a
growth rate determined by the fluids in the extreme (ahead and behind) locations.

This overtake and breakthrough of the pure water region behind the C-wave
occurs at the tip of the finger. Away from the tip, the polymer-thickened aqueous phase
is left in narrow ribbons parallel to the flow field and thus becomes by-passed, making
the polymer presence effectively useless. This effect is captured nicely by the front-
tracking method. As the phenomenon is due to nondiffusive effects, finite difference
methods introducing numerical diffusion would tend to distribute the polymer more
uniformly and consequently predict a greater retardation in the time of breakthrough
of the C-shock through the polymer layer.

We consider a two interface calculation in the same geometry as the single interface
calculations above. The viscosity ratio of the top (oil), middle (polymer-water) and
bottom layer (pure water) is 10:2:1. The initial dimensionless separation (normalized
with respect to the wavelength of the initial perturbations) between the two interfaces
is 3. In Fig. 4.4 we show a sequence of the S- and C-wave discontinuity positions
tracing a history of successive times in the calculation. For clarity, the rarefaction fans
that develop between the two discontinuities and in the region of the finger behind
the C-wave have been suppressed in this figure. In Fig. 4.5 we plot the saturation
contour levels 0.8 and 0.6 as well as the interface positions for the solution at a single
time. From the linear stability analysis and the calculations on single interfaces, the
C-wave (M, =2) is expected to be more unstable than the S-wave (M, =1.18) and the
predicted behavior of overtake, interaction and subsequent movement as a single unit
at the tip is seen to occur (Fig. 4.4).

In Fig. 4.6 we summarize the growth rates expected for the one extreme of widely
separated S- and C-wave interfaces and for the other extreme of a single, interacting,
composite formed after overtake. The figure plots the mobility ratio for these three
interfaces as a function of the viscosity of the intermediate layer (the frontal mobility
ratio of the composite wave is the effective mobility ratio when the interfaces have
zero separation). Figure 4.6 suggests that an increase in the separation between the
two waves for fixed values of the viscosities should have considerable stabilizing effect
on the S-wave and a milder destabilizing effect on the C-wave. This is indeed observed
for the large amplitude case as shown in Fig. 4.7 where the growth rates of the S- and
C-waves are plotted for various values of initial separation between the interfaces at
a fixed value of viscosity (»,, =6) for the intermediate polymer zone. Over the range
of separations studied here, the effect on the growth rate of the C-wave is unnoticeable,
but a large stabilizing effect on the S-wave is seen.
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FIG. 4.4. Large amplitude simulation for S- and C-shocks: stages in the temporal evolution of the S-
(leading interface) and C-waves. The leftmost frame shows the initial position of two interfaces separating three
layers of constant states. Only the middle layer contains polymer. The viscosity ratio for the three layers from
bottom to top is 1:2:10 and the initial separation between the waves is half the wavelength of the initial
perturbation.

F1G. 4.5. Contour plots of saturation for the third frame of Fig. 4.4. For clarity, only two saturation contours
are shown in addition to the leading and trailing shocks.
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F1G. 4.6. The frontal mobility ratio of the S-wave, C-wave and composite wave (see text) as a function
of the viscosity of the intermediate polymer zone.

We now consider the effect of the second parameter, the viscosity of the intermedi-
ate polymer zone. In Fig. 4.8 we plot the growth of the S (leading interface) and the
C (trailing interface) waves for different values of the viscosity of the intermediate
polymer zone. The left and right branch in each of these figures correspond to initial
dimensionless separation between the waves, i.e., initial thickness of the polymer zone
of 1 and 2, respectively. An increase in the viscosity of the intermediate layer has a
stabilizing effect on the S-wave and a destabilizing effect on the C-wave, consistent
with expectations.

The growth rates of the S- and C-waves (slope of the curves in Fig. 4.8) become
less dependent on the viscosity of the intermediate polymer zone as the initial separation
between the waves decreases as seen by a comparison of the left and right branches
near the end of each calculation. This reflects the fact that the effective mobility ratio
of these waves tends towards that of the composite wave as the separation between
these waves goes to zero (see Fig. 4.6). Thus one predicts that the growth rate of the
S-wave will increase from its initial value and eventually approach a constant rate.
One expects the same tendency for the C-wave, though the effect will be much milder
(Figs. 4.7, 4.8). Results shown in Figs. 4.4-4.8 were obtained with 40 x40 elliptic grid
and 20 x 20 hyperbolic grid. When we increased the above grid numbers in Fig. 4.4 by
two-fold, we did not find an appreciable change in the results. We did notice that the
growth rate of the C wave slightly increased under mesh refinement, with the run
being otherwise basically the same.

