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A FAST ALGORITHM TO SOLVE NONHOMOGENEOUS
CAUCHY-RIEMANN EQUATIONS IN THE COMPLEX PLANE*

PRABIR DARIPAt

Abstract. An algorithm is provided for the fast and accurate computation of the solution of
nonhomogeneous Cauchy—Riemann equations in the complex plane in the interior of a unit disk. The
algorithm is based on the representation of the solution in terms of a double integral, some recursive
relations in Fourier space, and fast Fourier transforms. The numerical evaluation of the solution at
N2 points on a polar coordinate grid by straightforward summation for the double integral would
require O(N?) floating point operations per point. Evaluation of these integrals has been optimized
in this paper giving an asymptotic operation count of O(In N) per point on the average. In actual
implementation, the algorithm has even better computational complexity, approximately of the order
of O(1) per point. The algorithm has the added advantage of working in place, meaning that no
additional memory storage is required beyond that of the initial data. The performance of the
algorithm has been demonstrated on several prototype problems. The algorithm has applications in
many areas, particularly fluid mechanics, solid mechanics, and quasi-conformal mappings.
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1. Introduction. Cauchy-Riemann (CR) equations arise in many areas includ-
ing fluid mechanics, solid mechanics, and electrostatics. These equations are given
by

(1'1) ¢w = %, ¢y = —"pmy

where real variables ¢ and 1 are functions of z and y. The CR equations suggest
that the complex function u = ¢ + 43 is an analytic function of the complex variable
o=z+1iy:

(1.2) u = g(o).

This equation can be equivalently written as u; = 0. Henceforth we refer to this
equation as the CR equation in the complex plane. The CR equation plays an impor-
tant role for two main reasons: the first is the fact that these equations model many
problems in many areas of applications; the second is that the power of complex vari-
able theory may be used in solving these problems. It should be noted that the CR
equation is linear and homogeneous. Thus it is not surprising that CR equations arise
due to some linear approximations or some nonlinear transformations of the original
equations that actually arise in applied fields.

An obvious extension of the CR equation would be to add a nonhomogeneous
term to it:

(1.3) uz = h(u,0,5),

where the complex function h may be a nonlinear function of u and depends explicitly
on ¢ and &. This equation naturally reduces to a CR equation when & is identically
zero. Note that this equation is nonlinear as well as nonhomogeneous. A well-known
special case of (1.3) is the following Beltrami equation (see [1] and [2]):

(1.4) uz = p(u)ug,
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where p may depend on u, 0, and &. This equation arises in many instances, most no-
tably in the transformation of a quasi-linear partial differential equation to canonical
form [2], in quasi-conformal mapping [7], and in compressible fluid flow [6]. In fact,
recent work has been done by solving these equations in the real as well as complex
plane (see [5] and [6]) in the context of compressible fluid flow and quasi-conformal
mapping [7]. It may also arise in other applied areas.

In this paper we are interested in constructing a fast algorithm to solve an ap-
propriate boundary value problem associated with the following linearized version of
(1.3):

(1'5) Uz = f(aa &),

in the unit disk |o| < 1. The nonanalytic function f is assumed to satisfy a Holder
condition with exponent « in a unit disk Q: |o| < 1. Henceforth we refer to this equa-
tion as the nonhomogeneous Cauchy-Riemann (NCR) equation. Below, we denote
f(0,3) by (o).

In [6], Daripa introduced a numerical method to solve this problem. The method
is based on splitting the solution of (1.5) as (see also [2])

(1.6) u(o) = uP(o) + u*(0),

where u*(0) is the analytic part of the solution and uP(c) is the nonanalytic part of
the solution. The nonanalytic part u?(o) is then given by

(L.7) w(o) =1 / /Q CL(_%dﬁdn,

where { = £ + in.

