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Abstract In this paper, we consider the problem of control of hydrodynamic instability
arising in the displacement processes during enhanced oil recovery by SP-flooding (Sur-
factant–Polymer). In particular, we consider a flooding process involving displacement of
a viscous fluid in porous media by a less viscous fluid containing polymer and surfactant
over a finite length which in turn is displaced by a even less viscous fluid such as water. The
maximum stabilization capacities of several monotonic and non-monotonic viscous profiles
created by non-uniform polymer concentration are studied in the presence of interfacial ten-
sions created by surfactants. The study has been carried out numerically to determine and
characterize the most optimal viscous profiles of each family. Similarities in optimal mono-
tonic viscous profiles of this constant-time injection policy and other injection policies by
previous workers are noted. The presence of interfacial instability (due to viscosity jump) and
layer instability (due to viscosity gradient) in appropriate proportions has been numerically
demonstrated to be a necessary condition for monotonic as well as optimal non-monotonic
profiles except in the limiting case of infinite time injection in which case maximum stabiliza-
tion appears to result from pure layer instability. It has also been demonstrated numerically
that the optimal non-monotonic viscous profiles can have better stabilization potential than
the optimal monotonic profiles. Many other new features of this injection policy which have
not been recognized before have been discussed.
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1 Introduction

In oil recovery by secondary displacement process, viscous oil in porous media is displaced
by the injection of another less viscous fluid, usually water. It is well known that this displace-
ment process is unstable when the displacing fluid has a lower viscosity than the displaced
one. The essence of this instability is easily explained and analyzed when this porous media
flow is viewed macroscopically by assuming existence of a front between displacing and
displaced fluids. This viewpoint brings this porous media flow closer to Hele-Shaw flow,
i.e., the displacement process taking place in a Hele-Shaw cell. A Hele-Shaw cell is a device
consisting of two parallel plates separated by a distance ‘b’ very small in comparison to other
two dimensions of the plates. Both of these flows are governed by Darcy’s law: ∇ p = −μv
where p is the pressure, v is the displacement velocity (an average of flow velocity between
the parallel plates in case of Hele-Shaw cell), and μ is the viscosity of the fluid divided by
permeability ((b2/12) in case of Hele-Shaw cell). Instability of the sharp front in this sec-
ondary displacement process, now known as Saffman–Taylor–Chouke instability, has been
studied by Saffman and Taylor (1958) and Chouke et al. (1959). Because of this analogy and
for obvious reasons which we will see later, below we make no distinction between a front
and an interface and use these words interchangeably to mean the same entity.

It is worth mentioning here that the above analogy between porous media and Hele-Shaw
flows is not without debate and for a valid reason. There are certainly some flaws in this
analogy which is alluded to in this paragraph. Immiscible fluids as they flow in porous media
are separated by interfaces at microscale that ideally can not be captured by a macroscopic
interface without perhaps some capillary pressure dependence functionals. Current state of
knowledge in this area does not provide any such appropriate functionals. In light of this,
perhaps modeling motion of collection of such microscopic interfaces by a macroscopic
interface is not so inappropriate when the goal is to gain an understanding of the interplay of
various interfacial modes and layer (or fingering) modes. Moreover, the current study models
correctly such immiscible fluid flow instabilities in Hele-Shaw cells.

One of the factors that has been known to degrade oil recovery is this viscosity driven
Saffman–Taylor–Chouke instability. Therefore, oil recovery can be improved if a flooding
process can be devised that will contain this instability. There are also other factors asso-
ciated with wettability, capillary pressure, etc., that influence oil recovery. The objective
in enhanced oil recovery process is to improve oil recovery by controlling these and other
factors. Since there is an ever-increasing high demand and the growing shortage in supply
of oil, a variety of specific processes which lead to improved recovery efficiency are under
intensive study around the world today. One of the enhanced oil recovery (EOR) methods is
ASP-flooding in which an aqueous phase containing alkali, polymer, and surfactant is used
as one of the displacing fluids which may be followed by a sequence of other fluids having
desirable properties. Polymer is used to increase the viscosity and surfactant is used to reduce
the capillary pressure. Alkali is used primarily to generate in-situ surfactant to compensate
for its depletion due to its adsorption into the rock matrix of the porous media. Shah and
Schecter (1977) describes in detail many of the processes involved in ASP-flooding that lead
to improved oil recovery than otherwise possible. This is a type of EOR which is of interest
in this paper. Our study here will be mainly focused on modeling the effect of interfacial
surfactants and polymer on stabilization of the advancing front sweeping the oil in a three-
layer set-up where the ASP-flooding is followed by water flooding. The role of alkali will
be, however, neglected in our study.

In the design of EOR processes based on stabilization (i.e., reducing the maximum growth
rate of instability), dispersion relation is one of the key components that should partly guide
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such design processes. The well-known dispersion relation σst(k) of this advancing interfa-
cial instability in a simpler two-layer flow with water displacing oil in secondary recovery is
given by

σst = Uk(μr − μl)− k3T

μr + μl
, (1)

where subscript ‘st’ stands for Saffman–Taylor–Chouke instability, μr is the viscosity of
the displaced fluid, μl (μl < μr) is the viscosity of the displacing fluid, U is the constant
displacement velocity of the flow, T is the interfacial tension at the front, and k is the wave
number. Thus interfacial tension T provides a cutoff wave number beyond which growth rate
σ is negative. The maximum growth rate σsm and the corresponding dangerous wave number
ksm are given by

σsm = 2(μr − μl)U

3(μr + μl)
ksm, ksm = 1√

3

√
(μr − μl)U

T
. (2)

These formulae imply that increasing the interfacial tension or decreasing the positive vis-
cosity jump at the interface can suppress instability. However, interfacial tension can reduce
the instability only to some extent which is not sufficient to improve the oil recovery. In
order to contain this instability to a meaningful level before breakthrough, various tertiary
displacement processes are employed (see Pope 1980; Fayers 1981; Daripa and Pasa 2004).
The simplest way to design such an EOR process is to use a layer of third fluid in between
displaced and displacing fluids. This middle layer fluid can have either a constant viscosity
μ with μl ≤ μ ≤ μr or a viscous profile μ(x) with μl ≤ minx μ(x) ≤ maxx μ(x) ≤ μr .
According to (1), this makes each of these fronts less unstable individually due to reduction
in the viscosity jump across each of them, assuming interfacial tensions at each of the fronts
same as the one for the only front in the secondary recovery and ignoring any interaction
between fronts. However, it must be stressed that the primary goal of this EOR process is sta-
bilization of the leading front (i.e., the front sweeping the displacing fluid (oil) ahead). When
the middle layer has non-constant viscous profile μ(x) with μ′(x) > 0 even at a point, the
middle-layer is also unstable (Daripa and Hwang 2008). Ideally, the viscous profile should
be formulated so that this middle-layer instability does not offset the desired stabilization of
the leading front in this EOR process. This middle-layer fluid is usually an aqueous phase (to
be called polysolution henceforth) containing water and polymer in appropriate proportion
to have the desired viscous profile. Since polymer is expensive, injection of polysolution is
usually followed by injection of pure water to keep the cost low so that the recovery process
is economically more viable. Many aspects of this three-layer flooding process, called poly-
mer-flooding process, and multi-layer flooding process involving many piecewise constant
viscous profiles have been studied by various authors. Below we briefly review as well as
comment on some of these works so that contribution of the present work is properly placed
within this broad EOR field.

Slobod and Lestz (1960) first experimentally studied the effect of two types of flooding
process on stabilization in Hele-Shaw cell. First flooding process involved use of a sequence
of polysolution having different constant viscosity with stepwise jump in viscosity at each
of the fronts being positive in the direction of displacement. The study resulted in significant
stabilization of the conventional Saffman–Taylor instability. This flooding process essen-
tially involves multi-layer flow which was recently analyzed in great detail for Hele-Shaw
flows by Daripa (2008a). This study by Daripa (2008a) not only obtained conditions neces-
sary for the findings of Slobod and Lestz (1960) on stabilization to hold but also discovered
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many features of this multi-layer flow such as an absolute upper bound on the growth rate
of instabilities. The second flooding process (Slobod and Lestz 1960) studied involved use
of a polysolution having a smooth monotonic viscous profile with viscosity increasing in the
direction of displacement. This resulted in complete stabilization according to these authors.
Mungan (1974) later also experimentally investigated the effect of this second flooding pro-
cess on stabilization not only in Hele-Shaw cell but also in porous media. They also observed
complete stabilization of the displacement process. This stabilization by this kind of graded
exponential viscosity profile can not be explained by a theory based on the assumption of
fluids involved being Newtonian (see Daripa and Hwang 2008). Perhaps, a theory based on
the treatment of polysolution as a non-Newtonian fluid can explain this which is an open
problem as of today.

