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Abstract. In this paper, we propose a domain embedding method associated with an optimal
boundary control problem with boundary observations to solve elliptic problems. We prove that
the optimal boundary control problem has a unique solution if the controls are taken in a finite
dimensional subspace of the space of the boundary conditions on the auxiliary domain.

Using a controllability theorem due to J. L. Lions, we prove that the solutions of Dirichlet (or
Neumann) problems can be approximated within any prescribed error, however small, by solutions
of Dirichlet (or Neumann) problems in the auxiliary domain taking an appropriate subspace for such
an optimal control problem. We also prove that the results obtained for the interior problems hold
for the exterior problems. Some numerical examples are given for both the interior and the exterior
Dirichlet problems.
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1. Introduction. The embedding or fictitious domain methods, which were de-
veloped especially in the seventies (see [6], [2], [34], [35], [28], or [14]), have been
a very active area of research in recent years because of their appeal and potential
for applications in solving problems in complicated domains very efficiently. In these
methods, complicated domains ω, where solutions of problems may be sought, are
embedded into larger domains Ω with simple enough boundaries so that solutions
in these embedded domains can be constructed more efficiently. The use of these
embedding methods is now commonplace for solving complicated problems arising in
science and engineering. To this end, it is worth mentioning the domain embedding
methods for Stokes equations (Borgers [5]), for fluid dynamics and electromagnetics
(Dinh et al. [12]), and for the transonic flow calculation (Young et al. [36]).

In [3], an embedding method is associated with a distributed optimal control
problem. There the problem is solved in an auxiliary domain Ω using a finite element
method on a fairly structured mesh which allows the use of fast solvers. The auxiliary
domain Ω contains the domain ω, and the solution in Ω is found as a solution of
a distributed optimal control problem such that it satisfies the prescribed boundary
conditions of the problem in the domain ω. The same idea is also used in [10],
where a least squares method is used. In [13], an embedding method is proposed
in which a combination of Fourier approximations and boundary integral equations
is used. Essentially, there a Fourier approximation for a particular solution of the
inhomogeneous equation in Ω is found, and then the solution in ω for the homogeneous
equation is sought using the boundary integral methods.
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In recent years, progress in this field has been substantial, especially in the use of
the Lagrange multiplier techniques. In this connection, the works of Girault, Glowin-
ski, Hesla, Joseph, Kuznetsov, Lopez, Pan, and Périaux (see [15], [16], [17], [18], and
[19]) should be cited.

There are many problems for which an exact solution on some particular domains
may be known or computed numerically within a good approximation very efficiently.
In these cases, an embedding domain method associated with a boundary optimal
control problem allows one to find solutions of the problems very efficiently in com-
plicated domains. Specifically, the particular solution of the inhomogeneous equation
can be used to reduce the problem to solving a homogeneous equation in ω subject to
appropriate conditions on the boundary of the domain ω. This solution in the com-
plicated domain ω can be obtained via an optimal boundary control problem where
one finds the solution of the same homogeneous problem in the auxiliary domain Ω
that would satisfy appropriate boundary conditions on the domain ω. We mention
that the boundary control approach already has been used by Mäkinen, Neittaanmäki,
and Tiba for optimal shape design and two-phase Stefan-type problems (see [29], [32]).
Moreover, recently there has been enormous progress in shape optimization using the
fictitious domain approaches. We can cite here, for instance, the works of Daňková,
Haslinger, Klarbring, Makinen, Neittaanmäki, and Tiba (see [9], [22], [23], and [33])
among many others.

In section 2, an optimal boundary control problem involving an elliptic equation
is formulated. In this formulation, the solution on the auxiliary domain Ω is sought
such that it satisfies the boundary conditions on the domain ω. In general, such an
optimal control problem leads to an ill posed problem, and, consequently, it may not
have a solution.

Using a controllability theorem of J. L. Lions, it is proved here that the solutions
of the problems in ω can be approximated within any specified error, however small, by
the solutions of the problems in Ω for appropriate values of the boundary conditions.
In section 3, it is shown that the optimal control problem has a unique solution in
a finite dimensional space. Consequently, considering a family of finite dimensional
subspaces with their union dense in the whole space of controls, we can approximate
the solution of the problem in ω with the solutions of the problems in Ω using finite
dimensional optimal boundary control problems. Since the values of the solutions
in Ω are approximately calculated on the boundary of the domain ω, we study the
optimal control problem with boundary observations in a finite dimensional subspace
in section 4. In section 5, we extend the results obtained for the interior problems to
the exterior problems. In section 6, we give some numerical examples for both bounded
and unbounded domains. The numerical results are presented to show the validity
and high accuracy of the method. Finally, in section 7 we provide some concluding
remarks. There is still a large room for further improvement and numerical tests. In
future works, we will apply this method in conjunction with fast algorithms (see [4],
[7], [8]) to solve other elliptic problems in complicated domains.

2. Controllability. Let ω, Ω ∈ N (1),1 (i.e., the maps defining the boundaries of
the domains and their derivatives are Lipschitz continuous) be two bounded domains
in RN such that ω̄ ⊂ Ω. Their boundaries are denoted by γ and Γ, respectively.

In this paper, we use domain embedding and the optimal boundary control ap-
proach to solve the elliptic equation

Ay = f in ω,(2.1)
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subject to either Dirichlet boundary conditions

y = gγ on γ(2.2)

or Neumann boundary conditions

∂y
∂nA(ω) = hγ on γ,(2.3)

where ∂
∂nA(ω) is the outward conormal derivative associated with A.

We assume that the operator A is of the form

A = −
N∑

i,j=1

∂

∂xi

(
aij

∂

∂xj

)
a0

with aij ∈ C(1),1(Ω̄), a0 ∈ C(0),1(Ω̄), a0 ≥ 0 in Ω, and there exists a constant c > 0

such that
∑N
i,j=1 aijξiξj ≥ c(ξ21 + · · ·+ ξ2N ) in Ω for any (ξ1, . . . , ξN ) ∈ RN . Also, we

assume that f ∈ L2(Ω), gγ ∈ L2(γ), and hγ ∈ H−1(γ).
For later use, we define the following. A function y ∈ H1/2(ω) is called a solution

of the Dirichlet problem (2.1)–(2.2) if it satisfies (2.1) in the sense of distributions and
the boundary conditions (2.2) in the sense of traces in L2(γ). A function y ∈ H1/2(ω)
is called a solution of the Neumann problem (2.1), (2.3) if it satisfies (2.1) in the sense
of distributions and the boundary conditions (2.3) in the sense of traces in H−1(γ)
(see [27, Chap. 2, section 7]).

The Dirichlet problem (2.1)–(2.2) has a unique solution which depends continu-
ously on the data

|y|H1/2(ω) ≤ C{|f |L2(ω) + |gγ |L2(γ)}.(2.4)

If there exists a constant c0 > 0 such that a0 ≥ c0 in ω, then the Neumann problem
(2.1), (2.3) has a unique solution which depends continuously on the data

|y|H1/2(ω) ≤ C{|f |L2(ω) + |hγ |H−1(γ)}.(2.5)

If a0 = 0 in ω, then the Neumann problem (2.1), (2.3) has a solution if∫
ω

f +

∫
γ

hγ = 0.(2.6)

In this case, the problem has a unique solution in H1/2(ω)/R and

inf
r∈R

|y + r|H1/2(ω) ≤ C{|f |L2(ω) + |hγ |H−1(γ)}.(2.7)

We also remark that the solution of problem (2.1)–(2.2) can be viewed (see [27,
Chap. 2, section 6]) as the solution of the problem

y ∈ H1/2(ω) :
∫
ω
yA∗ψ =

∫
ω
fψ − ∫

γ
gγ

∂ψ
∂nA∗ (ω)

for any ψ ∈ H2(ω), ψ = 0 on γ,
(2.8)

and that a solution of problem (2.1), (2.3) is also solution of the problem

y ∈ H1/2(ω) :
∫
ω
yA∗ψ =

∫
ω
fψ +

∫
γ
hγψ

for any ψ ∈ H2(ω), ∂ψ
∂nA∗ (ω) = 0 on γ,

(2.9)
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where A∗ is the adjoint operator of A given by

A∗ = −
N∑

i,j=1

∂

∂xi

(
aji

∂

∂xj

)
+ a0.

Evidently, the above results also hold for problems in the domain Ω.
We consider in the following only the cases in which the above problems have

unique solutions, i.e., the Dirichlet problems, and we assume in the case of the Neu-
mann problems that there exists a constant c0 > 0 such that a0 ≥ c0 in Ω.

Below we use the notations and the notions of optimal control from Lions [26].
First, we study the controllability of the solutions of the above two problems (defined
by (2.1)–(2.3)) in ω with the solutions of a Dirichlet problem in Ω. Let

U = L2(Γ)(2.10)

be the space of controls. The state of the system for a control v ∈ L2(Γ) is given by
the solution y(v) ∈ H1/2(Ω) of the following Dirichlet problem:

Ay(v) = f in Ω,
y(v) = v on Γ.