The analytic part admits a Taylor series representation which can be efficiently
computed using the fast Fourier transform (FFT) (see [3], [4], [6], and [8]). However,
there are two main difficulties in the computation of the nonanalytic part uP(c). The
first has to do with the singularity of the integrand in (1.7) at { = 0. In [6, Appendix
C], Daripa proposed a method of desingularizing the integral. This desingularized
version of the integral can then be directly integrated, but with poor accuracy, as is
explained in §5. The second has to do with the algorithmic complexity of straight-
forward integration. The straightforward computation of the double integral in (1.7)
requires performing an integral with an operation count of the order of O(N?) for
each node in the discretization. There are N2 such nodes in the discretization of the
domain and hence N? such integrals to be evaluated. Thus this method of evaluation
is computationally very intensive. These are the main drawbacks of the method.
However, our goal in this paper is to develop an efficient and accurate algorithm for
evaluating this integral and to thus make this a desirable alternative to the above
approach.

The process of evaluating these integrals is optimized in this paper, giving a net
operation count of the order of O(N?In N) for N2 points. This algorithm has the
added advantage of working in place, meaning that no additional memory storage is
required beyond that of the initial data.

Our method is basically a recursive routine in Fourier space that divides the entire
domain (the interior of the unit disk) into a collection of annular regions and expands
the integral in Fourier series in angular direction with radius-dependent Fourier coef-
ficients. A set of exact recursive relations are derived which are then used to produce
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the Fourier coefficients of the integral. These recursive relations involve appropriate
scaling of one-dimensional integrals in annular regions. The desired integrals at all
N? grid points are then easily obtained from the Fourier coefficients by the FFT.

The algorithm developed in this paper also provides a constructive analytical
method for evaluating certain integrals that are otherwise difficult to evaluate. An
example is provided in Appendix B.

The rest of the paper is structured as follows. Section 2 develops the mathematical
foundation of the efficient algorithm to evaluate the particular solution u?(o) within
the unit disk. The fast algorithm and the algorithmic complexity are discussed in
§3. In §4, an area integral is evaluated corroborating the algorithmic steps. Section
5 discusses the computational results in evaluating the particular solution using our
algorithm of §4. In §6, Dirichlet problems associated with the NCR equation (1.5)
and computations of their solution are discussed. We conclude in §7.

In a sequel, we shall apply our algorithm to equations of compressible fluid flow.

2. Mathematical foundation of the algorithm. In this section, we develop
the theory needed to construct an efficient algorithm for evaluating the double integral
that appears in (1.7).

In the following, we use the notations Q,: |o| <r <1, Qr: Q\Q,, and Q;;: 73 <
|o| < r;. The following theorem is crucial for the later development of the algorithm.

THEOREM 2.1. The particular solution of us = f(0o) with o = re*™ can be written

as
21) o)=Y ealr)e™,
where ) "o
r
o) @um neo
(22) enlr) =
1 r\ (1
S0 () @)aem nzo
Proof. If we introduce the notation
2T —ina
(2.3) Pa(r,¢) = /0 Ce_ e,
then it follows from (1.7) and (2.1) that
(24) —realr) = 5= [ [ #OPu(r Ot

The integral in (2.3) can be evaluated using complex variables. It is an elementary
exercise in complex variable theory to show that

(25) Pn('ra C) = —27I"I'nSn(C),
where

¢~(n+1), I < ol
(2.6) Sn(¢) = =8(n)¢™" D 4+ ¢ 0.5¢= 4D, |¢] = o],

0, <1 > |o].
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In (2.6), 6(n) =0 for n < 0 and 6(n) = 1 for n > 0. Substitution of (2.5) into (2.4)
yields the desired result, i.e., (2.2).

Remark 2.1. The above theorem can also be derived by first expanding c—% in
power of -5 and -‘Z—, followed by integration in the complex plane.

COROLLARY 2.1. Suppose that { = pe®® and f(() has Fourier coefficients fn(p);
then it easily follows that the coefficients cn(r) in (2.2) can be written as

2 [ fno) (5) o m<o
2.7 cn(r) = 1 A
2 [ faralo) (;) dp, 20,

COROLLARY 2.2. It follows directly from (2.7) that ¢, (1) = 0 forn > 0,¢,(0) =0
for all n # 0. It also follows from the Fourier expansion of f({) that f,(0) = 0 for
n # 0, and fo(0) = £(0).