The kind of exponential viscous profile that Mungan (1974) found to completely stabilize
the flow was not economically viable. Uzoigwe et al. (1974) carried out two-dimensional
numerical simulations with many economically viable viscous profiles of the polysolution.
Their extensive numerical study led to the conclusion that the best policy of polymer injection
corresponds to viscosity of the polysolution being close to the viscosity of displaced fluid
(oil) at the leading front and decreasing exponentially back of the front to that of water (which
corresponds to zero concentration of polymer) over a finite length. Many experimental stud-
ies documented in Littman (1998) and Sorbie (1991) support the idea that an exponential
profile is perhaps economically more appropriate. Towards this end, the work of Needham
and Doe (1987) should also be cited.

Pearson (1977) later first formulated the linear stability problem for the three-layer set
up in which the middle layer has a variable viscous profile behind the advancing front. He
studied stabilization of linear and exponential viscous profiles and concluded in favor of the
exponential profile for stabilization. Using this linear stability formulation, later Gorell and
Homsy (1983) studied the optimal injection policy of a fixed amount of solute under the
constraint that the viscous profile behind the front can have a jump at the advancing front
but the concentration of polymer must go to zero over a finite distance L (L depends on
injection policy of polymer) behind the front. Thus, this set up has only one front which is
displacing the oil ahead. Their study obtained results which were consistent with the earlier
experimental results of Slobod and Lestz (1960) and Mungan (1974).

The following features of their injection policy were demonstrated numerically in Gorell
and Homsy (1983): (i) the optimal viscous profile created by the injection of polymer need
not have viscosity match at the advancing front. A physical explanation for the possibility of
this finding is warranted which we provide here. Instability of the internal layer depends on
the maxx μ(x) where μ(x) is the viscous profile of the displacing fluid. In the set up of these
authors, smaller the jump in viscosity at the advancing front, higher would be the value of the
maxx μ(x), i.e., less unstable the advancing front individually, more unstable is the displac-
ing fluid layer individually. Therefore, it is not so hard to imagine based on the competition
of these two instabilities that a distinct possibility exists of an optimal profile of the type
obtained numerically by Gorell and Homsy (1983) that supports a finite jump in viscosity
at the advancing front; (ii) the optimal viscous profile behind the advancing front is linear
for small amount of solute (equivalently for small L) and is exponential for large amount of
solute (equivalently for large L). This fact had been demonstrated earlier also by the works
of Mungan (1974) and Uzoigwe et al. (1974); (iii) stabilization (i.e., reduction in growth
rate of instabilities) is more pronounced for large values of injected polymer which should
be expected on intuitive ground. However, there is an effective range of injected amount of
polymer with an upper threshold (dependent on the viscosity ratio of displaced fluid (oil) to
that of displacing fluid (water)) below which gain in stabilization gradually decreases with
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increasing amount of injected polymer. Above this threshold, the effect of polymer injection
on stabilization wears out rapidly. This should also be expected on intuitive ground.

Later, a significant advance in this EOR process by polymer flooding was made by Daripa
et al. (1988b). These authors mathematically modeled this process in actual porous media
using Buckley-Leverett model. This resulted in a coupled nonlinear system of conservations
laws and elliptic partial differential equations which were then solved by a front tracking
method Glimm et al. (1983) in homogeneous and heterogeneous porous media and also in
rectilinear geometry of the type of Hele-Shaw cell. The effect of the middle layer containing
polymer on the stabilization of the advancing front was thus investigated full fledged into
linear and nonlinear regimes. The formulation of these authors allowed studies of initial
three-layer set-up having two fronts across which mobility (equivalent to viscosity in Hele-
Shaw model) is usually discontinuous at t (time) > 0. Thus this set up is very general and
inclusive of all special cases studied earlier with Hele-Shaw and porous media models. Many
of the earlier findings from linear stability analysis and experiments by previous authors on
advantages of exponential viscous profile behind the advancing front in Hele-Shaw model
was confirmed qualitatively. This is because even though the initial polymer concentration
could be constant in the middle layer, conservation laws allow mixing of oil with the aqueous
phase (due to rarefaction waves) behind the advancing front in a macroscopic sense and thus
allow development of an exponential viscous profile of finite width (which vary with time)
between the leading and trailing fronts due to rarefaction waves. Many other features of this
tertiary displacement process and data of practical interest to oil industry were obtained by
these authors (see Daripa et al. 1986, 1988a,b).

Within past few years, the linear stability problem has been revisited and analyzed by
Daripa (2008a,b, 2011) and Daripa and Pasa (2010, 2008, 2007, 2006, 2005a,b, 2004) in
order to derive exact results that provide insight and are directly useful. Some of these the-
oretical results obtained are the following: (i) local and global upper bounds on the growth
rate for three-layer and N -layer flows and their applications in the development of necessary
conditions for stabilization (see Daripa and Pasa 2005a,b; Daripa 2008a), (ii) bounds on short
and long waves (see Daripa 2011), (iii) effect of stabilization on the unstable bandwidth and
transfer of instability mechanism among fronts in three-layer flows (see Daripa 2008b), (iv)
effect of diffusion on stabilization (see Daripa and Pasa 2007) and so on. These authors also
obtained other new results review of which is not appropriate here. Rather we direct the
readers to the above references. It is important to emphasize that flows involving variable
viscosity internal layers were more difficult to treat theoretically than the constant viscosity
internal layers case. Theoretical progress, therefore, was limited in the later case.

In this paper, we investigate numerically three-layer flows that can provide insight into
EOR processes by ASP flooding followed by water flooding. In this kind of flooding process,
there will be a front separating the water phase and the ASP-fluid phase. This front will have
non-zero interfacial tension because of presence of interfacial surfactant. Modeling of this
flooding process will have two fronts separated by a constant distance, each having interfacial
tension and jump in mobility across them. This is unlike the case treated earlier in Gorell and
Homsy (1983) for the pure polymer flooding with polymer concentration going to zero behind
the advancing front over a finite length and thus having no trailing front. For the simplest
tertiary enhanced recovery process, the three-layer (two-front) case is more appropriate with
the internal fluid layer having a prescribed viscous profile. There will be competition between
the individual instabilities at each front and instability in the internal layer. The outcome of
this competition on the stabilization of the leading front (front displacing the oil) can only be
determined through careful numerical study which is one of the goals of this paper. Motivated
by this, we specifically study following problem in this paper: Within the three-layer context
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having two fronts and a viscous profile in the internal layer, we investigate the changes in
the maximum growth rate for various viscous profiles (monotonic and non-monotonic) in the
absence of diffusion of polymer and identify optimal viscous profiles under the constraint
that the length of the middle layer is fixed but the net amount of polymer is dependent upon
the viscous profile. The other parameters in the problem such as the viscosity of the fluids
(oil and water) in extreme layers are fixed. Results obtained from numerical computation are
succinctly presented and discussed in this paper including the numerical method. Our results
will be analyzed and summarized after these have been presented in this paper.

This paper is laid out as follows. The mathematical model, along with the governing
equations is described in Sect. 2. The eigenvalue problem is described in Sect. 3. The numer-
ical procedure for the solution of the eigenvalue problem is discussed in Sect. 4. In Sect. 5,
numerical results are presented and discussed for constant and variable viscosity profiles.
Both monotonic and non-monotonic viscosity profile are considered. Section 6 summarizes
the main results and findings.

2 Preliminaries

The displacement of oil by the injection of one or more fluid phases in porous media is best
described macroscopically by the Buckley-Leverett model (Daripa et al. 1988b). The flow
description in porous media in this model consists of Darcy’s law and conservation laws of
all fluid phases assuming mixing of oil with the fluid phases in a macroscopic sense even
though microscopically these could be immiscible. The analysis of underlying conservations
laws shows that this model under most general initial conditions allows an advancing front
displacing the oil ahead. However, there is mixing of oil and the displacing fluid phase in a
macroscopic sense at the back of this advancing front due to rarefaction waves behind the
advancing front. In the context of initial three-layer set-up of porous media flow by ASP-
flooding in which the oil is displaced by an aqueous phase containing these three chemicals
(alkali, polymer, and surfactant) which in turn is displaced by injection of pure water, there
will usually be two active fronts with interfacial tension across each front.