(2.11)

In the case of the Dirichlet problem (2.1)–(2.2), the space of observations is taken
to be

H = L2(γ),(2.12)

and the cost function is given by

J(v) =
1

2
|y(v)− gγ |2L2(γ),(2.13)

where v ∈ L2(Γ) and y(v) is the solution of problem (2.11). For the Neumann problem
given by (2.1) and (2.3), the space of observations is taken to be

H = H−1(γ),(2.14)

and the cost function is given by

J(v) =
1

2

∣∣∣∣ ∂y(v)∂nA(ω)
− hγ

∣∣∣∣
2

H−1(γ)

.(2.15)

Remark 2.1. Since y(v) ∈ H1/2(Ω) and Ay(u) = f ∈ L2(Ω), we have y(v) ∈
H2(D) for any domain D which satisfies ω̄ ⊂ D ⊂ D̄ ⊂ Ω (see [30, Chap. 4,
section 1.2, Theorem 1.3], for instance). Therefore, y(v) ∈ H3/2(γ) with the same

values on both the sides of γ. Also, ∂y(v)
∂nA(ω) ∈ H1/2(γ), ∂y(v)

∂nA(Ω−ω̄) ∈ H1/2(γ), and
∂y(v)
∂nA(ω) + ∂y(v)

∂nA(Ω−ω̄) = 0. Consequently, the above two cost functions make sense.

Proposition 2.1. A control u ∈ L2(Γ) satisfies J(u) = 0, where the control
function is given by (2.13), if and only if the solution of (2.11) for v = u, y(u) ∈
H1/2(Ω) satisfies

Ay(u) = f in Ω− ω̄,
y(u) = y on γ,

∂y(u)
∂nA(Ω−ω̄) + ∂y

∂nA(ω) = 0 on γ,
(2.16)
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and

y(u) = y in ω,(2.17)

where y is the solution of the Dirichlet problem defined by (2.1) and (2.2) in the
domain ω. The same result holds if the control function is given by (2.15) and y is
the solution of the Neumann problem (2.1) and (2.3).

Proof. Let y(u) ∈ H1/2(Ω) be the solution of problem (2.11) corresponding to an
u ∈ L2(Γ) such that J(u) = 0 with the control function given by (2.13). Consequently,
y(u) verifies (2.1) in the sense of distributions and the boundary condition (2.2) in the
sense of traces. It gives y(u) = y in ω. Since y(u) satisfies (2.11) in Ω− ω̄ in the sense
of distributions, then, evidently, y(u) is a solution of the equation in (2.16). From
(2.17) and Remark 2.1, we obtain that y(u) also satisfies the two boundary conditions
of (2.16). The reverse implication is evident.

The same arguments also hold for the Neumann problem defined by (2.1) and
(2.3) and the control function given by (2.15).

Since (2.16) is not a properly posed problem, it follows from the above proposition
that the optimal control might not exist. However, J. L. Lions proves in [26, Chap.
2, section 5.3, Theorem 5.1] a controllability theorem which can be directly applied
to problem (2.11). We mention this theorem below.

Lions’s controllability theorem. The set { ∂z0(v)
∂nA(Ω−ω̄) ∈ H−1(γ) : v ∈

L2(Γ)} is dense in H−1(γ), where z0(v) ∈ H1/2(Ω− ω̄) is the solution of the problem

Az0(v) = 0 in Ω− ω̄,
z0(v) = v on Γ,
z0(v) = 0 on γ.

Now, we can easily prove the following lemma.

Lemma 2.2. For any g ∈ L2(γ), the set { ∂z(v)
∂nA(Ω−ω̄) ∈ H−1(γ) : v ∈ L2(Γ)} is

dense in H−1(γ), where z(v) ∈ H1/2(Ω− ω̄) is the solution of the problem

Az(v) = f in Ω− ω̄,
z(v) = v on Γ,
z(v) = g on γ.

(2.18)

Proof. Let z ∈ H1/2(Ω− ω̄) be the solution of the problem

Az = f in Ω− ω̄,
z = 0 on Γ,
z = g on γ.

Using z0(v) = z(v) − z in the Lions controllability theorem, we get that the

set { ∂(z(v)−z)
∂nA(Ω−ω̄) ∈ H−1(γ) : v ∈ L2(Γ)} is dense in H−1(γ). Hence the lemma

follows.
The following theorem proves controllability of the solutions of problems in ω by

the solutions of Dirichlet problems in Ω. In the proof of this theorem below, we use
the spaces Ξs introduced in Lions and Magenes [27, Chap. 2, section 6.3]. For the
sake of completeness, we give definitions of these spaces Ξs.

Let ρ(x) be a function in D(Ω̄) which is positive in Ω and vanishes on Γ. We also
assume that for any x0 ∈ Γ, the limit

lim
x→x0∈Γ

ρ(x)

d(x,Γ)
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exists and is positive, where d(x,Γ) is the distance from x ∈ Ω to the boundary Γ.
Then, for s = 0, 1, 2, . . ., the space Ξs is defined by

Ξs(Ω) = {u : ρ|α|Dαu ∈ L2(Ω), |α| ≤ s}.

With the norm

||u||Ξs(Ω) =
∑
|α|≤s

||ρ|α|Dαu||L2(Ω),

the space Ξs(Ω) is a Hilbert space, and

Ξ0(Ω) = L2(Ω), Hs(Ω) ⊂ Ξs(Ω) ⊂ L2(Ω), and D(Ω) is dense in Ξs(Ω).

Now, for a positive noninteger real s = k+θ with k the integer part of s and 0 < θ < 1,
the space Ξs is, as in the case of the spaces Hs, the intermediate space

Ξs(Ω) = [Ξk+1(Ω),Ξk(Ω)]1−θ.

Finally, for negative real values −s, s > 0, the space Ξ−s(Ω) is the dual space of
Ξs(Ω), (Ξs(Ω))′.

Theorem 2.3. The set {y(v)|ω : v ∈ L2(Γ)} is dense, using the norm of H1/2(ω),

in {y ∈ H1/2(ω) : Ay = f in ω}, where y(v) ∈ H1/2(Ω) is the solution of the Dirich-
let problem (2.11) for a given v ∈ L2(Γ).

Proof. Let us consider y ∈ H1/2(ω) such that Ay = f in ω, and a real number
ε > 0. We denote the traces of y on γ by y = g ∈ L2(γ) and ∂y

∂nA(ω) = h ∈ H−1(γ).

From the previous lemma, it follows that there exists vε ∈ L2(Γ) such that the solution
z(vε) ∈ H1/2(Ω− ω̄) of problem (2.18) satisfies∣∣∣∣ ∂z(vε)

∂nA(Ω− ω̄)
+ h

∣∣∣∣
H−1(γ)

< ε.

Let y(vε) be the solution of the Dirichlet problem (2.11) corresponding to vε, and let
us define

yε =

{
y on ω,
z(vε) on Ω− ω̄.

Then (y(vε)− yε) ∈ H1/2(Ω) and satisfies in the sense of distributions the equation

A(y(vε)− yε) = ∂z(vε)
∂nA(Ω−ω̄) + h in Ω

and the boundary conditions

y(vε)− yε = 0 on Γ.

Consider, as in Remark 2.1, a fixed domain D such that ω̄ ⊂ D ⊂ D̄ ⊂ Ω. Then,

for any ψ ∈ D(Ω), we have
∫
Ω
A(y(vε) − yε)ψ =

∫
γ
( ∂z(vε)
∂nA(Ω−ω̄) + h)ψ ≤ | ∂z(vε)

∂nA(Ω−ω̄) +

h|H−1(γ)|ψ|H1(γ) ≤ C(D)|ψ|H3/2(D)ε ≤ C(D)|ψ|Ξ3/2(Ω)ε, where C(D) depends only
on the domain D. Therefore,

|A(y(vε)− yε)|Ξ−3/2(Ω) ≤ C(D)ε.
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Taking into account the continuity of the solution on the data (see Lions and Magenes
[27, Chap. 2, section 7.3, Theorem 7.4]), we get

|y(vε)− yε|H1/2(Ω) ≤ C(D)ε.

Below, the controllability of the solutions of the Dirichlet and the Neumann prob-
lems (given by (2.1), (2.2), and (2.1), (2.3), respectively) in ω by Neumann problems
in Ω is discussed.

Now as a set of controls we can take the space

U = H−1(Γ),(2.19)

and for a v ∈ H−1(Γ), the state of the system is the solution y(v) ∈ H1/2(Ω) of the
problem

Ay(v) = f in Ω,
∂y(v)
∂nA(Ω) = v on Γ.

(2.20)

We remark that

i : {y(v) ∈ H1/2(Ω) : v ∈ L2(Γ), y(v) solution of problem (2.11)} →
{y(w) ∈ H1/2(Ω) : w ∈ H−1(Γ), y(w) solution of problem (2.20)},

i(y(v)) = y(w) ⇔ y(v) = y(w) in Ω
(2.21)

establish a bijective correspondence. Consequently, Proposition 2.1 also holds if the
space of controls there is changed to H−1(Γ) and the states y(v) of the system are
solutions of problem (2.20). Theorem 2.3 in this case becomes the following theorem.

Theorem 2.4. The set {y(v)|ω : v ∈ H−1(Γ)} is dense, using the norm of

H1/2(ω), in {y ∈ H1/2(ω) : Ay = f in ω}, where y(v) ∈ H1/2(Ω) is a solution of the
Neumann problem (2.20) for a given v ∈ H−1(Γ).

3. Controllability with finite dimensional spaces. Let {Uλ}λ be a family
of finite dimensional subspaces of the space L2(Γ) such that, given (2.10) as a space
of controls with the Dirichlet problems, we have⋃

λ

Uλ is dense in U = L2(Γ).(3.1)

For a v ∈ L2(Γ) we consider the solution y′(v) ∈ H1/2(Ω) of the problem

Ay′(v) = 0 in Ω,
y′(v) = v on Γ.