COROLLARY 2.3. Let r; > r;. Define

iy [” RY'
(2.8) ¢l =2 / fn+1(p) (—) dp,
" p
where
Tiy n 2 0,
(2.9) R=
5, n <0.
After some algebraic manipulation it follows from (2.7) that
T v ..
(2.10) cn(rj) = (T—J) en(rs) + 2, n <0,
2
and
(2.11) en(rs) = (:—) (r)—ci, n>0.
J

COROLLARY 24. Let0 =11 < 1o <rg--- <rp = 1. It follows from recursive
applications of (2.10) and (2.11) and from using Corollary 2.2 that

l n
E (T-l-> &b forn<Oandl=2,---, M,
imz \Ti

(2.12)  cu(m) =
M-1 r no
- Z (—1) il forn>0andl=1,---,M—1.

3. The fast algorithm. We construct the fast algorithm based on the theory
of §2. The unit disk is discretized using M x N lattice points with M equidistant
points in the radial direction and NV equidistant points in the circular direction.
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Initialization. Choose M and N. Define K = .

Step 1. For | € [1,M] and n € [-K + 1, K], compute the Fourier coefficients f(r:)
of f(¢) from the known values of f({ = r;e**/N) j=1,-.. M;k=1,---,N.

Step 2. Compute ciit1 i € [1, M — 1] for n € [-K, K — 1] using (2.8).

Step 3. Compute the Fourier coefficients ¢, (r;),n € [-K, K — 1],1 € [1, M] using the
relations (2.10) and (2.11).

set c,(rmM) =0V ne0,K —1]
don=0,---,K-1
dol=M-1,---,1
Use (2.11) of Corollary 2.4 to compute ¢, (7).
en(rt) = (525 enlrien) — i+
enddo

enddo

set c,(r1) =0V ne[-K,—1]
don=-K,---,-1
dol!l=2,--- /M
Use (2.10) of Corollary 2.4 to compute c, (1)
cn(r) = (r—l'-_‘—l—)n cn(ri—) + kbt
enddo
enddo

Step 4. Finally compute uP(o = r;e*™*/N) j € [1,M],k € [1, N] using a truncated
version of (2.1).

3.1. The algorithmic complexity. Here we consider the computational com-
plexity of the above algorithm. We discuss the asymptotic operation count, the asymp-
totic time complexity, and asymptotic storage requirement, in that order. In Steps
1 and 4 above, there are 2M FFTs of length N and all other computations in Steps
2 and 3 are of lower order. With each FFT of length N contributing N In N opera-
tions, the asymptotic operation count and hence the asymptotic time complexity is
O(MNInN).

The algorithm requires storing the M N Fourier coefficients f,(r;) in Step 1, the
MN Fourier coeflicients c,(r;) in Step 3, and the M N values of the desired uP at
MN grid points in Step 4. Therefore the asymptotic storage requirement is O(MN).

Remark 3.1. The computation ¢ in Step 2 can be embedded within the inner
do-loops of Step 3, thus avoiding the storage requirement for these. Note that we
present the algorithm in the form shown above for the sake of clarity and without any
sacrifice in the asymptotic time complexity.

4. Integral evaluation using the algorithmic steps. We illustrate the algo-
rithmic steps mentioned above through an explicit example. There are three main
reasons for doing this. The first is to give an explicit exposition of the operations
in each of the algorithmic steps in detail, the second is to show the power of the
algorithm to evaluate the integral analytically when function f is known explicitly in
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terms of the complex coordinates, and the third is to generate an explicit example
to test the accuracy and the algorithmic complexity at each step of the algorithm by
explicit numerical calculations. This is also useful for debugging various stages of the
computation.
We first summarize our result in the following note, proof of which follows.
Note. If

(4.1) (o) = o®5"

where p and ¢ are constants, so that k = p — ¢ is an integer, then the integral v? (o)
in (1.7) is given by the following.

Fork=p—q2>1,

o-(k_l)
(Jof?@*D —1) if g # -1,
(4.2) wo)=4{ 171
20%11n|o| ifg= -1,
and, For k=p—-g¢<1,
k-1
f_|a|2(q+1) if ¢ > —1,
(4.3) wP(o) =4 911

o0 if g < —1.