This ASP model is an extended version of pure polymer model which has been discussed
in great detail including the system of PDEs and their numerical solution procedure in Daripa
et al. (1988b). In this paper, we simplify this ASP-model to gain some insight into the effect
of some important features of this model without any recourse to numerical solution of the
associated nonlinear system of coupled PDEs. This new simplified model is still a three-layer
model with two fronts except that the viscous profile at the back of the leading front in this
model is not generated by rarefaction waves or by mixing of phases but rather by a prescribed
concentration profile of polymer in the middle layer of the three-layer flow. The surfactant
is assumed to be on fronts only and thus interfacial tensions at both fronts are important
features of this flow. The effect of alkali can be safely ignored because of the presence of
only interfacial surfactant. This simplified model retains following features of the original
ASP-flooding in homogeneous porous media with uniform constant porosity and permeabil-
ity: (i) variable viscous profile of the middle layer and (ii) non-zero interfacial tensions at
both the fronts. The effects of these on the stabilization of flow are investigated numerically
with a goal to identify optimal viscous profile in the middle layer of fixed length. These
studies correspond to an injection policy for fixed duration with total amount of polymer
being injected dependent on the viscous profile in the middle layer. Such studies are done
here for the first time.
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The above simplified model is thus a three-layer flow with two fronts taken to be at x = 0
and x = −L . Fluid upstream x = −∞ is assumed to have a velocity (U, 0). In the left-most
layer, −∞ < x ≤ −L , viscosity of the fluid (water usually) is a constant denoted by μl and
that of the fluid (oil usually) in the right-most layer, x > 0, is denoted by a constant μr . The
middle layer of length L contains a fluid (to be called polysolution henceforth) of variable
viscosity μ(x) (μl < μ(x) < μr). The interfacial tension at the leading front separating
oil from polysolution is denoted by T , and that at the trailing front separating water from
polysolution is denoted by S. The fluid flow in this three-layer model is described by the
following governing equations in each of the three layers.

∇·u = 0, ∇ p = −μ u,
Dμ

Dt
= 0, (3)

where ∇ =
(
∂
∂x ,

∂
∂y

)
and D

Dt is the material derivative. The first equation (3)1 is the conti-

nuity equation for incompressible flow, the second equation (3)2 is the Darcy’s law (Darcy
1856), and the third equation (3)3 is the advection equation for viscosity (Gorell and Homsy
1983; Daripa and Pasa 2005b). The last equation simply states that the polymer and hence
the viscosity is simply advected by the fluid. Below, we refer this model as the Hele-Shaw
model (see also Daripa 2008a,b; Gorell and Homsy 1983; Pearson 1977).

We briefly review from our earlier works (see Daripa 2008a; Daripa and Pasa 2005a) the
formulation of the eigenvalue problem arising from linear stability analysis of the uniform
flow followed by the description of a finite difference based numerical method from Daripa
and Pasa (2005b). The numerical method will be implemented and thus the eigenvalue prob-
lem will be solved for relevant data such as the maximum growth rate for parameterized
continuous families of monotonic and non-monotonic viscosity profiles with non-zero inter-
facial tensions at two fronts.

3 The Formulation

The above system (3) admits a simple basic solution, namely the whole fluid set-up moves
with speed U in the x direction and the two interfaces, namely the one separating the left
layer from the middle-layer and the other separating the right layer from the middle-layer, are
planar, i.e., parallel to the y-axis (Fig. 1). The pressure corresponding to this basic solution
is obtained by integrating (3)2. In a frame moving with velocity (U, 0), the above system is
stationary along with two planar interfaces separating these three fluid layers, and the smooth
viscous profile μ(x) of the middle-layer fluid satisfies μl < μ(x) < μr . Here and below,
with slight abuse of notation, the same variable x is used in the moving reference frame.
In linearized stability analysis by normal modes, disturbances (denoted by tilde variables
below) in the moving reference frame are written in the form

(̃u, ṽ, p̃, μ̃) = ( f (x), ψ(x), φ(x), h(x))e(iky+σ t) (4)

where k is the wave number and σ is the growth rate. We then insert this disturbance form into
the linearized disturbance equations obtained from (3) and also into the linearized dynamic
and kinematic interfacial conditions (see Daripa and Pasa 2005a). After some algebraic
manipulation, we obtain the following differential equation in terms of only the eigenfunc-
tion f (x) and the first derivative of viscosity μx in the middle layer:

− (μ fx )x + k2μ f = λk2Uμx f, x ∈ (−L , 0) (5)

123



P. Daripa, X. Ding

L

x

y

0

( )xμ r
μ

l
μU

Fig. 1 Three-layer fluid flow

with boundary conditions

fx (0) = (λe + q) f (0), fx (−L) = (λr + s) f (−L), (6)

where λ = 1/σ and e, q, r, s are defined by

e = {(μr − μ(0))Uk2 − T k4}/μ(0), q = −μrk/μ(0) ≤ 0,
r = {(μl − μ(−L))Uk2 + Sk4}/μ(−L), s = −μlk/μ(−L) ≥ 0.

}
(7)

It should be mentioned here that the notation e above appears as notation p in some of our ear-
lier works (e.g., see Daripa and Pasa 2005a) which we avoid using it here because the notion
p we have used to denote pressure in this paper. When we consider that the intermediate
region has a constant viscosity μ with μl < μ < μr , problem (5) reduces to

fxx − k2 f = 0,
fx (0) = (λe + q) f (0),
fx (−L) = (λr + s) f (−L),

⎫⎬
⎭ (8)

where e, q, r , and s are the same as defined in Eq. (7) withμ(−L) = μ(0) = μ, the constant
viscosity of the middle layer.

4 A Numerical Method

For a given choice of values of T, S,U, L , μl, μr and the middle layer viscosity profileμ(x),
the eigenvalue problem defined by (5), (6), and (7) will be solved by the numerical method
presented below. Thus the maxk σ(k) from the dispersion relation σ(k) for various viscous
profiles is obtained numerically.

The eigenvalue problem is discretized using (M−1) equidistant interior points in (−L , 0) :
xM = −l < xM−1 < xM−2 < . . . x1 < x0 = 0, with d = (xi − xi+1). Using the first-order
approximation for the end points derivatives and second-order approximation for the interior
point derivatives namely,

fx (−L) = ( fM−1− fM )/d, fx (0)=( f0 − f1)/d,
fx (y)=[ f (y + d/2)− f (y − d/2)]/d, fxx (y)=[ f (y + d)−2 f (y)+ f (y − d)]/d2,

}

(9)

where y is any one of the interior discretization points. Using these finite difference approx-
imations (9) in the boundary conditions given in (6) and using the notation fi = f (xi )

leads to
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( fM−1 − fM )/d = (λ r + s) fM , ( f0 − f1)/d = (λ e + q) f0, (10)

which are rewritten as

1

rd
fM−1 −

(
1

rd
+ s

r

)
fM = λ fM , and

(
1

d e
− q

e

)
f0 − 1

d e
f1 = λ f0. (11)

Using (9), (10), and (11) the discrete analog of the pde (5) together with the approximation
(11) in a compact form is written as

A f = λB f , f = ( f0, f1, f2, . . . , fM ). (12)

As an example, for the case of three interior points matrix A and B are given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

( 1
d e − q

e

) − 1
d e 0 0 0

−μ1/2

d2

(
μ1/2+μ3/2

d2 + μ1k2
)

− μ3/2

d2 0 0

0 − μ3/2

d2

(
μ3/2+μ5/2

d2 + μ2k2
)

− μ5/2

d2 0

0 0 − μ5/2

d2

(
μ5/2+μ7/2

d2 + μ3k2
)

− μ7/2

d2

0 0 0 1
rd − ( 1

dr + s
r

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(13)

B =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 k2βμ′

1 0 0 0
0 0 k2βμ′

2 0 0
0 0 0 k2βμ′

3 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ (14)

where μ′
i denotes first derivative of μ(x) at point x = xi . Similarly, μi/2 stands for values

of μ(x) at mid-point of of the subinterval [xi−1, xi ]. We rewrite (12) as

C f = λ f , C = (Ci j ), (15)

which for the case of three interior points is equivalent to multiplying the equations 2, 3, and
4 of system (12) by (k2βμ′

l)
−1, (k2βμ′

r)
−1, (k2βμ′

3)
−1, respectively. It should be evident

from matrices (13) and (14) that the above method is based on nested application of the
first-order approximation for the first-order derivative term given in (9) to the first term of
Eq. (5).