(3.2)

We fix a Uλ. The cost functions J defined by (2.13) and (2.15) are differentiable and
convex. Consequently, an optimal control

uλ ∈ Uλ : J(uλ) = inf
v∈Uλ

J(v)(3.3)

exists if and only if it is a solution of the equation

uλ ∈ Uλ : (y(uλ), y
′(v))L2(γ) = (gγ , y

′(v))L2(γ) for any v ∈ Uλ,(3.4)

when the control function is (2.13), and

uλ ∈ Uλ :

(
∂y(uλ)

∂nA(ω)
,
∂y′(v)
∂nA(ω)

)
H−1(γ)

=

(
hγ ,

∂y′(v)
∂nA(ω)

)
H−1(γ)

for any v ∈ Uλ,(3.5)
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when the control function is (2.15). Above, y(uλ) is the solution of problem (2.11)
corresponding to uλ, and y′(v) is the solution of problem (3.2) corresponding to v. If
yf ∈ H2(Ω) is the solution of the problem

Ayf = f in Ω,
yf = 0 on Γ,

(3.6)

then, for a v ∈ L2(Γ), we have

y(v) = y′(v) + yf ,(3.7)

where y(v) and y′(v) are the solutions of problems (2.11) and (3.2), respectively.
Therefore, we can rewrite problems (3.4) and (3.5) as

uλ ∈ Uλ : (y′(uλ), y′(v))L2(γ) = (gγ − yf , y
′(v))L2(γ)(3.8)

for any v ∈ Uλ, and

uλ ∈ Uλ :

(
∂y′(uλ)
∂nA(ω)

,
∂y′(v)
∂nA(ω)

)
H−1(γ)

=

(
hγ − ∂yf

∂nA(ω)
,
∂y′(v)
∂nA(ω)

)
H−1(γ)

(3.9)

for any v ∈ Uλ, respectively. Next, we prove the following lemma.
Lemma 3.1. For a fixed λ, let ϕ1, . . . , ϕnλ , nλ ∈ N, be a basis of Uλ, and let y′(ϕi)

be the solution of problem (3.2) for v = ϕi, i = 1, . . . , nλ. Then {y′(ϕ1)|γ ,. . .,y′(ϕnλ)|γ}
and {∂y′(ϕ1)

∂nA(ω) |γ, . . . ,
∂y′(ϕnλ )

∂nA(ω) |γ} are linearly independent sets.

Proof. From Remark 2.1, we have y′(v) ∈ H2(D) for any domain D which satisfies
ω̄ ⊂ D ⊂ D̄ ⊂ Ω, and, consequently, y′(v) ∈ H3/2(γ) for any v ∈ L2(Γ). Assume that
for ξ1, . . . , ξnλ ∈ R we have ξ1y

′(ϕ1) + · · ·+ ξnλy
′(ϕnλ) = 0 on γ. Then

y′(ξ1ϕ1 + · · ·+ ξnλϕnλ) = 0 on γ,(3.10)

and therefore, y′(ξ1ϕ1 + · · ·+ ξnλϕnλ) = 0 on ω. This implies that

∂y′(ξ1ϕ1+···+ξnλϕnλ )

∂nA(Ω−ω̄) = 0 on γ.(3.11)

From (3.10) and (3.11), we get y′(ξ1ϕ1 + · · ·+ ξnλϕnλ) = 0 on Ω− ω̄, and therefore,
ξ1ϕ1 + · · ·+ ξnλϕnλ = y′(ξ1ϕ1 + · · ·+ ξnλϕnλ) = 0 on Γ, or ξ1 = · · · = ξnλ = 0. The
second part of the statement can be proved using similar arguments.

The following proposition proves the existence and uniqueness of the optimal
control when the states of the system are the solutions of the Dirichlet problems.

Proposition 3.2. Let us consider a fixed Uλ. Then problems (3.8) and (3.9)
have unique solutions. Consequently, if the boundary conditions of Dirichlet problems
(2.11) lie in the finite dimensional space Uλ, then there exists a unique optimal con-
trol of problem (3.3) corresponding to either the Dirichlet problem (2.1), (2.2) or the
Neumann problem (2.1), (2.3).

Proof. For a given λ, let Vλ denote the subspace of L2(γ) generated by {y′(ϕi)|γ}1≤i≤nλ ,
where {ϕi}1≤i≤nλ is a basis of Uλ, and y′(ϕi) is the solution of problem (3.2) with
v = ϕi. Since the norms |ξ1ϕ1 + · · · + ξnλϕnλ |L2(Γ) in Uλ, and |ξ1y′(ϕ1) + · · · +
ξnλy

′(ϕnλ)|L2(γ) in Vλ are equivalent to the norm (ξ21 + · · ·+ξ2nλ)1/2, the above lemma
then implies that there exist two positive constants c and C such that

c|v|L2(Γ) ≤ |y′(v)|L2(γ) ≤ C|v|L2(Γ) for any v ∈ Uλ.



BOUNDARY CONTROL TO DOMAIN EMBEDDING METHODS 429

Consequently, from the Lax–Milgram lemma we get that (3.8) has a unique solution.
A similar reasoning proves that (3.9) also has a unique solution. This time we use the
norm equivalence

c|v|L2(Γ) ≤
∣∣∣∣ ∂y′(v)
∂nA(Ω− ω̄)

∣∣∣∣
H−1(γ)

≤ C|v|L2(Γ) for any v ∈ Uλ

in the Lax–Milgram lemma.
The following theorem proves the controllability of the solutions of the Dirichlet

and Neumann problems in ω by the solutions of the Dirichlet problems in Ω.
Theorem 3.3. Let {Uλ}λ be a family of finite dimensional spaces satisfying

(3.1). We associate the solution y of the Dirichlet problem (2.1), (2.2) in ω with
problem (3.3), in which the cost function is given by (2.13). Also, the solution y of
the Neumann problem (2.1), (2.3) is associated with problem (3.3), in which the cost
function is given by (2.15). In both cases, there exists a positive constant C, and for
any given ε > 0 there exists Uλε such that

|y(uλε)|ω − y|H1/2(ω) < Cε,

where uλε ∈ Uλε is the optimal control of the corresponding problem (3.3) with λ = λε,
and y(uλε) is the solution of problem (2.11) with v = uλε .

Proof. Let us consider an ε > 0 and y ∈ H1/2(ω) as the solution of problem (2.1),
(2.2). From Theorem 2.3, there exists vε ∈ L2(Γ) such that y(vε) ∈ H1/2(Ω), the
solution of problem (2.11) with v = vε, satisfies |y−y(vε)|ω|H1/2(ω) < ε. Consequently,
there exists a constant C1 such that

|gγ − y(vε)|L2(γ) < C1ε.(3.12)

Since ∪λUλ is dense in L2(Γ), there exist λε and vλε ∈ Uλε such that |vε−vλε |L2(Γ) < ε,
and then there exists a positive constant C2 such that

|y(vε)− y(vλε)|L2(γ) < C2ε.(3.13)

From (3.12) and (3.13) we get

|gγ − y(vλε)|L2(γ) < C3ε

and, consequently,

|gγ − y(uλε)|L2(γ) < C4ε,

where uλε ∈ L2(Γ) is the unique optimal control of problem (3.3) on Uλε with the
cost function given by (2.13). Therefore,

|y(uλε)|ω − y|H1/2(ω) < Cε.

A similar reasoning can be made for the solution y ∈ H1/2(ω) of problem (2.1),
(2.3).

Using the basis ϕ1, . . . , ϕnλ of the space Uλ, we define the matrix

Πλ = ((y′(ϕi), y′(ϕj))L2(γ))1≤i,j≤nλ(3.14)

and the vector

lλ = ((gγ − yf , y
′(ϕi))L2(γ))1≤i≤nλ .(3.15)
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Then problem (3.8) can be written as

ξλ = (ξλ,1, . . . , ξλ,nλ) ∈ Rnλ : Πλξλ = lλ.(3.16)

Consequently, using Theorem 3.3, the solution y of problem (2.1), (2.2) can be
obtained within any prescribed error by setting the restriction to ω of

y(uλ) = ξλ,1y
′(ϕ1) + · · ·+ ξλ,nλy

′(ϕnλ) + yf ,(3.17)

where ξλ = (ξλ,1, . . . , ξλ,nλ) is the solution of algebraic system (3.16). Above, yf is the
solution of problem (3.6), and y′(ϕi) are the solutions of problems (3.2) with v = ϕi,
i = 1, . . . , nλ.

An algebraic system (3.16) is also obtained in the case of problem (3.9). This
time the matrix of the system is given by

Πλ =

((
∂y′(ϕi)
∂nA(ω)

,
∂y′(ϕj)
∂nA(ω)

)
H−1(γ)

)
1≤i,j≤nλ

,(3.18)

and the free term is

lλ =

((
hγ − ∂yf

∂nA(ω)
,
∂y′(ϕi)
∂nA(ω)

)
H−1(γ)

)
1≤i≤nλ

.(3.19)

Therefore, using Theorem 3.3, the solution y of problem (2.1), (2.3) can be estimated
by (3.17). Also, yf is the solution of problem (3.6), and y′(ϕi) are the solutions of
problems (3.2) with v = ϕi, i = 1, . . . , nλ.

The case of the controllability with finite dimensional optimal controls for states
of the system given by the solution of a Neumann problem is treated in a similar way.
As in the previous section, the space of the controls is U , given in (2.19), and the state
of the system y(v) ∈ H1/2(Ω) is given by the solution of Neumann problem (2.20) for
a v ∈ H−1(Γ).