Proof. We prove this through the use of the algorithm described in §3.
Step 1. Since ¢ = pe®, we have from (4.1),

pPte ifn =k,
(4'4) o=
0 if n#k.
Step 2. From (2.8) and (4.4)
(4.5) i =0 for n#k—1.
The nonzero coeflicient cfcj_l is evaluated as follows according to the algorithm.
Ti41
(4.6) gt =2RF! / pPratk=1qd,

Ti

Since k = p — g, upon integration, (4.6) becomes

1 2(g+1 2(g+1 . 1
i i1 1 2(q ]) (ri+(ql ) ri (a )) lf q 75 ’
(41) C;;z 1 = 2R

In(riy1/ri) ifg=-1
Step 3. It follows from (2.10), (2.11), (4.5), and Corollary 2.2 that
(4.8) cn(r;)=0 forn#k—-1, and j=1,2,---,M.
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The calculation of the coefficient cx_1(r;),j = 1,2, - -, M, according to our algorithm,
follows. There are two separate cases to be considered depending on whether ¢ = —1
or g # —1.

Case 1. ¢=-1.

(i) For k < 1, upon using (4.7) in (2. 12) we obtain, after some manipulation,

) = oo,

where 0 < r, < 1. To arrive at the last equality in (4.9) we have used

£
T4
4.10 In
(4.10) > (=

(ii) For k > 1, upon using (4.7) in (2.12) we obtain, after some manipulation,

ck—1(re) = —2r; Zl (7‘@+1)

(411) =L

= 2rf=1in(ry),

(4.9) cr—1(ry) = 2rk 1 Zln (

=2

14
) = Z(lnn —Inr;_1)=Ilnry—In0 = oco.
i=2

where 0 < r, < 1. To arrive at the last equality in (4.11) we have used

Z In (“+1> = (In(rm) — In(rm-1)) + (In(rm-1) — In(rm-2))

4.12 i=t
(412) 4+ (Inrep —Inry)

=Inl-Inr, =—Inr,.

Case 2. q# —1.
(i) For k < 1, upon using (4.7) in (2.12) we obtain, after some manipulation,

k-1 £

) 2(g+1) 2(g+1)
Cck—1(Te) = E T -
k 1( l) ‘1+1i=2(1 i—1 )

k—1
Ty (,r?(q+1) _ ,,.f(le))

(4.13) = ;1—:1‘
e CLS VERPPSN
a1 e ifg> -1,
00 ifg< -1,
where we have used
(4.14) i(rf(qﬂ) _ 7,?£(,11+1)) - rf("“) _ Tf(q+1).
i=2

(ii) For k£ > 1, upon using (4.7) in (2.12) we obtain after some manipulation
k-
)

2a+1) _ 20+t
ck—1(re) = — g+1 Z (TzJ(rq1+ )2t ))
(4.15) i=m-1

k—1
— Irl ( 2(q+1) 1)
g+1 ’
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where 0 < r, < 1. To obtain the last equality in (4.15) we have used
m—1
(4.16) Z (7"2-(+(11+1) _ r?(q+1)) = r2(atD) _ ,,.z(q+1) =1— ,,.f(q+1)
. f f .
i=£

We can summarize the calculations of Step 3 by rewriting (4.9) and (4.13) into
(i) For k < 1,

k—1
L} ,.l2(q+1)
(4.17) cro1(re) =¢ 1H1

00 if g < -1,

if g > -1,

and by rewriting (4.11) and (4.15) into
(ii) For k > 1

£| 1] (7' (a+1) ) q 7é
—=—(r, -1 , _],
(4.18) Ck~1(7'l) = q

2rk=1In(ry), qg=-1.

Step 4. Using the Fourier coefficients given by (4.8), (4.9), (4.11), (4.13), and (4.15)
in the Fourier series (2.1), we obtain our results (4.2) and (4.3).

Remark 4.1. The above method of integral evaluation is meant only to show the
algorithmic steps explicitly. There are easier analytical methods to evaluate the above
integral. For example, it is much easier to evaluate the coefficient ci..; directly from
(2.7).