We have also solved the above problem defined by (5) and (6) by discretizing an alternate
form of Eq. (5)

− μx fx − μ fxx + k2μ f = λk2Uμx f (16)

using the approximations given in (9) except for the first-order derivative term for which we
now use the following second-order accurate approximation at the interior grid points such
as y.

fx (y) = f (y + d)− f (y − d)

2d
. (17)

This modification in the approximation improves the overall accuracy and yields the follow-
ing discrete form of Eq. (5) at each interior grid point, j = 1, . . . ,M − 1.

f j−1

(
−k̃ − 2̃kμ j

(μx ) j d

)
+ f j

(
4̃kμ j

(μx ) j d
+ μ j

U (μx ) j

)
+ f j+1

(
k̃ − 2̃kμ j

(μx ) j d

)
= λ f j

(18)
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where k̃ = (2dk2U )−1. With these approximations, the discrete analog of the problem takes
a form similar to (15).

C̃ f = λ f , f = ( f0, f1, f2, . . . , fM ). (19)

where C̃ is a tri-banded square matrix of size (M + 1) × (M + 1). As an example, for the
case of three interior points (M = 4), matrix C̃ now is given by

C̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

( 1
d e − q

e

) −1
d e 0 0 0

−k̃
(

1 + 2μ1
(μx )1d

)
k̃

(
4μ1
(μx )1d + 2dk2μ1

(μx )1

)
k̃

(
1 − 2μ1

(μx )1d

)
0 0

0 −k̃
(

1 + 2μ2
(μx )2d

)
k̃

(
4μ2
(μx )2d + 2dk2μ2

(μx )2

)
k̃

(
1 − 2μ2

(μx )2d

)
0

0 0 −k̃
(

1 + 2μ3
(μx )3d

)
k̃

(
4μ3
(μx )3d + 2dk2μ3

(μx )3

)
k̃

(
1 − 2μ3

(μx )3d

)

0 0 0 1
dr − ( 1

dr + s
r

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

We have implemented the above two numerical methods. Both the methods yield the same
results within machine accuracy. Using both the methods is more of a validation test of
our results. All computations below are performed with M = 30. Conclusions made later
concerning the optimal viscosity profile and other qualitative results have been found to be
insensitive to increases in the value of M . These results are reported in the next section.

5 Numerical Results

In this section, we present numerical results for constant and variable viscosity profiles of
the fluid in the middle layer with all other parameters of the problem fixed as follows:
T = 1, S = 1,U = 1, L = 1, μl = 2, and μr = 10. The goal is to seek an optimal viscosity
profile μ(x), i.e., a viscous profile that gives the lowest value of the maximum growth rate
over all possible disturbances. The viscous profiles over which this optimal viscous profile
is sought numerically in this paper are constant viscosity profiles (see Sect. 5.1), monotonic
viscous profiles of certain class (see Sect. 5.2), and non-monotonic viscous profiles of certain
class (see Sect. 5.4).

5.1 Constant Viscosity Profile

We first consider the case when the middle layer has a constant viscosityμwith the constraint
that μl ≤ μ ≤ μr . Then the system defined in Eqs. (5) and (6) reduces to a simpler form
in (8) which has been solved analytically (Daripa 2008b) for the dispersion relations of two
most dominant growth rates σ+(k) and σ−(k). In this section, we solve this constant viscos-
ity-growth rates problem numerically using the finite difference scheme presented above and
then compare with the exact results. This will also provide a verification that the numerical
method produces the correct solutions.

The dispersion relations for the two smallest eigenvalues λ1 and λ2 are obtained using
the finite-difference scheme. The corresponding two dominant growth rates are: σ1 = 1/λ1

and σ2 = 1/λ2. We find the number of mesh points M = 30 sufficiently large for the
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Fig. 2 Constant viscosity
case: Dispersion
relationships—comparison
between the numerically obtained
growth rates σ1 and σ2 (solid
lines) and analytically obtained
growth rates σ+ and σ− (dashed
lines). The parameter values are
μ = 4, μl = 2, μr = 10,
T = S = U = 1, and L = 1
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Fig. 3 Constant viscosity
case:maximum growth rates σmax
versus μ. The other parameter
values are fixed at μl = 2, μr =
10, T = S = U = 1, and L = 1
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analysis 
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convergence of the results when all the other parameters are same as in Daripa (2008b):
T = S = U = 1, L = 1, μl = 2, μr = 10, and μ = 4. This also holds even when we use
other values of these parameters. Figure 2 presents a comparison of the dispersion relations
obtained from numerical computation and exact calculations presented in Daripa (2008b).
The solid lines show computed growth rate σ1 and σ2, while the dashed lines display exact
growth rates σ+ and σ−. It is clear that they agree very well.

Next we find the optimal constant viscosity μ from the window μl ≤ μ ≤ μr that will
minimize the maximum growth rate σmax = maxk σ(k). Figure 3 compares the numerically
obtained function σmax(μ) (plot of σmax vs μ) with exact solutions, respectively. Again the
overall agreement is excellent. Furthermore, the results shown in this figure demonstrate that
the smallest maximum growth rateσmax for constant viscosity profile is approximately 0.3695
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Fig. 4 Constant viscosity case:
maximum growth rates σmax
versus length 1/L of the middle
layer when μ = 5. The other
parameter values are
μl = 2, μr = 10,
T = S = U = 1,
and L = 1
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when the middle layer viscosity μ is 5. This is the optimal constant viscosity of the middle
layer. Note this value may be different for different values of the parameters T, S,U, μl, and
μr . However, the value of this optimal viscosity is independent of L with σmax depending
on L .

Figure 4 shows dependence of σmax on 1/L for four representative values of μ. Of par-
ticular interest should be the plot for μ = 5. It is found through studies of plots similar to
Fig. 3 for many values of L that μ = 5 is the optimal value for all these value of L . We
find that σmax for μ = 5 approaches almost a constant value 0.286 for 1/L ≤ 0.2 and thus
σmax → 0.286 as L → ∞. We can also calculate this asymptotic value of σmax theoretically
as follows. In the limit L → ∞, two fronts are far apart and individual maximum growth
rate of the two fronts will not depend on each other. This maximum growth rate for each of
the fronts is then given by Saffman–Taylor formula (2). Now if one were to compute this
maximum growth rate using this formula for each of the two interfaces when μ = 5, (for left
interface use μr = 5 and μl = 2 in formula (2); similarly, for the right interface use μr = 10
and μl = 5 in formula (2)), one finds σsm = 0.286 for both the interfaces which agrees
remarkably well with the numerical result. The rapid convergence for values of L > 3 that
is seen in Fig. 4 is due to the fact that growth rates (see Daripa 2008b) depend weakly on L
and decreases exponentially in L for large L .

5.2 Monotonic Viscosity Profile

We now turn our attention to the case of a smooth non-constant monotonic viscosity profile
(μx 
= 0) in the middle layer from certain families which are mentioned below. Our aim is to
find general features of the viscosity profile μ(x) in the middle layer which maximizes the
smallest eigenvalue λ, i.e., which minimizes the maximum growth rate σmax. Four families of
monotonic viscous profiles we consider are linear, exponential, sine, and polynomial. These
viscosity profiles are shown in Fig. 5. These profiles are defined so that they have two end
point viscosities μ(0) at x = 0 and μ(−L) at x = −L .
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Fig. 5 Some examples of monotonic viscosity profiles in the middle layer when μ(−L) = 4 and μ(0) = 6

(1) Linear viscosity profiles:

μ(x) = μ(0)− μ(−L)

L
x + μ(0), −L < x < 0. (21)

(ii) Exponential viscosity profiles:

μ(x) = μ(−L) exp {α(x + L)} , where α = 1

L
ln

μ(0)

μ(−L)
. (22)

(iii) Polynomial viscosity profiles:

μ(x) = (μ(0)− μ(−L))

L2 (x + L)2 + μ(−L) (23)

(iv) Sine viscosity profiles:

μ(x) = (μ(0)− μ(−L)) sin
(πx

2L

)
+ μ(0). (24)

Note that the constant viscosity profile is a special case of the above sine profile when
μ(0) = μ(L),

We recall the dimensional parameters of the problem: namely μl, μr, T, S,U , and L . In
all our computations below we have used T = S = U = 1. Unless otherwise indicated
or obvious from presentation of results, we have used mostly μl = 2, μr = 10, L = 1.
Maximum growth rate is computed for all the above viscous profiles with μ(−L) and μ(0)
varying in the range [μl, μr].