Let {Uλ}λ be a family of finite dimensional subspaces of the space H−1(Γ) such
that ⋃

λ

Uλ is dense in U = H−1(Γ).(3.20)

This time, the function y′(v) ∈ H1/2(Ω) appearing in (3.4), (3.5), (3.8), and (3.9)
is the solution of the problem

Ay′(v) = 0 in Ω,
∂y′(v)
∂nA(Ω) = v on Γ

(3.21)

for a v ∈ H−1(Γ). Also, yf ∈ H2(Ω) appearing in (3.7), (3.8), and (3.9) is the solution
of the problem

Ayf = f in Ω,
∂yf

∂nA(Ω) = 0 on Γ.
(3.22)

With these changes, Lemma 3.1 also holds in this case, and the proof of the following
proposition is similar to that of Proposition 3.2.
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Proposition 3.4. For a given Uλ, the problems (3.8) and (3.9) have unique
solutions. Consequently, if the boundary conditions of Neumann problems (2.20) lie in
the finite dimensional space Uλ, then there exists a unique optimal control of problem
(3.3), corresponding to either Dirichlet problem (2.1), (2.2) or Neumann problem (2.1),
(2.3).

A proof similar to that given for Theorem 3.3 can also be given for the following
theorem.

Theorem 3.5. Let {Uλ}λ be a family of finite dimensional spaces satisfying
(3.20). We associate the solution y ∈ H1/2(ω) of problem (2.1), (2.2) with problem
(3.3), in which the cost function is given by (2.13). Also, the solution y of problem
(2.1), (2.3) is associated with problem (3.3), in which the cost function is given by
(2.15). In both cases, there exists a positive constant C, and for any given ε > 0 there
exists λε such that

|y(uλε)|ω − y|H1/2(ω) < Cε,

where uλε ∈ Uλε is the optimal control of the corresponding problem (3.3) with λ = λε,
and y(uλε) is the solution of problem (2.20) with v = uλε .

Evidently, in the case of the controllability with solutions of Neumann problem
(2.20) we can also write algebraic systems (3.16) using a basis ϕ1, . . . , ϕnλ of a given
subspace Uλ of the space U = H−1(Γ). As in the case of the controllability with solu-
tions of the Dirichlet problem (2.11), these algebraic systems have unique solutions.

Theorems 3.3 and 3.5 prove the convergence of the embedding method associated
with the optimal boundary control. An error analysis would be desirable, but it would
go beyond the scope of this paper.

Remark 3.1. We have defined yf as a solution of problems (3.6) or (3.22) in order

to have y(v) = y′(v)+ yf or ∂y(v)
∂nA(Ω) = ∂y′(v)

∂nA(Ω) +
∂yf

∂nA(Ω) , respectively, on the boundary

Γ. In fact, we can replace y(v) by y′(v) + yf in the cost functions (2.13) and (2.15)
with yf ∈ H2(Ω) satisfying only

Ayf = f in Ω,(3.23)

and the results obtained in this section still hold.
Indeed, the two sets {y(v) = y′(v) + yf ∈ H1/2(Ω) : v ∈ L2(Γ)} corresponding

to yf given by (3.23) and (3.6), y′(v) being the solution of (3.2), are identical to
the set {y(v) ∈ H1/2(Ω) : v ∈ L2(Γ)}, y(v) being the solution of (2.11). Also, the
two sets {y(v) = y′(v) + yf ∈ H1/2(Ω) : v ∈ H−1(Γ)} corresponding to yf given by
(3.23) and (3.22), y′(v) being the solution of (3.21), are identical to the set {y(v) ∈
H1/2(Ω) : v ∈ H−1(Γ)}, y(v) being the solution of (2.20).

4. Approximate observations in finite dimensional spaces. In solving
problems (3.8), (3.9), we require an appropriate interpolation which makes use of
the values of y′(v) computed only at some points on the boundary γ. We show below
that using these interpolations, i.e., observations in finite dimensional subspaces, we
can obtain the approximate solutions of problems (2.1), (2.2) and (2.1), (2.3).

As in the previous sections, we first deal with the case when the states of the
system are given by the Dirichlet problem (2.11). Let Uλ be a fixed finite dimensional
subspace of U = L2(Γ) with the basis ϕ1, . . . , ϕnλ .

Let us assume that for problem (2.1), (2.2), we choose a family of finite dimen-
sional spaces {Hµ}µ such that⋃

µ

Hµ is dense in H = L2(γ).(4.1)
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Similarly, for problem (2.1), (2.3) we choose the finite dimensional spaces {Hµ}µ such
that ⋃

µ

Hµ is dense in H = H−1(γ).(4.2)

The subspace Hµ given in (4.1) and (4.2) is a subspace of H given in (2.12) and (2.14),
respectively.

An appropriate choice of Hµ is made based on the problem to be solved as dis-
cussed above. For a given ϕi, i = 1, . . . , nλ, we consider below the solution y′(ϕi) of
problem (3.2) corresponding to v = ϕi, and we approximate its trace on γ by y′µ,i.

Also, the approximation of ∂y′(ϕi)
∂nA(ω) on γ is denoted by

∂y′µ,i
∂nA(ω) .

Since the system (3.16) has a unique solution, the determinants of the matrices
Πλ given in (3.14) and (3.18) are nonzero. Consequently, if |y′(ϕi) − y′µ,i|L2(γ) or

| ∂y′(ϕi)∂nA(ω) −
∂y′µ,i
∂nA(ω) |H−1(γ) are small enough, then the matrices

Πλµ = ((y′µ,i, y
′
µ,j)L2(γ))1≤i,j≤nλ(4.3)

and

Πλµ =

((
∂y′µ,i
∂nA(ω)

,
∂y′µ,j
∂nA(ω)

)
H−1(γ)

)
1≤i,j≤nλ

(4.4)

have nonzero determinants. In this case, each of the algebraic systems

ξλµ = (ξλµ,1, . . . , ξλµ,nλ) ∈ Rnλ : Πλµξλµ = lλµ(4.5)

has a unique solution. In this system, the free term is

lλµ = ((gγµ − yfµ, y
′
µ,i)L2(γ))1≤i≤nλ(4.6)

if the matrix Πλµ is given by (4.3) and

lλµ =

((
hγµ − ∂yfµ

∂nA(ω)
,
∂y′µ,i
∂nA(ω)

)
H−1(γ)

)
1≤i≤nλ

(4.7)

if the matrix Πλµ is given by (4.4). Above, we have denoted by gγµ and hγµ some

approximations in Hµ of gγ and hγ , respectively. Also, yfµ and
∂yfµ
∂nA(ω) are some

approximations of yf and
∂yf

∂nA(ω) in the corresponding Hµ of L2(γ) and H−1(γ),

respectively, with yf ∈ H2(Ω) satisfying (3.23).
The solution y of problems (2.1), (2.2) and (2.1), (2.3) can be approximated with

the restriction to ω of

y(uλµ) = ξλµ,1y
′(ϕ1) + · · ·+ ξλµ,nλy

′(ϕnλ) + yf ,(4.8)

where ξλ = (ξλµ,1, . . . , ξλµ,nλ) is the solution of appropriate algebraic system (4.5).
For a vector, ξ = (ξ1, . . . , ξnλ), we use the norm |ξ| = max1≤i≤nλ |ξi|, and the

corresponding matrix norm is denoted by || · ||. From (3.17) and (4.8) we have

|y(uλ)− y(uλµ)|H1/2(ω) ≤ Cλ|ξλ − ξλµ|,(4.9)
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where Cλ depends only on the basis in Uλ. From

||Π−1
λ −Π−1

λµ || ≤
||Π−1

λ ||||Πλ −Πλµ||
1/||Π−1

λ || − ||Πλ −Πλµ||
and algebraic systems (3.16) and (4.5), we have ξλ = Π−1

λ lλ and ξλµ = Π−1
λµ lλµ and

we get that there exists Cλ > 0, depending on the basis in Uλ, such that

|ξλ − ξλµ| ≤ Cλ (||Πλ −Πλµ||+ |lλ − lλµ|) .(4.10)

In the case of matrices (3.14) and (4.3) and the free terms (3.15) and (4.6), we have

||Πλ −Πλµ|| ≤ Cλ max
1≤i≤nλ

|y′(ϕi)− y′µ,i|L2(γ),

|lλ − lλµ| ≤ Cλ
(|gγ − gγµ|L2(γ)(4.11)

+ |yf − yfµ|L2(γ)

)
+ C max

1≤i≤nλ
|y′(ϕi)− y′µ,i|L2(γ).

Instead, if we take matrices (3.18) and (4.4) and the free terms (3.19) and (4.7), then
we get

||Πλ −Πλµ|| ≤ Cλ max
1≤i≤nλ

∣∣∣∣ ∂y′(ϕi)∂nA(ω)
− ∂y′µ,i
∂nA(ω)

∣∣∣∣
H−1(γ)

,

|lλ − lλµ| ≤ Cλ

(
|hγ − hγµ|H−1(γ) +

∣∣∣∣ ∂yf
∂nA(ω)

− ∂yfµ
∂nA(ω)

∣∣∣∣
H−1(γ)

)
(4.12)

+ C max
1≤i≤nλ

| ∂y
′(ϕi)

∂nA(ω)
− ∂y′µ,i
∂nA(ω)

|H−1(γ),

where C is a constant and Cλ depends on the basis in Uλ.
For states of the system given by the Neumann problem (2.20), Uλ is a subspace

of U = H−1(Γ). The material presented above for the case of the Dirichlet problems
in Ω is applicable to the case of the Neumann problems in Ω, except for the difference
that this time y′(ϕi) are the solutions of problems (3.21) with v = ϕi, i = 1, . . . , nλ.

In both cases (i.e., when the control is affected via Dirichlet and Neumann prob-
lems), we obtain the following theorem from Theorems 3.3 and 3.5 and (4.9)–(4.12).

Theorem 4.1. Let {Uλ}λ be a family of finite dimensional spaces, either satis-
fying (3.1) if we consider problem (2.11), or satisfying (3.20) if we consider problem
(2.20). Also, we associate problem (2.1), (2.2) or (2.1), (2.3) with a family of spaces
{Hµ}µ satisfying (4.1) or (4.2), respectively. Then, for any ε > 0, there exists λε such
that the following hold.