Remark 4.2. We note that u? (o) in the above example can be determined directly
to within an arbitrary additive analytic function by simply integrating (4.1) with
respect to the conjugate of the complex coordinate.

Remark 4.3. The above calculation is exact. In actual implementation, the
errors will arise from finite truncation of Fourier series and approximate evaluation
of the one-dimensional integrals. However, in this particular example there is only
one mode, namely, (p — q)th mode, in f(o) (see (4.1)). Therefore, the error due to
discrete Fourier approximation in this example is zero, provided this mode is included
in the truncated Fourier series, i.e., N > p. In actual implementation, the errors due
to numerical evaluation of the integrals depend on the method of integration and the
values of p and ¢. In our implementation, we use trapezoidal rule and thus the error in
Step 3 of the algorithm can be made zero if g is chosen to be zero in (4.1) (regardless
of how many points are chosen in the radial integration).

The following two remarks have to do with the divergence of the double integral
(1.7) for some specific choices for f(o). For the specific functional form (4.1) for f(o),
the divergence of the double integral depends on the values of p and q.

Remark 4.4. From (4.3), it follows that u”(o’) blows up at all values of o within
the unit disk if p—q¢—1 < 0 and ¢ < —1, or equivalently, if p < g+ 1 < 0.

Remark 4.5. From (4.2), it follows that uP(r = 0) blows up if p— ¢ —1 > 0 and
q = —1, or equivalently, if p > ¢+ 1=0.

5. Numerical results I. A computer program has been written which can com-
pute the integral using the fast algorithm of this paper or using the naive method of
directly integrating the double integral in [6, Appendix C, eq. (C.4)]. The program
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has been tested with various functions f(o) in (1.7). However, we present the per-
formance of our fast algorithm using the example of §4. Since the exact value of
the integral is available in this case, the relative maximum error in the numerical
computation can easily be calculated.

Computations were carried out for different radial and angular grid spacings on
a Cray Y-MP at Texas A&M University in single precision. The computations were
performed in two ways: (i) using the fast algorithm, and (ii) using the direct method.
We compare these two methods by monitoring CPU time and relative maximum error
for various values of M and N. We summarize our numerical results below.

Computations were performed for various values of p and g such that (p — ¢) is
an integer. The results obtained with ¢ = 0 and with N > p using the fast algorithm
were accurate up to seven decimal places in single precision regardless of the number
of radial grid points. In this calculation, the effect of the number of radial grid points
is zero, as it should be according to Remark 4.3. The effect of the number of angular
grid points is also zero since this number N has been chosen to be greater than p.
Thus, the only error in this case is due to truncation error. However, there were no
signs of truncation errors within seven decimal places in this case.

The results of the computations using p = 3 and ¢ = 1 in the choice f(8) is
summarized in Table 1. The number of angular grid points NV is kept constant at 17.
The first column contains the number of radial grid points. The second and the third
columns contain the CPU times Tt,g, required by the fast algorithm of the present
paper, and Ty;,, required by the direct method, respectively. The fourth and fifth
columns contain the maximum relative errors g and bg;r in these two methods,
respectively.

TABLE 1
CPU times in seconds and mazimum relative errors on Cray Y-MP. The terms within paren-
theses are approzimate estimates.

M Tast Tdir bfast bdir

51 | 0.00913 | 1.61807 2.878041E-04 | 7.7745298E-02
101 | 0.01662 | 6.40785 | 7.1945221E-05 | 8.438147E-02
151 | 0.02408 | 14.3590 3.197717E-05 | 8.666666E-02
201 | 0.03157 | 25.41848 | 1.7987853E-05 | 8.78808483E-02
251 | 0.03987 | 39.65647 | 1.1513032E-05 | 8.88519315E-02
501 | 0.07786 | 158.16779 | 2.8797382E-06 | 8.9932327E-02

1001 | 0.15409 | (632.67116) | 7.2160367E-07 ~

Remark 5.1. The fast algorithm of the present paper takes only 0.154 seconds
of CPU time when M = 1001. The CPU time when using the direct method with
M = 1001 is estimated by extrapolation (shown within parentheses in Table 1). It
was not considered practical to use approximately 632 seconds of Cray CPU time to
produce an exact value of this CPU time.