We briefly address the recovery efficiency of the polymer flood. Figure 4.9 plots
the saturation (s**) that would develop behind the composite, consisting of interacting
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F1G. 4.7. Effect of separation on stability: finger height (normalized wrt wavelength) of the S- and C-shocks
as a function of injected fluid for different values of initial separation between the two interfaces. The viscosity
ratio from bottom to top layer is 1:6:10.

S- and C-waves in the limit of zero separation, as a function of the viscosity (»,,) of
the (thin) intermediate polymer-thickened aqueous layer. Also plotted is the saturation
(s*) developed behind a leading isolated S-wave. The plots are given for two values
of the viscosity ratio v,,/v,. See Fig. 3.1 where s** is the saturation of U** and s* is
the saturation of the state U*. The point to be stressed here is the following: the
recovery effects of polymer strips are much better than that for continued injection of
polymer-thickened water. In the continuous polymer injection case, a rarefaction fan
trailing behind the leading S-wave will continue to sweep oil from behind the leading
front and slowly raise local values from s*. However, the effect is a very slow one,
and economically costly. In contrast to this, the polymer strip provides a piston-like
displacement up to a saturation value s**>s*. The question to be answered by
computer calculations of reservoir flows modelling polymer floods is how well such
polymer regions are retained in more realistic 2 and 3 dimensional flood situations,
taking into account various additional phenomena such as polymer adsorption to the
rock, polymer degradation, reservoir heterogeneities, etc.

4.2. Quarter five-spot floods—homogeneous media. The nonlinear wave coupling
and interaction effects mentioned in the previous section can be used to enhance oil
recovery. To demonstrate this, we considered various flooding processes in a quarter
five-spot problem. In the quarter five-spot problem, the injection and production wells
are at opposite corners of a diagonal of a rectangular domain. The domain is in the
horizontal plane so there is no gravitational effect. We have carried out numerical
experiments with three kinds of polymer flooding processes, namely (1) injection of
polymer-water followed by pure water; (2) injection of pure water followed by
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F1G. 4.8. Effect of viscosity of the intermediate polymer-water layer on stability: finger height (normalized
wrt to wavelength) of the leading (a) and the trailing (b) interfaces as a function of injected fluid for different
values of the viscosity of the intermediate polymer layer. The initial dimensionless separation between the two
interfaces is 1 for the left branch and 2 for the right branch in each of the above figures. The viscosities of the
bottom and top layers are 1 and 10, respectively.

polymer-thickened water and finally (3) injection of only polymer-water. The third
case reduces to the Buckley-Leverett case with a modified value of water viscosity.
We have kept the viscosity ratio of pure oil and water fixed at 10:1 in all our runs.

Figure 4.10 shows the temporal evolution of the S- (leading front) and the C-
(trailing front) waves in the case when injection of polymer-thickened water is followed
by pure water. The calculation is initialized at t=0 with the completely injected
polymer-thickened aqueous slug present as an idealized annulus surrounding a small
disk of pure water. The calculation proceeds with continued injection of pure water.
In the calculation shown in Fig. 4.10 the viscosity ratio of the polymer-thickened
aqueous zone to the pure water is »,,: v, =2: 1. As in the core flood studies, the leading
interface is actually an S-family shock and a C-family contact discontinuity travelling
with exactly equal velocities, and as before will behave exactly as an S family shock
as long as the fluid ahead of the shock remains pure oil. If a backflow region occurs,
the two shocks split and the calculation continues to track the S-wave as the two move
apart. This does not occur in the homogeneous quarter five spot calculations done
here. The trailing interface separating the polymer-thickened water from pure water
is a C-family contact discontinuity.

As these two waves evolve, the C-wave moves faster than the S-wave as predicted
in § 4.1 and the intermediate layer stretches and shrinks in width. In the calculation
shown, the C-wave is unable to catch up with the S-wave, before the S-wave breaks
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FIG. 4.9. Saturation behind the S-wave (S*) and the composite wave (S**) as a function of the viscosity
of the intermediate polymer zone for two different values of the viscosity ratio of the bottom (water) to top (oil)
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FIG. 4.10. Temporal evolution of the leading shock (composed of S- and C-shocks) and the trailing C-shock.