(i) If the space Hµ is taken such that |y′(ϕi)− y′µ,i|L2(γ), i = 1, . . . , nλε , are small
enough, y is the solution of problem (2.1)–(2.2), and y(uλεµ) is given by (4.8), in
which ξλµ is the solution of the algebraic system (4.5) with the matrix given by (4.3)
and the free term given by (4.6), then the algebraic system (4.5) has a unique solution
and

|y(uλεµ)|ω − y|H1/2(ω) < Cε

+ Cλε

(
|gγ − gγµ|L2(γ) + |yf − yfµ|L2(γ) + max

1≤i≤nλ
|y′(ϕi)− y′µ,i|L2(γ)

)
.

(ii) If the space Hµ is taken such that | ∂y′(ϕi)∂nA(ω) −
∂y′µ,i
∂nA(ω) |H−1(γ), i = 1, . . . , nλε , are

small enough, y is the solution of problem (2.1)–(2.3), and y(uλεµ) is given by (4.8) in
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which ξλµ is the solution of the algebraic system (4.5) with the matrix given by (4.4)
and the free term given by (4.7), then the algebraic system (4.5) has a unique solution
and

|y(uλεµ)|ω − y|H1/2(ω) < Cε

+ Cλε

(
|hγ − hγµ|H−1(γ) +

∣∣∣ ∂yf
∂nA(ω) − ∂yfµ

∂nA(ω)

∣∣∣
H−1(γ)

+ max
1≤i≤nλ

∣∣∣ ∂y′(ϕi)∂nA(ω) −
∂y′µ,i
∂nA(ω)

∣∣∣
H−1(γ)

)
,

where C is a constant and Cλε depends on the basis of Uλε .

Remark 4.1. Since the matrices Πλµ given by (4.3) and (4.4) are assumed to

be nonsingular, it follows that {y′µ,i}i=1,...,nλ and { ∂y′µ,i
∂nA(ω)}i=1,...,nλ are some linearly

independent sets in L2(γ) and H−1(γ), respectively. Consequently, if mµ is the di-
mension of the corresponding subspace Hµ, then nλ ≤ mµ.

5. Exterior problems. In this section, we consider the domain ω ⊂ RN of
problems (2.1), (2.2) and (2.1), (2.3) as the complement of the closure of a bounded
domain, and it lies on only one side of its boundary. The same assumptions are
made on the domain Ω of problems (2.11) and (2.20), and, evidently, ω ⊂ Ω. In
order to retain continuity and to prove that the solutions of the problems in ω can
be approximated by the solutions of problems in Ω, we have to specify the spaces
in which the problems have solutions and also their correspondence with the trace
spaces.

Since the domain Ω− ω̄ is bounded, Lions’s controllability theorem does not need
to be extended to unbounded domains. Moreover, we see that the boundaries γ and
Γ of the domains ω and Ω are bounded, and, consequently, we can use finite open
covers of them (as for the bounded domains) to define the traces.

In order to avoid the use of the fractional spaces of the spaces in ω and Ω, we
simply remark that if the controls in the Lions controllability theorem are taken in
H1/2(Γ) instead of L2(Γ), then a similar proof of it gives the following.

The set { ∂z0(v)
∂nA(Ω−ω̄) ∈ H−1/2(γ) : v ∈ H1/2(Γ)} is dense in H−1/2(γ), where

z0(v) ∈ H1(Ω− ω̄) is the solution of the problem

Az0(v) = 0 in Ω− ω̄,
z0(v) = v on Γ,
z0(v) = 0 on γ.

Now we associate to the operator A the symmetric bilinear form

a(y, z) =
N∑

i,j=1

∫
Ω

aij
∂y

∂xi

∂z

∂xj
+

∫
Ω

a0yz for y, z ∈ H1(Ω),

which is continuous on H1(Ω) ×H1(Ω). Evidently, a is also continuous on H1(ω) ×
H1(ω). Now if f ∈ L2(ω), taking the boundary data gγ ∈ H1/2(γ) and hγ ∈ H−1/2(γ),
then problems (2.1), (2.2) and (2.1), (2.3) can be written in the variational form

y ∈ H1(ω) : a(y, z) =
∫
ω
fz for any z ∈ H1

0 (ω),
y = gγ on γ,

(5.1)
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and

y ∈ H1(ω) : a(y, z) =

∫
ω

fz +

∫
γ

hγz for any z ∈ H1(ω),(5.2)

respectively. Similar equations can also be written for problems (2.11) and (2.20).

Therefore, if there exists a constant c0 > 0 such that a0 ≥ c0 in Ω, then the bilinear
form a is H1(Ω)-elliptic, i.e., there exists a constant α > 0 such that α|y|2H1(Ω) ≤
a(y, y) for any y ∈ H1(Ω). It follows from the Lax–Milgram lemma that problems
(2.11) and (2.20) have unique weak solutions in H1(Ω). Naturally, problems (2.1),
(2.2) and (2.1), (2.3) in ω also have unique weak solutions given by the solutions of
problems (5.1) and (5.2), respectively.

We know that there exist an isomorphism and homeomorphism of H1(Ω)/H1
0 (Ω)

onto H1/2(Γ) (see Theorem 7.53, p. 216, in [1], or Theorem 5.5, p. 99, and Theorem
5.7, p. 103, in [30]), i.e., there are two constants k1, k2 > 0 such that we have the
following.

• For any y ∈ H1(Ω), there exists v ∈ H1/2(Γ) such that y = v on Γ and
| v |H1/2(Γ)≤ k1 | y |H1(Ω).

• For any v ∈ H1/2(Γ), there exists y ∈ H1(Ω) such that y = v on Γ and
| y |H1(Ω)≤ k2 | v |H1/2(Γ).

Using this correspondence, we can easily prove the continuous dependence of the
solutions on data. For instance, for problems (2.1), (2.2) and (2.1), (2.3) we have

|y|H1(ω) ≤ C{|f |L2(ω) + |gγ |H1/2(γ)}

and

|y|H1(ω) ≤ C{|f |L2(ω) + |hγ |H−1/2(γ)},

respectively.

Therefore, if there exists a constant c0 > 0 such that a0 ≥ c0 in Ω, then we can
proceed in the same manner and obtain similar results for the exterior problems to
those obtained in the previous sections for the interior problems. Evidently, in this
case we take

U = H1/2(Γ)(5.3)

as a space of the controls for problem (2.11), in place of that given in (2.10), and the
space of controls for problem (2.20) is taken as

U = H−1/2(Γ),(5.4)

in place of the space given in (2.19).

If a0 = 0 in Ω, the domain being unbounded, then the problems might not have
solutions in the classical Sobolev spaces (see [11]), and we have to introduce the
weighted spaces which take into account the particular behavior of the solutions at
infinity.

For domains in R2, we use the weighted spaces introduced in [24], [25], specifically,

W 1(Ω) = {v ∈ D′(Ω) : (1 + r2)−1/2(1 + log
√

1 + r2)−1v ∈ L2(Ω), ∇v ∈ (L2(Ω))2},



436 L. BADEA AND P. DARIPA

where D′(Ω) is the space of the distributions on Ω, and r denotes the distance from
the origin. The norm on W 1(Ω) is given by

| v |W 1(Ω)=
(
| (1 + r2)−1/2(1 + log

√
1 + r2)−1v |2L2(Ω) + | ∇v |2(L2(Ω))2

)1/2

.

For domains in RN , N ≥ 3, appropriate spaces, introduced in [21] and used in [20],
[31], are

W 1(Ω) = {v ∈ D′(Ω) : (1 + r2)−1/2v ∈ L2(Ω), ∇v ∈ (L2(Ω))N}
with the norm

| v |W 1(Ω)=
(
| (1 + r2)−1/2v |2L2(Ω) + | ∇v |2(L2(Ω))N

)1/2

.

We remark that the space H1(Ω) is continuously embedded in W 1(Ω), and the two
spaces coincide for the bounded domains. We use W 1

0 (Ω) to denote the closure of
D(Ω) in W 1(Ω).

Concerning the space of the traces of the functions in W 1(Ω), we notice that, the
boundary Γ being bounded, these traces lie in H1/2(Γ). This fact immediately follows
from considering a bounded domain D ⊂ Ω such that Γ ⊂ D and from taking into
account that W 1(D) and H1(D) are identical.

Assuming that

(1 + r2)1/2(1 + log
√

1 + r2)f ∈ L2(Ω) if N = 2,

(1 + r2)1/2f ∈ L2(Ω) if N ≥ 3,

and using the spaces W 1 in place of the spaces H1, we can rewrite the problems (5.1)
and (5.2) and also similar equations for problems (2.11) and (2.20).

For N = 2, the bilinear form a(y, z) generates on W 1
0 (Ω) an equivalent norm

with that induced by W 1(Ω) (see [24]). Also, the bilinear form a(y, z) generates on
W 1(Ω)/R a norm which is equivalent to the standard norm.

For N ≥ 3, the previously introduced norm on W 1(RN ) is equivalent to that
generated by the bilinear form a(., .) (see [21]). Now if we extend the functions in
W 1

0 (Ω) with zero in RN − Ω, we get that the bilinear form a(y, z) also generates on
W 1

0 (Ω) a norm equivalent to that induced by W 1(Ω). Moreover, using the fact that
the domain Ω is the complement of a bounded set, it can be proved that the bilinear
form a(y, z) generates in W 1(Ω) a norm equivalent to the above introduced norm.