In general, reduction in the viscosity jump across an interface is stabilizing individually to
that interface. Similarly, a decrease in the maximum value of the gradient of the viscous profile
is also individually stabilizing for the middle layer. Collective effects of all these instabilities
determine the maximum growth rate for a specific viscous profile. Changing either μ(−L)
or μ(0) or both within any one of the above four viscous family changes the severity of all
these individual layer and interfacial instabilities. Therefore, computations are performed to
find the optimal viscous profile even within a specific family (i.e., linear, exponential, sine,
or polynomial) for which σmax will be minimum. The results of such computations for linear
and exponential viscous families are shown in Fig. 6a, b, respectively (for other two profiles,
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Fig. 6 Growth rate σmax versus μ(0) for various values of μ(−L) when μl = 2, μr = 10, T = S = U = 1,
and L = 1. a Linear profile. b Exponential profile

results are similar and not shown for brevity). This figure displays σmax as a function of μ(0)
for different values of the parameter μ(−L) for these two profiles. From Fig. 6a, following
inferences can be drawn among many others.

• With increasing μ(−L), σmax decreases when μ(−L) ≤ 4 (approximate). Thereafter for
μ(−L) > 5 (approximate), σmax increases.

• For each constant μ(−L) curve, a value of μ(0) corresponding to the smallest value
of σmax is identified. From this, we find that minimum σmax over all linear profiles is
approximately 0.3652 when μ(−L) = 4 and μ(0) = 5. This is the most optimal one
among all linear profiles. Note that this optimal linear profile allow all three entities (the
layer and the two interfaces) to be individually unstable because of positive slope of the
viscous profile and the positive jumps (in the direction of flow) across both the interfaces.
Interestingly, note that this optimal linear profile is slightly more stabilizing than the
optimal constant viscosity profile which has the maximum growth rate σmax = 0.3695
when μ = 5 (see Sect. 5.1).

• The linear viscous profile with no jumps in viscosity at the both the interfaces (i.e., the
one for which μ(−L) = μl and μ(0) = μr) gives the largest value of σmax. This linear
profile is the most destabilizing of all linear profiles.

• Among the linear profiles with no jump in viscosity at the left interface at x = −L ,
the most stabilizing one has σmax = 0.6 (approximately) and μ(0) = 3, thus allowing
significant jump in viscosity at the right interface.

• Among the linear profiles with no jump in viscosity at the right interface at x = 0, the
most stabilizing one has σmax = 0.55 (approximately) and μ(−L) = 7, thus allowing
significant jump in viscosity at the left interface.

The inferences from Fig. 6a for exponential profile and from similar figures for sine and
polynomial viscous profiles are similar to what we have observed for the linear case including
the itemized inferences listed above for the linear profile. The main difference between these
four families of viscous profiles are specific values of σmax, μ(−L), andμ(0) for the optimal
viscous profiles, one set for each family (linear, polynomial, sine, exponential). For example,
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Fig. 7 Optimal monotonic
viscosity profiles when μl =
2, μr = 10, T = S = U = 1, and
L = 1. This is a color plot on
screen
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the optimal exponential profile has σmax = 0.3659, μ(−L) = 4, and μ(0) = 5, optimal sine
profile has σmax = 0.3695, μ(−L) = 5, and μ(0) = 5 and optimal polynomial profile has
σmax = 0.3678, μ(−L) = 5, and μ(0) = 6. However, the general trend among all these
profiles are same such as the optimal profile from each family has positive viscosity jumps
across each interface, the most unstable profile from each family has no viscosity jumps at
the interfaces and so on.

Recapping the values of σmax which are 0.3695, 0.3652, 0.3659, 0.3695, and 0.3678 for
optimal constant, optimal linear, optimal exponential, optimal sine, and optimal polynomial
profiles, respectively. Thus, we see that influence of all these optimal profiles on σmax is really
small—in fact they are same up to two decimal digits. However, we see that the optimal lin-
ear profile is the most optimal one among all these variable viscosity profiles. Within the
accuracy of computation, optimal linear, and optimal exponential profiles can be considered
almost equally stabilizing. It perhaps indicates that these optimal profiles are close to each
other at least for this value of L = 1. Figure 7 shows all the four optimal profiles where we
see that only linear and exponential profiles are very close to each other within the resolution
of the plots. Notice that the optimal sine profile is the constant profile which is a special case
of sine profile when μ(0) = μ(−L).

Figure 8 presents the relationship between μ(−L), μ(0) and the maximum growth rate
σmax in a square grid mesh, for the same parameters used above. The color for each grid cell
is corresponding to value of the maximum growth rate σmax, which can be read from the
color bar. The coordinates of each cell location are related to μ(0) and μ(−L), respectively.
The square cells on the diagonal line are corresponding to the constant viscosity profile
case since μ(−L) = μ(0). The cells below the diagonal line correspond to the cases when
μ(−L) < μ(0), and the cells up this line are related the profile where μ(−L) > μ(0). The
plot demonstrates that there exists a regime for 4 ≤ μ(−L) ≤ 6 and 4 ≤ μ(0) ≤ 7, in which
the profile is more stable than other values of μ(−L) and μ(0).

Above results hold for L = 1. It is possible that optimal profile within each family as well
as the optimal profile within all these four monotonic profiles may depend on L . We have
explored this issue. Figure 9a, b shows plots of σmax versus L for all four optimal profiles.
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Fig. 8 Grid plot of σmax as function of μ(−L) and μ(0) for monotonic viscosity profiles: a linear profile,
b exponential profile, c sine profile, and d polynomial profile. The other parameter values are μl = 2, μr =
10, T = S = U = 1, and L = 1. This is a color plot on screen

Figure 10 shows similar plots of σmax but as a function of 1/L . From these figures, we can
draw several inferences some of which are

• Maximum growth rateσmax of the optimal profile from each family decreases with increas-
ing L and appears to approach almost zero as L → ∞. This is interesting because it
suggests that the optimal profile from each family is almost completely stabilizing as
L → ∞. In this asymptotic limit slope of the viscous profile goes to zero and hence the
middle layer is stable. Therefore, we can safely conclude that the both the fronts must
be individually stabilizing in this limit and hence the viscosity jump at each front must
approach zero as L → 0. This is supported by the plots in Fig. 11a, b which shows
plots of (μr − μ(0)) and (μ(−L) − μl) against L , respectively. It should be noted that
maximum stabilization within each family for finite values of L is obtained when all three
instabilities (frontal and layer) are present individually.

• There are values of L for which the optimal profiles from four families are almost equally
optimal since the minimized maximum growth rates are almost same.
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Fig. 9 Dependence of the maximum growth rate on L for optimal monotonic profiles. The upper most plot
in b for L < 3 is for optimal polynomial profile. The other parameter values are μl = 2, μr = 10, and
T = S = U = 1. a σmax versus L . b Zooming in on the left figure

Fig. 10 σmax versus 1/L for
optimal monotonic profiles. The
other parameter values are
μl = 2, μr = 10, and
T = S = U = 1. This is a color
plot on screen
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• Except for small values of L < 1 when optimal linear profile can be marginally better
than exponentially, in general exponential optimal profile should be the choice among
optimal profiles of all four families. It certainly is for higher (L > 1) but finite values
of L . As we will see later, the exponential optimal profile also requires least amount of
polymer among all four optimal profiles.

Since technically it is possible to improve oil recovery by controlling interfacial tensions
using interfacial surfactants in displacing fluid, it is important to study stabilization potentials
of optimal profiles at different interfacial tensions. This is what we do next. Figure 12a, b
shows σmax versus T and versus S, respectively, of the optimal profiles. For the leading front
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Fig. 11 Dependence of interfacial viscosity jumps for optimal monotonic profiles on the length of the middle
layer. The other parameter values are μl = 2, μr = 10, and T = S = U = 1. a (μr − μ(0)) versus L .
b (μ(−L)− μl) versus L . This is a color plot on screen

with interfacial tension T , Fig. 12a shows that the most optimal profile is more or less the
exponential optimal profile for all values of T except in a small window of T . In the figure,
most optimal profiles for T ≤ 0.5 (approximate value) and T > 1 (approximate value) are
the optimal exponential ones. As T exceeds some value between 0.5 and 1, the most opti-
mal profile is the linear one. It remains linear until T exceeds a value greater than but close
to 1 when the most optimal profile clearly becomes the exponential one and remain so for
increasing values of T . On line view of this figure when magnified will show this transition
clearly on screen. We see that for values of T > 4 in the figure, difference between the
four optimal profiles is hardly any. This figure shows that the optimal exponential profile is
also the most stabilizing one of all profiles, though the differences between different optimal
profiles are less than the one we observe in Fig. 12b for the leading or displacing interface
for most values of S. These simulations provide only some understanding of the role of these
optimal profiles on stabilization, though more simulations would be required to gain a full
understanding of this issue for a choice of a specific optimal profile.