The initial viscosity ratio of pure water (w), polymer thickened water (p), and pure oil (0) is 1:2:10.
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F1G. 4.11(a). Fractional oil recovered at breakthrough as a function of the viscosity ratio vo/ v,,, for various
processes: (A) polymer-thickened water followed by pure water (B) pure water followed by polymer-thickened
water (C) only polymer-thickened water.
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FIG. 4.11(b). Fractional area swept by the leading front at breakthrough as a function of the viscosity
ratio vy/ v,,, for various processes: (A) polymer-thickened water followed by pure water (B) pure water followed
by polymer-thickened water (C) only polymer-thickened water.
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through at the production well. As an increase in »,, has a stabilizing effect on the
S-wave and a destabilizing effect on the C-wave (Fig. 4.8), the breakthrough time for
the S-wave will increase with the increase in »,,. This is indeed observed. In Fig. 4.11
we have plotted the net oil recovered at breakthrough (Fig. 4.11(a)) and the fractional
area swept by the ahead front (Fig. 4.11(b)) as a function of the »,,. The fractional
area swept by the leading front does not vary significantly with »,, (notice the
compressed range of the y-axis). Presumably the reason for this is the small separation
between the fronts and consequently the small amount of polymer injected. However
the net oil recovered increases with »,, since an increase in »,, increases the piston-like
displacement efficiency of the S-wave, as evidenced by the increase in the value of
saturation s* directly behind the S-wave.

4.3. Quarter five-spot floods—heterogeneous media. In all the runs mentioned
above, the reservoir was homogeneous and the conclusions pertain purely to the effect
of the nonlinear waves in the polymer-flooding process. Since the presence of polymer
in the aqueous phase also inhibits the growth rate of fingers, one may expect the oil
recovery in heterogeneous reservoirs to be increased (when compared to pure water
flooding) due to both the effect of nonlinear waves and due to the control of fingering.
Figure 4.12 shows a time sequence of an S-wave for the Buckley-Leverett case.
The regions of local maxima (minima) of the rock permeability field are denoted by
+ (—) signs. The variation in the permeability is ‘“moderate.” The injected fluid here
is pure water; the viscosity ratio of the water to oil is 1:10. Notice that the fingering
instability is initiated by the heterogeneity in the rock permeability. The fingering starts
at the points of local maxima of the transmiscibility. This calculation was repeated
with differing initial concentrations of polymer added to the water. The S-wave at

F1G. 4.12. Growth of fingers for immiscible displacement in a heterogeneous reservoir: the temporal evolution
of the Buckley- Leverett S-shock. The + (—) signs correspond to local maxima (minima) of the permeability
field. The viscosity ratio of the water to oil is 1:10. The elliptic grid is 100 x 100, the hyperbolic grid is 50 x 50.
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FIG. 4.13. Effect of polymer in suppressing finger growth for immiscible displacement: the front position at
breakthrough for various levels of concentration of polymer in water. The viscosity ratio across the front is given
Jor each frame. The elliptic grid is 100 x 100 and the hyperbolic grid is 50 x 50.

breakthrough is shown in Fig. 4.13 for four different levels of polymer concentration.
The polymer has a dramatic effect in reducing the fingering growth rate. Also notice
that at higher levels of polymer concentration a bifurcation in the topology of the
tracked S-wave occurs, producing a region of by-passed oil. A mechanism for the
entrapment of such oil pockets by the interface is the following: the front is stable for
large polymer-water viscosities, leading to the merging (by a “pinching together”
movement) of any fingers which may form due to the heterogeneous permeability. See
the line drive calculations of [22] for a more detailed analysis of this problem.

In Fig. 4.14(a) we contrast the oil recovery at breakthrough as a function of the
ratio of the displacing fluid viscosity to the oil viscosity for a homogeneous reservoir
and for the heterogeneous reservoir calculations described above. Figure 4.14(b) plots
the fractional area swept by the front as a function of the viscosity ratio for the
homogeneous and heterogeneous calculations. One can see from these figures that
reservoir heterogeneity indeed degrades oil recovery, and that polymer flooding can
overcome the deleterious effects of the heterogeneity through an increase in the effective
water viscosity. This conclusion is relevant only for the specific heterogeneity of
Fig. 4.12, and further studies, including an analysis of discontinuous changes in the
permeability field due to faults, shale and carbonate cement barriers, would be
desirable.
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FIG. 4.14(a). Fractional oil recovered at breakthrough as function of viscosity ratio of the behind fluid
(polymer-thickened water) to the ahead fluid (oil) for heterog and homog S reservoirs.
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