Therefore, we can conclude that, in the case of a0 = 0 on Ω, the exterior problems
have unique solutions in the spaces W 1 if N ≥ 3. If N = 2, the Dirichlet problems
have unique solutions in W 1, and the Neumann problems have unique solutions in
W 1/R.

Using the fact that the spaces W 1(D) and H1(D) coincide on the bounded do-
mains D, the continuous embedding of H1(Ω) in W 1(Ω), and the homeomorphism
and isomorphism between H1/2(Γ) and H1(Ω)/H1

0 (Ω), we can easily prove that there
exist a homeomorphism and isomorphism between H1/2(Γ) and W 1(Ω)/W 1

0 (Ω). Con-
sequently, we get the following continuous dependence on the data of the solution y
of problem (2.1), (2.2):

|y|W 1(ω) ≤ C{|(1 + r2)1/2(1 + log
√

1 + r2)f |L2(ω) + |gγ |H1/2(γ)} if N = 2,
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and

|y|W 1(ω) ≤ C{|(1 + r2)1/2f |L2(ω) + |gγ |H1/2(γ)} if N ≥ 3.

For the problem (2.1), (2.3), we have

inf
s∈R

|y+s|W 1(ω) ≤ C{|(1+r2)1/2(1+log
√

1 + r2)f |L2(ω)+|hγ |H−1/2(γ)} if N = 2,

and

|y|W 1(ω) ≤ C{|(1 + r2)1/2f |L2(ω) + |hγ |H−1/2(γ)} if N ≥ 3.

Therefore, we can prove in a manner similar to the previous sections that when
a0 = 0 on Ω and N ≥ 3, the solutions of the Dirichlet and Neumann problems in ω can
be approximated with solutions of both the Dirichlet and the Neumann problems in
Ω. Naturally, the controls are taken in the appropriate space (5.3) or (5.4). If a0 = 0
on Ω and N = 2, the solutions of the Dirichlet problems in ω can be approximated
with solutions of the Dirichlet problem in Ω. The Neumann problems do not have
unique solutions.

Since y(v) and gγ lie in H1/2(γ) in the case of problem (2.1), (2.2), and ∂y(v)
∂nA(ω)

and hγ lie in H−1/2(γ) when we solve (2.1), (2.3), the natural choices for the space
of observations are

H = H1/2(γ)(5.5)

and

H = H−1/2(γ),(5.6)

respectively. Even if the convergence is assured for these spaces, their norms are
numerically estimated with much difficulty. However, noticing that the inclusions
H1/2(γ) ⊂ L2(γ) ⊂ H−1/2(γ) ⊂ H−1(γ) are continuous, we can take the spaces
of observations, as in the case of the bounded domains, given in (2.12) and (2.14).
We mentioned earlier the need to avoid the use of the fractional Sobolev spaces for
unbounded domains because of the lack of work on this subject (to the best of our
knowledge), especially concerning the continuous dependence of the solution on the
data of the problem. In the next section, we give a numerical example where the
space of the controls is taken as for the bounded domains and the obtained results
are accurate.

6. Numerical results. In this section, we choose some specific Uλ and Hµ.
Hence we drop the subscripts λ and µ. First, we summarize the results obtained in
the previous sections on the algebraic system we need to solve to obtain solutions,
within a prescribed error, of problems (2.1), (2.2) or (2.1), (2.3), using the solutions
of problems (2.11) or (2.20).

We recall that if, for both the bounded and unbounded domains, there exists a
constant c0 > 0 such that the coefficient a0 of the operator A satisfies a0 ≥ c0 in
Ω, then the solutions of problems (2.1), (2.2) or (2.1), (2.3) can be approximated by
the solutions of both problems (2.11) and (2.20). If a0 = 0 in Ω, then the solutions
of problems (2.1), (2.2) can be approximated by the solutions of problems (2.11)
for both the bounded and the unbounded domains, and if also N ≥ 3, then by the
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solutions of problems (2.20) for unbounded domains only. If a0 = 0 in Ω with the
domains unbounded, then the solutions of problems (2.1), (2.3) can be obtained from
the solutions of problems (2.11) and also from the solutions of (2.20) if N ≥ 3.

Actually, we have to solve the algebraic system (4.5), which is rewritten as

ξ ∈ Rn : Πξ = l.(6.1)

Some remarks on the computing of the elements of the matrix Π and the free term l
are made below.

• Depending on the problem in Ω, we choose the space of controls U and a
finite dimensional subspace of it, U ⊂ U . Let ϕ1, . . . , ϕn, n ∈ N, be the basis
of U , and let y′(ϕi), i = 1, . . . , n be the corresponding solutions of problems
(3.2) or (3.21) if the problem in Ω is (2.11) or (2.20), respectively.

• If the problem in ω is (2.1), (2.2), then we calculate the values of y′(ϕi),
i = 1, . . . , n, at the mesh points on γ. For the problem (2.1), (2.3) we calculate

the values of ∂y′(ϕi)
∂na(ω) , i = 1, . . . , n, at the mesh points on γ.

• Using the computed values of y′(ϕi) or ∂y′(ϕi)
∂na(ω) , i = 1, . . . , n, at the mesh

points on γ, we compute the elements of the matrix Π which are some inner
products either in H = L2(γ) when we solve the problem (2.1), (2.2) or in
H = H−1(γ) when we solve the problem (2.1), (2.3). The finite dimensional
subspace H ⊂ H depends on the numerical integration method that we use.
We remark that the matrix Π is symmetric and full.

• The elements of the free term l are also some inner products in the space
of observations H. We use a solution yf of (3.23) and the boundary data of
the problem in ω (i.e., gγ or hγ if the problem is (2.1), (2.2) or (2.3), (2.1),
respectively) in these inner products.

• For problem (2.1), (2.2), the matrix Π and the free term l are given by (4.3)
and (4.6), respectively. Also, for problem (2.1), (2.3) the matrix Π and the
free term l are given in (4.4) and (4.7), respectively. In these equations, y′i
and

∂y′i
∂nA(ω) are some approximations in H of y′(ϕi) and ∂y′(ϕi)

∂nA(ω) , respectively.

These approximations arise from the use of numerical integration on γ and

numerical values of y′(ϕi) and ∂y′(ϕi
∂nA(ω) at the mesh points on γ. These values

can be found either by evaluating an algebraic expression or by interpolation.
Indeed, when the finite element method or any other method is used with
a mesh over Ω which does not fit with the boundary γ, the values of the
functions yf and y′(ϕi), i = 1, . . . , n at some mesh points in γ are found by
interpolation.

Finally, if ξ = (ξ1, . . . , ξn) is the solution of algebraic system (6.1) and y is the
solution of the problem we solve, then its approximation is the restriction to ω of

ξ1y
′(ϕ1) + · · ·+ ξny

′(ϕn) + yf .(6.2)

We recall that the matrices Πλ given in (3.14) and (3.18) are nonsingular, and
therefore, each of the problems (3.16) has a unique solution. Also, algebraic systems
(6.1) have unique solutions if their matrices and free terms are good approximations
in H of the matrix and the free term of the algebraic systems (3.16), respectively.
Also, from Remark 4.1 we must take n ≤ m, n being the dimension of U and m
the dimension of H. However, as we recall from section 2, the problem in infinite
dimensional space may not have a solution. Consequently, for very large n, we might
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obtain algebraic systems (3.16) that are almost singular. These algebraic systems can
be solved by an iterative method such as the conjugate gradient method. However,
we applied the Gauss elimination method in order to find out whether the algebraic
system is singular or nonsingular. This is done by checking the diagonal elements
during the elimination phase.

In the following two subsections, we give some numerical examples for both in-
terior and exterior problems in which the solutions of the problems in Ω are found
either directly by a formula, or by a method using a mesh over Ω.

6.1. Interior problems.
Example 6.1. The first numerical test refers to the Dirichlet problem

−∆y = f in ω,
y = gγ on γ,

(6.3)

where ω ⊂ R2 is a square centered at the origin with sides parallel to the axes and of
length of 2 units. The approximate solution of this problem is given by the solution
of the Dirichlet problem

−∆y(v) = f in Ω,
y(v) = v on Γ,

(6.4)

in which the domain Ω is the disc centered at the origin with radius equal to 2.
The solutions of the homogeneous Dirichlet problems in Ω are found by the Poisson
formula

y(v)(z) =
1

2πr

∫
|ζ|=r

v(ζ)
r2 − |z|2
|z − ζ|2 dSζ .(6.5)

The circle Γ is discretized with n equidistant points, and U ⊂ U ≡ L2(Γ) is taken
as the space of the piecewise constant functions. Naturally, an element ϕi in the basis
of H is a function defined on Γ which takes the value 1 between the nodes i and i+ 1
and vanishes in the rest of Γ. The square γ is also discretized with m equidistant
points, and H ⊂ H ≡ L2(γ) is taken as the space of the continuous piecewise linear
functions. Evidently, the inclusions in (3.1) and (4.1) are dense because the union of
the spaces (over some sequence of mesh size approaching zero) of continuous piecewise
linear or piecewise constant functions is dense in L2.

The values of the integrals in the Poisson formula at the points on γ are calculated
using the numerical integration with three nodes. The integrals in the inner products
in L2(γ) are calculated using an exact formula when H is the space of the continuous
piecewise linear functions. In particular, if we have on γ two continuous piecewise
linear functions y1 and y2 such that

y1(x) = mk
1(x− xk) + yk1 ,

y2(x) = mk
2(x− xk) + yk2

(6.6)

for x ∈ [xk, xk+1], k = 1 . . . ,m, then

∫
γ

y1y2 = h
m∑
k=1

[
yk1y

k
2 +

h2

3
mk

1m
k
2 +

h

2
(mk

1y
k
2 +mk

2y
k
1 )

]
,(6.7)

where h = xk+1 − xk is the mesh size on γ.