5.3 Optimal Viscous Profile for Pure Viscosity-Gradient Driven Instability

Viscous profiles with no jumps in viscosity (i.e., μr = μ(0) and μl = μ(−L)) can cause
instability if viscosity gradient μx > 0 even at one point (see Daripa and Hwang (2008)).
Such instabilities are pure viscosity-gradient driven. The normalized maximum growth rates
for linear, exponential, polynomial, and sine profiles having no viscosity jumps at the inter-
faces are shown as functions of μr/μl in Fig. 13a when L = 1 and in Fig. 13b when L = 10.
These results are based on computations with T = S = U = 1 and μl = 1. The general
observations enumerated below qualitatively remain intact even if a different value of μl is
used.

The following few general observations can be made from the plots in this figure:

1. The flow becomes more and more unstable with increasing values of viscosity ratio
(μ̂ = μr/μl) for all four families of viscous profiles.
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Fig. 12 Dependence of optimal monotonic profiles on interfacial tensions. Each point on the plots corre-
sponds to an optimal profile. The other parameter values are μl = 2, μr = 10, and U = L = 1. Each optimal
profile has its unique values of the pair (μ(−L) and μ(0)). a σmax versus T for optimal monotonic profiles
when S = 1. b σmax versus S for optimal monotonic profiles when T = 1
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Fig. 13 Plots (L/U ) ∗ σmax for four viscosity profiles versus μr/μl for pure viscosity-gradient driven
instability. σmax is the maximum growth rate for the most optimal profile. The other parameter values are
T = S = U = 1. a L = 1, b L = 10

2. Among the four profiles considered, the exponential profile is most stabilizing and the
linear profile is least stabilizing for any value of μ̂ = μr/μl. The figure shows data only
in the range 1 < μ̂ < 10.

3. The linear, polynomial, and sine profiles are almost equally stabilizing for small values
of μ̂ (μ̂ < 1.46 in the figure when L = 1) but after a value, still small, of μ̂ (μ̂ ≈ 3
in the figure when L = 1), suddenly the sine and polynomial profiles become strongly
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stabilizing in comparison to linear one for any fixed value of μ̂, with the polynomial one
having slight edge over the sine one.

4. This figure shows that these above three characteristics hold for L = 1 and L = 10. In
fact, this is true in general for all L in a qualitative sense. Interestingly, we have seen in
Fig. 9 the above characteristics to hold for most optimal profiles from the four families
(see Sect. 5.2) without the restriction of no jump in viscosity at the fronts.

It is important to recall from our discussion of the previous section that instability in the
flow by all optimal profiles in Fig. 9a is driven by individual instabilities at both fronts and
by viscosity-gradient driven instability in the middle layer.

5.3.1 Economics of Optimal Profiles

Since the most optimal profile from the four families for the purpose of maximum stabil-
ization is the optimal exponential profile discussed earlier, it is useful to compare the costs
involved in using the optimal profiles from these four families which we do next. We assume
that viscous profile is created from adding polymer in small concentration in the fluid with
viscosity μl.

For small polymer concentration C , the viscosity μ(C) = μl(1 + βC), where the coef-
ficient β is a polymer-dependent parameter. The concentration profile C(x) for any viscous
profile μ(x) integrated over the length L of the middle layer gives total amount of polymer
βCT = (

∫ 0
−L μ(x) dx − L). Thus, the total amount of polymers C lin

T ,Cexp
T ,Cpoly

T , and Csin
T

for the linear, exponential, polynomial, and sine viscous profiles are given by

βC lin
T /L =

(
μ̂(0)+μ̂(−L)

2 − 1
)
, βCexp

T /L =
(

μ̂(0)−μ̂(−L)
ln μ̂(0)−ln μ̂(−L) − 1

)
,

βCpoly
T /L =

(
μ̂(0)+2μ̂(−L)

3 − 1
)
, βCsin

T /L =
(
(π−2)μ̂(0)+2μ̂(−L)

π
− 1

)
.

⎫⎬
⎭ (25)

where we recall that the variables with a hat in the above equation are normalized by μl. We
define for purposes below the normalized amount of total polymer as C∗

T = βCT /L . For
the pure viscosity-gradient driven viscosity case when μ̂(0) = μ̂r and μ̂(−L) = 1, it then
follows that for μ̂r ≥ 1 the normalized amount C∗

T of total polymer for various profiles are

βC lin
T /L = 1

2 (μ̂r − 1), βCexp
T /L =

(
μ̂r−1
ln μ̂r

− 1
)
,

βCpoly
T /L = 1

3 (μ̂r − 1), βCsin
T /L = π−2

π
(μ̂r − 1).

}
(26)

It then follows that Cpoly
T < Csin

T < C lin
T ; μ̂r ≥ 1.

Figure 14a shows plots of normalized total polymer (βCT /L) for exponential, linear,
polynomial, and sine viscous profiles versus the viscosity ratio μr/μl The following obser-
vations are made from these plots. The linear profile requires most polymer and thus most
expensive compared to the other profiles. The total amount of polymer CT for sine profile is
between that for linear and polynomial profiles. The plots for exponential profiles cross these
two plots, first the sine one at (5.6, 1.67) and then the polynomial one at (8.6, 2.53). Overall
these three profiles (sine, poly, and exp) require more or less same amount of total polymer.

The following ratio is also of interest.

Cexp
T

C lin
T

=
(
μ̂r − 1

ln μ̂r
− 1

) (
2

μ̂r − 1

)
; μ̂r > 1. (27)

The above ratio is a monotonically decreasing function of μ̂, meaning the amount of polymer
needed for exponential profiles is less than that for linear profiles for all values of μ̂r so long

123



A Numerical Study of Instability Control for the Design

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

μ
r
/μ

l

 T
o

ta
l a

m
o

u
n

t 
o

f 
P

o
ly

m
er

Linear Profile

Exponential Profile

Sine Profile

Polynomial Profile

(a)

1 2 3 4 5
0

0.5

1

1.5

2

μ
r
/μ

l

 T
o

ta
l a

m
o

u
n

t 
o

f 
P

o
ly

m
er

Linear Profile

Exponential Profile

Sine Profile

Polynomial Profile

(b)

Fig. 14 Plots of normalized total polymer (βCT /L) for exponential, linear, polynomial, and sine viscous
profiles versus the viscosity ratio μr/μl for pure viscosity-gradient driven instability. a L = 1. b Magnified
view of the left corner part of the figure on the left

as the extreme layer viscosities, upstream speed U and the length L of the intermediate layer
remain same. Thus, the optimal exponential viscous profiles are not only are economical but
also provide most stabilizing of all profiles. Figure 14a shows the relative merits of these two
profiles as a function of μ̂.

5.4 Non-monotonic Viscosity Profile

For the case of monotonic viscosity profiles (μx > 0), the layer itself was unstable and in the
previous section we studied the interaction between individually unstable middle layer and
individually unstable fronts in order to gain an understanding of the most optimal viscous
profile within each family as well as the one among all four families of Sect. 5.2. In this
section, we go one step beyond to find out if non-monotonic profiles in general can be more
optimal than the most optimal one of the four families discussed above.