The following observations can be made about Table 1.

(i) The CPU time required by the fast algorithm increases linearly with M. In
contrast, the CPU time required by the direct method increases quadratically with
M.

(ii) The relative maximum error 6g,s; decreases with increasing M. This is because
the error in the numerical integration by the trapezoidal method in Step 2 decreases
with increasing M.
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(iii) The relative maximum error 8g;, decreases very slowly with increasing M. In
this case, the function f(¢) is very poorly resolved by only 17 points in the angular
direction. Most of the error is probably due to this poor resolution.

(iv) The accuracy of the fast algorithm is remarkable. In contrast, the direct
method has very poor accuracy.

The results of similar computations using M = 101 are shown in Table 2 for
varying values of N. The first column contains the number of angular grid points N.

TABLE 2
CPU times in seconds and mazimum relative errors on Cray Y-MP. The terms within paren-

theses are approzimate estimates.

N Tast Tdir bfast 8qir

17 | 0.01662 | 6.40785 | 7.1945221E-05 | 8.438147E-02
33 | 0.03216 | 24.32479 | 7.1974139E-05 | 2.592902E-02
65 | 0.06680 | 93.81604 | 7.1972282E-05 | 6.968137E-03
129 | 0.13908 | 376.73983 | 7.1977357E-05 | 1.576032E-03
257 | 0.30031 | (1500.00) | 7.1972305E-05 | 6.520931E-04
513 | 0.64261 | (6000.00) | 7.1977943E-05 | 4.129121E-04
1025 | 1.36825 | (24000.00) | 7.1972308E-05 | 2.152631E-04

Remark 5.2. The Cray Y-MP CPU seconds shown within parentheses are ap-
proximate and were estimated from computations on the local MIPS computer. The
corresponding errors were obtained on the local MIPS computer. The errors on Cray
Y-MP and on the local MIPS computer for the same problem agree up to five decimal
places.

The following observations can be made about Table 2.

(i) The CPU time required by the fast algorithm increases superlinearly with N
and is less than the theoretical asymptotic estimate of NIn N. In contrast, the CPU
time required by the direct method increases quadratically with N.

(ii) The relative maximum error fgs; does not change with changing N. This is
expected since the values of N used are greater than (p — ¢) = 2 (see Remark 4.3).

(iii) The relative maximum error 84;, decreases with increasing N. However, the
accuracy of the fast algorithm is much better.

6. Dirichlet problems for nonhomogeneous Cauchy—Riemann equations.
This section shows the application of our fast algorithm of §3 on a Dirichlet linear
boundary value problem. Computations of nonlinear and other types of boundary
value problems associated with (1.5) using our fast algorithm are under way and will
be addressed elsewhere in detail. This section has been kept as brief as possible. We
consider solving the following Dirichlet problem in the interior of a unit disk.

us = f(0,5), lo] <1,
(P) Real [u(o = €%)] = uo(a), 0<a < 2m,
Imag [u(o = 0)] = vo.

We are interested in finding the solution of (P) in the entire domain.
It follows from the solution (1.6) of (1.5) that the above problem is equivalent to
solving the following problem:
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ug =0, lo] <1,
(RP) Real [u%(0 = €'®*)] = yp(a) —vP(a), 0<a<2m,
Imag [u®(o = 0)] = vo — uP(o = 0).

Once this problem has been solved, the solution of the problem (P) is constructed
from (1.6). Therefore our method of solving (P) involves the following three steps:

(1) First, find the particular solution uP(c) in the entire domain using the al-
gorithm of the previous section. As shown previously, the algorithmic complexity
of this stage of the computation is at worst M N In N with M N grid points in the
discretization of the unit disk.

(2) Second, construct the analytic function u*(o) by solving the reduced problem
(RP).

(3) Third, construct the solution of the original problem (P) by adding the above
two solutions according to (1.6).