440 L. BADEA AND P. DARIPA

Table 6.1
Relative errors for the interior Dirichlet problem.

n errd errb

80 .36692E-07 .15956E-06
72 .46271E-08 .41101E-07
60 .14682E-09 .25103E-08
45 .12475E-08 .54357E-08
40 .64352E-12 .11638E-07
36 .67121E-12 .11648E-06
30 .12371E-05 .33923E-05
24 .39543E-12 .19851E-04
18 .10609E-03 .43901E-03
12 .29916E-10 .54208E-02
10 .94618E-02 .17096E-01

All computations below have been performed in fifteen digit arithmetics (double
precision).

In the first example, we choose the exact solution to be u(x1, x2) = x2
1 + x2

2.
Hence gγ(x1, x2) = x2

1 +x2
2, and f = −4. We have taken yf = 2x2

1 as a solution of the
inhomogeneous equation in Ω. It has been compared with the computed one at 19
equidistant points on a diagonal of the square: (-1.4,-1.4),. . .,(0,0),. . .,(1.4,1.4). Below
errd denotes the maximum of the relative errors between the exact and the computed
solutions at these 19 considered points in the domain ω. A similar error only on the
boundary γ is denoted by errb.

Table 6.1 shows errors errd and errb against n, the number of the equidistant
points on Γ which is the dimension of the finite dimensional space U . Recall that Γ
is boundary of the embedding domain Ω. All these computations use a mesh size of
0.1 on γ. It corresponds to m = 80, the number of equidistant points on γ, which
is the dimension of the finite dimensional space H. The smallest diagonal element
during the Gauss elimination method is of the order 10−17 for n = 80 and n = 72,
and of the order 10−14 for n = 60. It is greater than 10−10 for n = 10, . . . , 45. We
should mention that in the cases when n > 60, where the last pivot is very small, we
notice an increase in error. In all these cases the error errb, which can be calculated
for any example even when the exact solution is not known, is a good indicator of the
computational accuracy.

In the above example, the right-hand side f of the equation in ω is given by an
exact algebraic formula, and it was extended in Ω by the same formula. Moreover, we
have had for this simple example an exact solution yf of the inhomogeneous equation
in Ω, which could be exactly evaluated at the mesh points of the boundary γ of the
domain ω. Also, the solutions of the homogeneous problems in Ω, given by the above
Poisson formula, could be evaluated directly at these mesh points. In the following
example we study the effect of various extensions of f in Ω on the computed solutions
in ω. Therefore, in this example, the solution of the problem in Ω could be computed
only at some nodes of a regular mesh over Ω, and their values at the mesh points on
γ are calculated by interpolation.

Example 6.2. This example concerns the Dirichlet problem

∆y − σ2y = f in ω,
y = gγ on γ,

(6.8)



BOUNDARY CONTROL TO DOMAIN EMBEDDING METHODS 441

where ω ⊂ R2 is bounded by the straight lines x1 = −π/2, x1 = π/2, and x2 = −1.5
and the curve y = 0.5 + cos(x + π/2). We approximate the solution of this problem
by a solution of the Dirichlet problem

∆y(v)− σ2y(v) = f in Ω,
y(v) = v on Γ,

(6.9)

in which the domain Ω is the disc centered at the origin with the radius of 2.3 (see
Figure 6.1 (a)). We have taken σ2 = 0.75 in numerical computations.

We approximate the functions f and v by the discrete Fourier transforms

f(r, θ) =

n/2−1∑
k=−n/2

fk(r)e
ikθ,

v(θ) =

n/2−1∑
k=−n/2

vke
ikθ.

(6.10)

Then the solution of problem (6.9),

y(v) = yf + y′(v),(6.11)

can also be written as a discrete Fourier transform

yf (r, θ) =

n/2−1∑
k=−n/2

yk(r)e
ikθ,

y′(v)(r, θ) =

n/2−1∑
k=−n/2

y′k(r)e
ikθ,

(6.12)

where the Fourier coefficients yk(r) and y′k(r) are given by

yk(r) = −
∫ r

0

ρKk(σr)Ik(σρ)fk(ρ)dρ−
∫ R

r

ρIk(σr)Kk(σρ)fk(ρ)dρ

+
Ik(σr)

Ik(σR)

∫ R

0

ρKk(σR)Ik(σρ)fk(ρ)dρ,(6.13)

y′k(r) =
Ik(σr)

Ik(σR)
vk.

Above, R is the radius of the disc, and Ik and Kk are the modified Bessel functions
of the first and second kinds, respectively. We recall that y′(v) and yf in (6.11) are
the solutions of problems (3.2) and (3.6), respectively. A fast algorithm is proposed
in [4], which, using (6.13) and the fast Fourier transforms, evaluates yf and y′(v) in
(6.12) at the nodes of a mesh on the disc Ω with n equidistant nodes in tangential
direction and l equidistant nodes in the radial direction.

It is worth noting from (6.10) that the finite dimensional space of controls U is the
space of real periodic functions defined on [0, 2π] which can be written as a Fourier
transform with the terms −n/2, . . . , 0, . . . , n/2 − 1. On the other hand, we have
U = L2(Γ) = L2(0, 2π), and since the functions in L2(0, 2π) can be approximated
by discrete Fourier transforms, we get that (3.1) holds with U as the above finite
dimensional spaces. Since the controls v are real functions, it follows from (6.10)
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Fig. 6.1. (a) Domains, (b) exact solution.
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Fig. 6.2. Extension of f by (a) the formula in the domain ω, (b) zero.

that vi = v̄−i for i = 1, . . . , n/2 − 1 and v0 is real provided we choose v−n/2 ∈
R. Consequently, a basis of U is given by the functions: ϕ0 which has the Fourier
coefficient v0 = 1, the other ones being zero, ϕ−n/2 which has the Fourier coefficient
v−n/2 = 1, the other ones being zero, and ϕj , −n/2 + 1 ≤ j ≤ n/2 − 1, j 6= 0, have
the Fourier coefficients vj = 1 + i, v−j = 1− i with the rest being zero.

The boundary γ is discretized with m equidistant points, and, as in the previous
example, H is taken to be the space of the piecewise linear functions. The integrals in
the inner products in L2(γ) are calculated by the same formulae (6.7). We recall that
the values of yf and y′(ϕ) at the mesh points of the boundary γ were obtained by
interpolation of function values at mesh points on Ω. Assuming that the point (r, θ)
lies between the four mesh nodes (r1, θ1), (r2, θ1), (r1, θ2), (r2, θ2), we have linearly
interpolated in radial direction first the values corresponding to (r1, θ1) and (r2, θ1),
and then the values corresponding to (r1, θ2), (r2, θ2). Using the two obtained values,
we have made a linear interpolation in the tangential direction.

For numerical purposes, we have taken f(x1, x2) = (2 + x1(1 − σ2))ex1 + (2 +
x2(1 − σ2))ex2 and gγ(x1, x2) = x1e

x1 + x2e
x2 in (6.8). Then problem (6.8) has the

exact solution y(x1, x2) = x1e
x1 +x2e

x2 , which is shown in Figure 6.1 (b). In order to
assess the effect of various extensions of the function f outside of ω on the numerical
results, we have taken for this example only two types of extensions: (i) extending f
using the above formula in ω; (ii) extending f by zero (see Figure 6.2).

Tables 6.2 through 6.5 show the arithmetic mean of the absolute errors between
the exact and the computed solutions against various values of n (the number of the
nodes in tangential direction, i.e., the number of nodes on Γ) and δr (the mesh size in
radial direction), while keeping the number of mesh points on γ fixed at m = 360 for
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Table 6.2
Errors on γ − f extended with the formula in ω.

n/δr 0.1 0.05 0.02 0.01

8 0.15555E+00 0.15571E+00 0.15577E+00 0.15577E+00
16 0.25622E-01 0.25530E-01 0.25505E-01 0.25500E-01
32 0.58700E-02 0.55274E-02 0.55131E-02 0.55146E-02
64 0.26025E-02 0.13450E-02 0.12478E-02 0.12411E-02
128 0.12901E-02 0.56973E-03 0.36080E-03 0.35200E-03

Table 6.3
Errors in ω − f extended with the formula in ω.

n/δr 0.1 0.05 0.02 0.01

8 0.98198E-01 0.92264E-01 0.89501E-01 0.88875E-01
16 0.33058E-01 0.31403E-01 0.30967E-01 0.30862E-01
32 0.83707E-02 0.69124E-02 0.65851E-02 0.65232E-02
64 0.38456E-02 0.18422E-02 0.14402E-02 0.13976E-02
128 0.30019E-02 0.95631E-03 0.40010E-03 0.34864E-03

Table 6.4
Errors on γ − f extended by zero.

n/δr 0.1 0.05 0.02 0.01

8 0.20670E+00 0.20546E+00 0.20347E+00 0.20331E+00
16 0.32825E-01 0.33941E-01 0.34529E-01 0.35906E-01
32 0.67604E-02 0.69137E-02 0.79452E-02 0.83573E-02
64 0.39507E-02 0.19624E-02 0.24754E-02 0.26836E-02
128 0.14346E-02 0.78505E-03 0.13167E-02 0.13784E-02

Table 6.5
Errors in ω − f extended by zero.

n/δr 0.1 0.05 0.02 0.01

8 0.15520E+00 0.15211E+00 0.15156E+00 0.15206E+00
16 0.30860E-01 0.27219E-01 0.25270E-01 0.25012E-01
32 0.72434E-02 0.54336E-02 0.52230E-02 0.51386E-02
64 0.40250E-02 0.19991E-02 0.15890E-02 0.15415E-02
128 0.33861E-02 0.15554E-02 0.10941E-02 0.10286E-02

all these computations. The results in Tables 6.2 and 6.3 have been obtained with the
extension of f in Ω made with the formula in ω, and the results in Tables 6.4 and 6.5
have been obtained with the extension made by zero. In Tables 6.2 and 6.4, we show
the errors computed on the boundary γ by taking the average over m = 360 boundary
points. On the other hand, we show in Tables 6.3 and 6.5 the errors computed in the
domain ω by taking the average over all mesh points in ω.