Every portion of the monotonic profile suffers instability because of positive (unfavorable)
mobility gradient in the direction of basic flow. On the other hand, non-monotonic profiles
introduce regions of favorable mobility gradient (μx ≤ 0) into the profile (see Fig. 15). This
happens at the expense of steeper, in comparison to the monotonic case, unfavorable mobility
gradient (μx > 0) in some regions for the same total difference (μ(0)−μ(−L)) in mobility in
the entire inner layer for both monotonic and non-monotonic profiles. Because of this, it is not
obvious physically that the non-monotonic profiles will make the flow more or less stable in
comparison to monotonic ones. It all depends on the profile and how the regions of favorable
and unfavorable mobility gradients in the non-monotonic profile affect the overall fingering
mode. So, it is physically obvious that non-monotonic profiles if properly designed can be
more stabilizing than the most optimal non-monotonic profile. In general, it is not clear how
to devise such profiles without formulating an associated inverse problem. However, given
the experience of simulations reported above with monotonic profiles and with some intuition
we are able to design some profiles which will show that non-monotonic profiles with better
stabilizing properties do exist. In this section, we just do this by studying stabilizing capacity
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Fig. 15 Some examples of
non-monotonic viscosity profiles
in the middle layer when
μ(−L) = 4 and μ(0) = 8,
where profile
(0.3, exp) is 0.3μ1(x)+0.7μ2(x)
(exponential), profile (0.4,sine) is
0.4μ1(x)+ 0.6μ2(x) (sine) and
profile (0.3,poly) is
0.3μ1(x)+ 0.7μ2(x)
(polynomial)

−L 0
2

3

4

5

6

7

8

9

10

x

V
is

co
si

ty
 

 

 

(0.3, exp)

(0.4, sine)

(0.3, poly)

of some properly designed non-monotonic profiles and compare the results with the optimal
monotonic profiles’ results we have presented above.

One parameter families of non-monotonic viscosity profiles are constructed from any
arbitrary monotonic profile of Sect. 5.2 using the formula

μ(x) = αμ1(x)+ (1 − α)μ2(x), (28)

where

μ1(x) = μ(0)− μ(−L)

2
sin

(
7π

x

L
+ π

2

)
+ μ(0)+ μ(−L)

2
, (29)

is a sine curve and μ2(x) is any one of four monotonic profiles we defined in the last section,
and α is a constant between [0,1]. The function μ(x) is defined so that the profile has the
two end point viscosities μ(0) at x = 0 and μ(−L) at x = −L . Thus, non-monotonic vis-
cous profiles constructed from (28) will be denoted by (α, exp) when μ2(x) in (28) is given
exponential profile (22), and similarly by (α, poly) and (α, sin)whenμ2(x) is given by poly-
nomial profile (23) and sine profile (24), respectively. Figure 15 shows some examples of
non-monotonic viscosity profiles.

Over the range of α ∈ [0, 1], and μ(−L), μ(0) ∈ [μl, μr] for each family, the profile
within each family which gives the smallest maximum growth rate and corresponding val-
ues of μ(−L), μ(0) and α is found numerically for all three families of viscous profiles.
Figure 16 shows these three optimal non-monotonic profiles. From plots σmax versus μ(0)
for values of viscosity μ(−L) ∈ [μl, μr] (not shown here), we find that σmax = 0.3567 for
the most optimal (0.3,exp) profile which has μ(−L) = 4 and μ(0) = 5, σmax = 0.3604 for
the most optimal (0.4,sine) profile which has μ(−L) = 5 and μ(0) = 6, and σmax = 0.3618
for the most optimal (0.3,poly) profile which has μ(−L) = 4 and μ(0) = 5. Thus the most
optimal of all these non-monotonic profiles is the the profile (0.3,exp) with μ(−L) = 5 and
μ(0) = 6 when L = 1, S = T = U = 1, the same parameter values used in Sect. 5.2.
This optimal non-monotonic profile and in fact optimal profiles from all these three families
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Fig. 16 Optimal non-monotonic
viscosity profiles when μl =
2, μr = 10, T = S = U = 1, and
L = 1. This is a color plot on
screen
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Fig. 17 Dependence of σmax on L for optimal non-monotonic profiles from each of the three families of
viscous profiles. The other parameter values are μl = 2, μr = 10, and T = S = U = 1. a σmax versus L .
b σmax versus 1/L

((0.3,exp), (0.4,sin), (0.3,poly)) have σmax less than that for the most optimal monotonic
profile for which σmax = 0.3659 (see Sect. 5.2).

Above results for non-monotonic case were obtained when L = 1. In order to explore
the effect of L on the selection of most optimal profile from these four families of viscous
profiles, we have made simulations at several values of L in the range [1, 200] for the same
values of other parameters as before. Fig. 17a shows plots of σmax versus L and Fig. 17b
shows plots of σmax versus 1/L for each of the three families of non-monotonic viscous
profiles. The σmax goes to zero as L → ∞ but at a much slower rate than the case of optimal
monotonic profiles.

Without flooding this paper with more figures, we just want to mention that for these opti-
mal non-monotonic profiles, we have also done studies of dependence of interfacial viscosity
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Fig. 18 Dependence of optimal non-monotonic profiles on interfacial tensions. Each point on the plots cor-
responds to an optimal profile. The other parameter values are μl = 2, μr = 10, and U = 1. Each optimal
profile has its unique values of the pair (μ(−L) andμ(0)). a σmax versus T for optimal non-monotonic profiles
when S = 1. b σmax versus S for optimal non-monotonic profiles when T = 1

jumps on L , similar to Fig. 11a, b for optimal monotonic profiles. Conclusions are similar:
viscosity discontinuities (μr −μ(0) 
= 0 and μr −μ(0) 
= 0) at both the interfaces is a nec-
essary condition for any fixed value of L . The viscosity jumps at both the interfaces decrease
monotonically with increasing L and approach close to zero for a large enough L value of
which depends on the optimal profile. However, they approach zero as L → ∞ but at a much
slower rate than the case of optimal monotonic profiles.

Like monotonic case (see Fig. 12a, b) discussed before, it is possible that the optimal non-
monotonic profile does not remain within the same family (recall these families: (0.3,exp),
(0.4,exp), (0.3,poly)) if interfacial tensions are changed. This is shown in Fig. 18a, b. Fig-
ure 18a shows that the most optimal profile is the (0.3,exp) profile for T ≤ 2 (approx) and
for T > 2, all optimal profiles of all three families are more or less equally optimal. Results
of a similar study when instead interfacial tension S changes are shown in Fig. 18b.

5.5 Sensitivity to Interfacial Tension

Design of any flooding process should be tested for sensitivity to minor changes in the design
parameter values. Such sensitivity studies are essential to robustness of the design. So, if a
most optimal (say exponential) profile at some design conditions (i.e., for some choices of
parameter values) is chosen, it is useful to know if it remains so under minor changes in
parameter values, i.e., a study of parametric stability of the optimal profile is necessary. For
purposes below, we define “T = 1” optimal profile of any family as the optimal profile of
that family when interfacial tension T = 1.

We know that the maximum growth rate σmax of the optimal profile should increase
(decrease) with decrease (increase) in values of T , but we do not know the relative parametric
stabilization capacity of the optimal profiles. Figure 19a, b exactly addresses this issue. This
figure shows the sensitivity of the “T = 1” optimal profiles to changes in T from the design
value T = 1. We recall that at T = 1 (with all other parameter values as the ones mentioned
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Fig. 19 Sensitivity of the optimal profiles: The dependence of σmax of the “T = 1” optimal profiles on T .
The other parameter values are μl = 2, μr = 10, and S = U = 1. The values of μ,μ(−L) & μ(0) for each
optimal profile (corresponding to each curve/plot) has its unique values of the triple (μ(x), μ(−L) and μ(0))
at T = 1. a σmax versus T for “T = 1” optimal monotonic profiles. b σmax versus T for “T = 1” optimal
non-monotonic profiles

in the figure caption), the most optimal profile is the exponential one among the monotonic
profiles and the profile (0.3,exp) among the non-monotonic profiles. Figure 19a shows that
even though the stabilization capacity increases (decreases) with increasing (decreasing) T ,
the exponential one loses its edge for values of T < 1 as the most stabilizing profile compared
to others with the polynomial profile leading the group, followed by the sine profile, then the
linear and the exponential ones finishing last having almost the same stabilizing capacity.
Interestingly, for the non-monotonic case, Fig. 19b shows a different scenario: the (0.3,exp)
profile remains the most optimal for values of T in approximate range [1.0, 1, 5), and for
other values of T the (0.3,poly) takes the lead with (0.3,exp) closely following behind only
for T > 1.5. Essentially, monotonic or not, the “T = 1” optimal exponential profile is not
stable to changes in T . Interestingly, the stability of “S = 1” most optimal monotonic profile
(which is linear) is very robust to small and large changes in the value of S as seen in Fig. 20a,
On the other hand, Fig. 20b shows that the “S = 1” most optimal profile which is (03,exp)
profile is stable to large and small changes in S so long as S < 1.5 (approximate). However,
for S > 1.5 (approximate), (0.3,poly) takes the lead with (0.3,exp) closely following behind
in stabilization.