Note that the algorithmic complexity in solving the reduced problem (RP) must
not exceed M N In N so that the computational complexity of the entire calculation
remains the same. There are many efficient algorithms that can be used to solve this
problem. We use the following simple procedure in constructing the solution of the
reduced problem (RP) at M N lattice points.

(i) The solution is expressed in terms of Taylor series

(6.1) u?(o) = icnon.

n=0

(ii) The FFT is used to construct the complex conjugate of the specified bound-
ary values and the Fourier coefficients of the Taylor series. This step takes Nln N
operations with IV points on the boundary of the unit disk.

(iil) Next, the Fourier coefficients are used in constructing the solution u®(o) at
all interior points by using the FFT. This step takes M N Iln N operations with M
divisions in the radial direction.

Note that this approach has an asymptotic operation count of the order M N In N.
Thus overall complexity is retained at the desired level.

Remark 6.1. More efficient algorithms can be constructed to solve the reduced
problem (RP). We will implement better algorithms for this part of the calculation
in the future.

6.1. Numerical results II. The following problems were numerically solved
using the above steps.
FEzample 1.

uz =1, lo] <1,
(E1) Real [u(o = €®)] = 2cosa, 0<a<2m,
Imag [u(oc = 0)] = 0.
The exact solution to this problem is

(6.2) u(o) =0+47, lo] < 1.
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Ezample 2.
uz = —1, lo| <1,
(E2) Real [u(oc =€*)] =0, 0<a<?2m
Imag [u(o = 0)] = 0.

The exact solution to this problem is

(6.3) u(o) =0 -7, lo] < 1.
Ezample 3.
ug = o, lo] <1,
(E3) Real [u(o = €'*)] =cosa, 0<a<2m,

Imag [u(oc = 0)] =0,
where k is either 1 or 2. The exact solution to this problem is
(6.4) u(o) = o + 0% — o1, lo] < 1.

The above three problems were numerically solved using our fast algorithm to obtain
the solution at all M x N nodes with N=17 and M=101. The computed solutions were
compared with the exact solutions for accuracy and the CPU times were recorded.
These are shown in Table 3. The data for (E3) corresponds to k = 2 (see (E3) above).
The first column contains the reference to one of the problems mentioned above. The
second column contains the total CPU seconds (T}t ) required to solve these problems.
The third and the fourth columns contain the breakup of Tt into T}, (CPU seconds
required to find u*(o) at all interior points from the Taylor series (6.1)) and Ty, (CPU
seconds required to find uP(o) by evaluating the double integral using our algorithm
of §3). The fifth column contains the maximum relative error §.

TABLE 3
Computational results on boundary value problems (E1), (E2), and (E3) using the fast algorithm.

Examples Ttot Th Tnh 6
El 0.00932 | 0.00251 | 0.00681 | 5.6915101E-06
E2 0.00969 | 0.00269 | 0.00700 | 8.1740268E-06
E3 0.00932 | 0.00251 | 0.00681 | 7.3560102E-06

In Table 3, we note that our fast algorithm solves the boundary value problems
within the entire unit disk with very good accuracy and within a fraction of a CPU
second. The CPU seconds for computing the analytic part (T}) is less than half of the
CPU seconds Ty needed to evaluate the particular solution uP(co) at all interior points.
Similar computations have been done on other types of boundary value problems with
similar conclusions.

Remark 6.2. The computation of the analytic part can be accelarated by bor-
rowing some of the ideas from [9], [12], and [13], which will be undertaken in the
future.
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7. Conclusions. The present work develops a fast algorithm to solve nonhomo-
geneous Cauchy—Riemann equations in the interior of a unit disk in the complex plane.
It is based on computation of the particular solution from its Fourier coefficients. The
recursive relations satisfied by these Fourier coefficients are derived, which is at the
heart of the algorithm. The speedup provided by the algorithm is dramatic even for a
moderate number of nodes in the domain. Our numerical experiments show that the
actual CPU time requirements for the algorithm are even less than the asymptotic
CPU estimate, which is very encouraging.