We notice in these tables that errors on the boundary γ are of the same order as in
the domain ω, and the extension of the function f outside of ω with the formula in ω
gives smaller errors than the extension by zero. It may be worth noting here that the
errors for this example are higher than those for the previous example (see Table 6.1)
because the values of yf and y(ϕi) on the boundary γ were found by interpolation
in this example and by an exact algebraic expression in the previous example. Thus
interpolation error is one of the possible sources of larger error in these tables for this
example. Figure 6.3 shows absolute errors at the mesh nodes in the domain ω when
n = 128 and δr = 0.01 for the two extensions of f .
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Fig. 6.3. Errors in the domain when f is extended by (a) the formula in the domain ω, (b) zero.

6.2. Exterior problems. Below, we show the performance of the method on
two exterior problems.

Example 6.3. We solve the same problem as defined by (6.3) in Example 6.1
except that the domain ω is now the exterior of a square centered at the origin with
sides parallel to the axes and of length of 2 units. For this problem, we consider
exterior Dirichlet problem (6.4) with the embedding domain Ω as the exterior of a
disc with its center at the origin and radius 0.99 unit.

Similar to Example 6.1, the solutions of the homogeneous Dirichlet problems in
Ω are found by the Poisson formula

y(v)(z) =
−1

2πr

∫
|ζ|=r

v(ζ)
r2 − |z|2
|z − ζ|2 dSζ .(6.14)

The spaces U , U , H, and H are the same as in Example 6.1, and the integrals on the
boundary γ use the same formula (6.7).

The problem in ω we have numerically solved has had gγ(x1, x2) = x1x2 and
f = 0. Evidently, we take yf = 0. In this case, we do not know the exact solution
of the problem, but we recall from previous examples that the error on the boundary
γ was very close to that in domain ω. Hence Table 6.6 shows the maximum relative
errors between the exact prescribed data and the computed solutions on boundary
γ against various values of n (the number of the nodes in tangential direction, i.e.,
number of nodes on Γ) while keeping the number of mesh points on γ fixed at m = 120
(corresponding to a mesh size of 1/15 on γ) for all these computations.

We found that the smaller diagonal element during the Gauss elimination method
is of the order 10−15 for n = 120 and of the order 10−14 for n = 118, and it is greater

Table 6.6
Errors obtained for the exterior Dirichlet problem.

n errb

120 0.10995E-03
118 0.93472E-04
116 0.24253E-05
115 0.38082E-03
110 0.33003E-02
100 0.55797E-01
90 0.18828E+00
60 0.21087E+00
30 0.77558E+00
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Fig. 6.4. (a) Domains, (b) exact solution.

than 10−12 for n = 30, . . . , 116. We see in Table 6.6 that for n > 116, the error
increases when the pivots in the Gauss elimination method become very small.

Example 6.4. Here we solve the same problem as defined by (6.8) in Example 6.2
except that the domain ω now is the open complement of the domain bounded by the
straight lines x1 = −π/2, x1 = π/2, and x2 = −1.5 and the curve y = 0.5 + cos(x).
For this problem, the embedding domain Ω is taken to be the exterior of a disc with
its center at the origin and radius 1.3 unit (see Figure 6.4, (a)).

We approximate the solution of this problem by a solution of the exterior Neu-
mann problem

∆y(v)− σ2y(v) = f in Ω,
∂y(v)
∂nA(Ω) = v on Γ,

(6.15)

where Γ is the inner boundary of the embedding domain Ω. Similar to Example 6.2,
we have taken σ2 = 0.75 in numerical computations.

As before, functions f and v are approximated by the discrete Fourier transforms
(6.10). Then the solution of problem (6.15) admits representation given by (6.11) and
(6.12) except that the Fourier coefficients yk(r) and y′k(r) are now given by

yk(r) = −
∫ r

R

ρKk(σr)Ik(σρ)fk(ρ)dρ−
∫ ∞

r

ρIk(σr)Kk(σρ)fk(ρ)dρ

− Kk(σr)

Kk−1(σR) +Kk+1(σR)

∫ ∞

R

ρ[Ik−1(σR) + Ik+1(σR)]Kk(σρ)fk(ρ)dρ,(6.16)

y′k(r) =
Kk(σr)

Kk−1(σR) +Kk+1(σR)

2

σ
vk.

Above, R is the radius of the disc whose complement is the domain Ω, and Ik and
Kk are the modified Bessel functions of first and second kinds, respectively. In order
to compute the solution of problem (6.15) at mesh points of the domain Ω with
n equidistant nodes in the tangential direction and l equidistant nodes in the radial
direction, we use the algorithm proposed in [4]. This algorithm uses (6.16) and the fast
Fourier transforms to compute yf and y′(v) in (6.12). For numerical computations,
the domain Ω is considered to be the annulus with the radii R and R∞, where R∞ is
chosen very large so that its effect is minimal on the accuracy of the solutions.

The spaces U and H are the same as in Example 6.2. Also, the values of yf and
y′(ϕ) at the mesh points of the boundary γ were obtained by interpolating the values
of the function at mesh points on Ω.
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Fig. 6.5. Extension of f by (a) the formula in the domain ω, (b) zero.

For numerical purposes in this example, we have considered (6.8) with f(x1, x2) =

[4(x2
1 + x2

2 − x1 − x2)− 2 + σ2]e−x
2
1−x2

2+x1+x2 and gγ(x1, x2) = e−x
2
1−x2

2+x1+x2 . This

problem has the exact solution y(x1, x2) = e−x
2
1−x2

2+x1+x2 (it lies in H1(ω) and satis-
fies the equation and the boundary conditions of problem (6.8)), which is plotted in
Figure 6.4 (b).

Numerical computations show that |y(r)| ≤ 0.104E − 16 for r > 7, where r is
the distance of the point from the origin. Hence we have taken R∞ = 7 in these
computations. As in Example 6.2, we have extended f outside of ω in two different
ways: (i) by the above formula, and (ii) by zero. These extensions are plotted in
Figure 6.5. We have takenm = 360, the number of the mesh points on the boundary γ.

The error tables are similar to those in Example 6.2. Tables 6.7 and 6.8 correspond
to the case when the extension of f in Ω is made with the formula in ω, and Tables 6.9
and 6.10 correspond to the extension made by zero. In Tables 6.7 and 6.9, we show
the arithmetic mean of the absolute errors computed on the boundary γ by taking the
average over m = 360 boundary points. On the other hand, we show in Tables 6.8 and
6.10 the errors computed in the domain ω by taking the average over all mesh points
in ω. It is worth noting in these tables that, this time, the errors on the boundary γ
are less than those in the domain ω, and the two extensions of f give solutions with

Table 6.7
Errors on γ − f extended with the formula in ω.

n/δr 0.1 0.05 0.02 0.01

8 0.13247E-01 0.13231E-01 0.13233E-01 0.13233E-01
16 0.25712E-02 0.25628E-02 0.25500E-02 0.25496E-02
32 0.59286E-03 0.58076E-03 0.57869E-03 0.57859E-03
64 0.18186E-03 0.15977E-03 0.15536E-03 0.15462E-03
128 0.63343E-04 0.51301E-04 0.45571E-04 0.45775E-04

Table 6.8
Errors in ω − f extended with the formula in ω.

n/δr 0.1 0.05 0.02 0.01

8 0.29115E-02 0.28034E-02 0.26385E-02 0.26264E-02
16 0.11901E-02 0.10997E-02 0.10582E-02 0.10493E-02
32 0.66451E-03 0.62745E-03 0.61610E-03 0.61432E-03
64 0.56566E-03 0.54864E-03 0.54777E-03 0.54815E-03
128 0.60927E-03 0.53842E-03 0.53886E-03 0.53988E-03
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Table 6.9
Errors on γ − f extended by zero.

n/δr 0.1 0.05 0.02 0.01

8 0.13045E-01 0.13030E-01 0.13016E-01 0.13016E-01
16 0.26982E-02 0.26937E-02 0.27057E-02 0.26834E-02
32 0.61089E-03 0.61377E-03 0.63730E-03 0.64057E-03
64 0.17974E-03 0.15425E-03 0.16077E-03 0.16632E-03
128 0.63717E-04 0.52191E-04 0.53991E-04 0.57498E-04

Table 6.10
Errors in ω − f extended by zero.

n/δr 0.1 0.05 0.02 0.01

8 0.28435E-02 0.27346E-02 0.25635E-02 0.25483E-02
16 0.11929E-02 0.11024E-02 0.10533E-02 0.10487E-02
32 0.67268E-03 0.64000E-03 0.63015E-03 0.63105E-03
64 0.58007E-03 0.56682E-03 0.56861E-03 0.57090E-03
128 0.60658E-03 0.55784E-03 0.56152E-03 0.56343E-03
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Fig. 6.6. Errors in the domain when f is extended by (a) the formula in the domain ω, (b) zero.

errors of the same order. In Figure 6.6, we have plotted the absolute error at the
mesh nodes in the domain ω when n = 128 and δr = 0.01 for these two extensions
of f .
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