6 Conclusions

In this paper, we have numerically studied an injection policy of tertiary recovery in porous
media by ASP-flooding followed by water (or some other fluid of constant viscosity) flood-
ing using Hele-Shaw model. This recovery process has been modeled here as a three-layer
flow having the ASP-fluid that is displacing oil in the middle layer of finite length which
is followed by a fluid such as water of constant viscosity. This corresponds to an injection
policy over a fixed amount of time while the amount of polymer injected over a finite time
may vary depending on the viscous profile. This is one distinction over the injection policy
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Fig. 20 Sensitivity of the optimal profiles: The dependence of σmax of the “S = 1” optimal profiles on S.
The other parameter values are μl = 2, μr = 10, and T = U = 1. The values of μ,μ(−L) and μ(0) for each
optimal profile (corresponding to each curve/plot) has its unique values of the triple (μ(x), μ(−L) and μ(0))
at S = 1. a σmax versus S for monotonic profiles. b σmax versus S for non-monotonic profiles

considered in Uzoigwe et al. (1974) and Gorell and Homsy (1983) in which the injected poly-
mer is fixed but the duration over which it is injected (and hence the length over which the
viscous profile is maintained) may vary. A second major difference is their consideration of
only one front which is appropriate for secondary oil recovery processes and not for tertiary
recovery processes. In contrast, we have considered in our study two fronts having non-zero
interfacial tensions and possibility of finite viscosity jumps across these both fronts which is
more relevant for the tertiary recovery process by ASP-flooding since surfactant is supposed
to modify the interfacial tensions. This brings in added complication due to the presence of
interfacial instabilities at both fronts unlike in the case of previous studies. The competition
between three different types of individual instabilities, two interfacial modes and fingering
(or layer) mode, determines the effectiveness of this injection policy. In contrast, mostly
instability in the displacing fluid determines the effectiveness of the injection policy studied
in the previous works of the above authors.

We have defined the meaning of an optimal profile from a family of viscous profiles.
Numerically, we have identified optimal profiles from several viscous families and also iden-
tified the most optimal profile from a group of families of viscous profiles. We have considered
four families (or functions) of monotonic viscous profiles and three families of non-mono-
tonic viscous profiles. We have obtained several results on stabilization some of which are
summarized below and, whenever possible, physical explanations for some of these findings
are given.

1. For the constant viscosity case when L is not very small, optimal viscosity is the viscosity
which gives the same growth rate for each of the two fronts based on the Saffman–Taylor
formula. This finding is easily explained as follows. When L is large, the effect of one
front on the other can be safely neglected (see Daripa 2008b). Maximum growth rates
of each of the fronts can be calculated as functions of the middle layer fluid viscosity
μ from the Saffman–Taylor formula. The viscosity at which these monotonic functions
of viscosity intersect should be the optimal viscosity according to the definition, i.e.,
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the viscosity at which the maximum of two growth rates is minimized. Basically, the
interfacial modes split the difference (μr − μl) so that neither of the interfacial growth
rates dominate the other.

2. For optimal monotonic and non-monotonic viscous profiles of each family (linear, expo-
nential, sine and polynomial), mobility jumps (μr − μ(0) 
= 0 and μ(−L) − μl 
= 0)
at both the interfaces appear to be a necessary condition for any fixed value of L . The
maximum growth rate σmax and viscosity jumps at both the interfaces decrease mono-
tonically with increasing L and approach close to zero for a large enough L value of
which depends on the family of the optimal profile. But as L → ∞, they approach zero.
The above findings has the following rational explanation. In general, there is an interplay
between the two interfacial modes and the fingering (instability in the layer) mode that
determines the optimum viscous profile and associated viscosity jumps at two interfaces.
Therefore, the optimum configuration (i.e., the interfacial viscosity jumps and the vis-
cous profile in the layer) should result from splitting of the total mobility jump (μr −μl)
between the two interfacial modes and the fingering mode based on, loosely speaking,
equidistribution of the instability between these modes so that highest maximum growth
rate is smallest among all possible configurations. The signature of this argument is also
seen in the dependence of the optimal configuration as L increases. With increasing L ,
mobility gradient of the profile and hence the fingering mode instability decrease unless
the mobility jumps at interfaces also reduce with increasing L thus maintaining equidis-
tribution of instability between all three modes. Therefore, results show that as L → ∞,
the mobility gradient of the profile as well as mobility jumps at interfaces approach zero.

3. The optimal linear profile is better than the other ones when width of the middle layer
is small. With increasing values of L , the stabilizing capacity of the optimal exponential
profile increases dramatically in comparison to other optimal profiles with the optimal
linear profile doing the worst! Thus, for L not very small the optimal exponential profile
is found to be the most optimal of all profiles. Increasing (decreasing) U with L = 1 has
roughly same qualitative effect on relative standing of these optimal profiles as decreasing
(increasing) L with U = 1. However, the effect of changing S and T can have dramatic
effect on the optimality of these profiles.

4. Our results in general indicate that unless the width of the middle layer is very small, the
most optimal profile is the exponential one, a result also supported by many petroleum
engineering literature (Littman 1998; Mungan 1974; Needham and Doe 1987; Slobod and
Lestz 1960; Sorbie 1991). The heuristic argument behind it is that the mobility gradient,
expressed as a fractional mobility jump, is constant for an exponential, and therefore all
portions of the profile suffer instability to the same degree. This argument assumes that
the fingering mode does not depend on L which we have seen is true when L is not very
small. When L is very small, the linear profile is seen to be optimal. This shows that the
interplay of the three modes are strong when L is small and an approximate explanation
as above based on superposition of the three instability modes does not apply.

5. Existence of non-monotonic profiles that can be less de-stabilizing than monotonic ones
as expected on physical ground has been numerically confirmed from our limited studies
in this paper. We have shown that all optimal non-monotonic profiles (linear (results not
shown), exponential, sine, polynomial) are better than all optimal monotonic profiles for
the purpose of stabilization.

6. For pure viscosity gradient driven instability, we have shown that the most optimal
exponential viscous profile based on maximum stabilization capacity also requires least
amount of polymer and hence is the best profile of choice.
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7. There are similarities and dissimilarities in the results between the two injection policies:
(i) The one studied here is for tertiary oil recovery and includes secondary recovery as a
special case, whereas the one in GGorell and Homsy (1983) is for secondary recovery
only. (ii) The one studied here numerically is based on constant time/length injection
policy and the one studied in Gorell and Homsy (1983) theoretically is based on constant
polymer injection policy. (iii) Both injection policies are studied using the Hele-Shaw
model. (iv) Their study is restricted to only monotonic linear and exponential profiles.
In contrast, our study considers wider families of viscous profiles including linear and
exponential ones. Moreover, we have also investigated non-monotonic viscous profiles
of these families. (v) In our injection policy, two fronts and interfacial tensions at both
fronts exist which influence the outcome: characteristics of the optimal profile. Inter-
estingly, the exponential (linear) profile becomes the profile of choice in both injection
policies for large (very small) values of L . (vi) The crucial new effect in our injection
policy is the interfacial tension at the trailing front and displacing front which can be
modified due to surfactant. The results related to this is summarized next.

8. The most optimal profile designed for some choice of parameters can be unstable to
changes in the parameter values such as interfacial tensions in the sense that changing
the value of a design variable can make the profile from another family (such as switching
from exponential to linear) the most optimal one.

In summary, the main contributions of the paper are that it (i) shows that the exponential
profile is optimal over most of the parametric range and, when it is not, the growth rate of
the optimal exponential profile is very close to that for the true optimum. In fact, there is
little variation in the growth rates for all the profiles considered (with the possible excep-
tion of constant viscosity), (ii) establishes the dependence on parameters (interfacial tension,
viscosity jumps, etc.), and (iii) existence of optimal non-monotonic profiles which are less
unstable than the optimal monotonic ones.

In closing, it is worth mentioning that the basic flow considered is unidirectional and the
parameters affecting stability in this study are slug size L , viscosity profile of the middle
layer and interfacial tensions. The two-dimensional problem considered is in a plane per-
pendicular to gravity and therefore density or equivalently buoyancy effect does not appear
in our treatment. Basic velocity U enters into the stability problem as a multiplicative factor
with viscosity jumps at two interfaces (see Eq. (7)). Therefore, varying basic velocity U is
equivalent to varying these viscosity jumps whose effect on the stability is well understood
and can be interpreted from results presented in this paper.
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