The algorithm has the limitation that the problem has to be solved within the
interior of a unit disk. Therefore to construct a solution in a domain which is not
circular, a conformal mapping of the domain to the interior of a unit disk must be
done prior to the use of our algorithm. This should not be difficult, as there are many
numerical methods these days to perform such conformal mapping (see [10] and [12]).

Prototype linear boundary problems have been solved here using the fast algo-
rithm to provide some future directions. Nonlinear boundary value problems can be
solved using this algorithm iteratively. Computations of nonlinear and other types
of boundary value problems associated with the NCR equation using our fast algo-
rithm are currently under way. The application of the algorithm is not limited to
any particular field, thus its application to compressible fluid problems should be
straightforward, since the compressible fluid flow equations already admit a formu-
lation similar to (1.5) (see [6]). In fact, many compressible flow problems, including
those solved in Woods [14] with the tangent gas approximation, can now be solved
exactly, accurately, and very efficiently using the algorithm of this paper.

The algorithm presented here is suitable for implementation on a serial computer.
However, the recursive set of equations of §2 has a structure suitable for implemen-
tation on a parallel computer, which will yield considerable savings in computational
time depending on the number of processors. Construction of algorithms suitable
for implementation on a parallel computer needs further work. Some of the ideas
presented by Katzenelson [11] in connection with computational structure involving
recursive relations may be useful here.

Appendix A. Application of the results of §2 in double integral eval-
uation. The results obtained in §2 provide an analytical technique to evaluate the
double integral (1.8) with complicated f({), which are otherwise difficult to evaluate
analytically. We provide a prototype example.

Consider the following choice for the function f(¢):

(A1) f(¢) = (Psin (l—g—l) for p>0.

Then the Fourier coefficients f,(r) are given by
P 2T p—n)e i6
(A2) falr) = 2 / €i(P=m9 in (1)
0
Using o = €%, (A.2) reduces to

P
A3 fulr) = —t— oP " lsinodo.
( 27

Using the residues, we have from (A.3),

(A.4) fu(r) =rPE(n - p),
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where
0 if (n — p) < 0 or (n — p) = even integer,
1 .
(A5) E(n-—p): -(—,;;TI;)T lf(n—p)=1’5’9a""
(n%lp). if (n—p) =3,7,11,-

Using (A.4) in (2.8) we obtain

0 for n < p,
(46) G
" 2E(n —p) RO (pntp n+p
m+p) (riet — ) forn>p.
It then follows from (2.12) that
(A7) cn-1(rj) =0 for n<p, and j=1,2,---,M.
For n > p, upon using (A.6) in (2.12) we obtain after some manipulation,
2E (n p) n—-l n+p
(A.8) en-1(m1) = o (rpt? —1).
Using (A.7), (A.8), and (A.5), we obtain
= 2B(n+1-p)  nipr1 1y ind
A9 P _—— P e,
(A9) o) = 3 S e - e

Using n — p = m and (A.5), we can rewrite (A.9) as

D 4m+p 4m+-2p+1 _
uP(o) = Z  (dm + 1)'(4m g LA 1)

(A.10) )
4m+p+2 4m+2p+3 _ 1).
ngo (4m +3)(dm + 2p+ 3) (o )
Appendix B. Desingularization of 7 = -1 [ [0 f(¢)/(¢ — o)d¢dn. The

desingularized version of this integral appears in Appendix C [6]. However, the equa-
tions (C.8) and (C.9) of that paper were in error and should be corrected, respectively,
as (B.2) and (B.3) of this appendix. We prescribe here a much easier procedure than
the one in [6] to desingularize this integral.

The above integral can be desingularized in the following manner:

L[ [ 29 ey

L[ [ LO=1C) gy, 1) [ [ detn,
T Q o

The second integral in (B.1) can be evaluated by using the integral evaluated in §4.
With p =0 and ¢ = 0 in (4.1), we obtain the following from (4.3):

(B.2) / / dedn =Tl

(B.1)
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From (B.1) and (B.2) we have

(B.3) u? =56f(o) — ;lr-/ A i(—%—:jfi;ldﬁdn.

This desingularized version of the integral is suitable for numerical computation in
the direct method (see also [6]).
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