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ABSTRACT

Telementoring generalist surgeons as they treat patients can be essential when in situ expertise is not
available. However, unreliable network conditions, poor infrastructure, and lack of remote mentors avail-
ability can significantly hinder remote intervention. To guide medical practitioners when mentors are
unavailable, we present the Al-Medic, the initial steps towards an intelligent artificial system for autono-
mous medical mentoring. A Deep Learning model is used to predict medical instructions from images of
surgical procedures. An encoder-decoder model was trained to predict medical instructions given a view of
a surgery. The training was done using the Dataset for Al Surgical Instruction (DAISI), a dataset including
images and instructions providing step-by-step demonstrations of 290 different surgical procedures from
20 medical disciplines. The predicted instructions were evaluated using cumulative BLEU scores and input
from expert physicians. The evaluation was performed under two settings: with and without providing the
model with prior information from test set procedures. According to the BLEU scores, the predicted and
ground truth instructions were as high as 86 + 1% similar. Additionally, expert physicians subjectively
assessed the algorithm subjetively and considered that the predicted descriptions were related to the
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images. This work provides a baseline for Al algorithms assisting in autonomous medical mentoring.

1. Introduction

In telementoring, a surgeon performing an operation receives
guidance remotely from an expert using telecommunications.
Such technology can support life saving interventions in rural,
remote and even austere settings (Sebajang et al. 2006;
Greenberg et al. 2015). Techniques, such as telementoring
through augmented reality and speech have been explored to
provide generalist surgeons with remote supervision when no
expert specialist is available on-site (Rojas-Mufoz et al. 2020).
Two aspects are fundamental requirements for these techniques:
the availability of the expert that provides medical guidance, and
having a reliable communication medium. Nonetheless, such
requirements cannot always be satisfied (e.g. unreliable network
conditions, cyber-attacks, etc). When these requirements cannot
be fulfilled (Bilgic et al. 2017), a fallback artificial intelligence (Al)
mechanism could provide medical practitioners with the neces-
sary hands-on knowledge to complete the surgical procedure.
However, the development of Al-based autonomous mentoring
frameworks applied to medicine has been limited due to the lack
of robust predicting models and quality of datasets that are
required to train such models. Such datasets can include step-
by-step demonstrations for completing surgical procedures from
various medical specialities.

This work introduces the Al-Medic, an Al system for autono-
mous medical mentoring. The system uses a Deep Learning (DL)
model to predict medical instructions from images of surgical
procedures. The model was training using the Dataset for Al
Surgical Instruction (DAISI; https://engineering.purdue.edu/star
proj/_daisi), a dataset that includes images and instructions pro-
viding step-by-step demonstrations of surgical procedures. DAISI

includes images and text descriptions of procedures from 20
medical disciplines. Each image-text pair describes the surgical
manoeuvres or required instruments to complete one step in the
procedure. Thedataset was created based on feedback from 20
expert physicians from various medical centres, extracting data
from academic medical textbooks related to the surgical techni-
que, and acquiring imagery manually. Such a dataset addresses the
shortage of datasets for autonomous medical mentoring. Figure 1
showcases images from four procedures in DAISI.

Our Al-Medic uses the DAISI dataset to train an encoder-
decoder DL architecture capable of predicting instructions given
the current view of a surgery. The model takes images of medical
procedures as input, and outputs text descriptions with the
instructions to perform next by a surgeon. The encoder-decoder
approach uses a ConvNet as the encoder network, and a Recursive
Neural Network (RNN) as the decored network. The ConvNet
extracts and encodes visual features from the input images, and
the RNN decodes these visual features into text descriptions. The
instructions predicted by the Al-Medic were evaluated using
Bilingual Evaluation Understudy (BLEU) scores (Papineni et al.
2002) and subjective input from expert physicians. The results
presented in this work serve as a baseline for future Al algorithms
that can be used as surrogate human mentors.

The paper proceeds as follows: Section 2 reviews approaches
for medical autonomous guidance and related datasets. Section 3
describes DAISI and how it was used to train the Al-
Medic’s DL model. Section 4 presents and discusses the results
obtained from evaluating the Al-Medic. Finally, Section 5 con-
cludes the paper.
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Inguinal Hernia Open
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starting with thyroid cartilage seen medial to inferior epigastric visualize the junction between the landmarks
vessels hepatic vein & the IVC

On further inspection, additional To further confirm that the
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away fine areolar tissue falsely small if scanned off axis
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. € Visualize cricothyroid membrane
trachea past spigelian hernia defect of the IVC while holding the probe
still

Figure 1. Example of five different images and their associated textual descriptions from four different procedures in the DAISI dataset. The dataset includes images
from 20 disciplines such as emergency medicine, and ultrasound-guided diagnosis.

2. Background such systems can provide surgeons with specialised assistance

in austere settings when no expert is on-site (Sebajang et al.
Telementoring systems can be used to deliver expert assistance 2005, 2006). However, telementoring platforms rely on remote
remotely (Kotwal et al. 2016). Several studies demonstrate that  specialists being available to assist, which often is not possible
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(Geng et al. 2019). A possible approach to convey guidance
when no mentor is available is by incorporating Al into tele-
mentoring systems (de Aradjo Novaes and Basu 2020). In this
way, a virtual intelligent surrogate mentor can be activated to
guide health practitioners when the mentor is not available.

Al algorithms have been previously explored as means to
assist users during complex and time sensitive decision-making
procedures (Cortés et al. 2007). In the healthcare domain, for
example, Al has been typically used in the diagnosis and prog-
nosis of diseases (Patel et al. 2020; Mishra and Banerjee 2020).
Typically, the diagnosis is given via predictions of an Al model,
trained using a dataset of medical records (e.g. radiology
images, metabolic profiles). However, recent approaches have
also incorporated Al into surgical instruction. The Virtual
Operative Assistant is an example of an automated educational
feedback platform (Mirchi et al. 2020). This platform was devel-
oped to provide automated feedback to neurosurgeons per-
forming a virtual reality brain tumour resection task. Other
examples include Al to analyse surgical performance during
virtual reality spine surgeries (Bissonnette et al. 2019), and
integration with augmented reality to provide surgical naviga-
tion during surgery (Auloge et al. 2019; Jha and MB 2019).

Our work follows an approach in which Al is used to train
models capable of predicting medical image descriptions
(Kisilev et al. 2016; Singh et al. 2019; Alsharid et al. 2019)
Similar examples include the ImageCLEFcaption challenge,
which focuses on using Al to obtain text descriptions from
radiology images (Lyndon et al. 2017; Pelka et al. 2019; Xu
et al. 2019). Likewise, IU X-RAY and PEIR GROSS are examples
of public datasets for radiology image captioning (Jing et al.
2017; Pavlopoulos et al. 2019). These algorithms, however, are
trained to generate captions that describe the content of the
images using techniques such as template-based image cap-
tioning, retrieval-based image captioning, and novel caption
generation (Hossain et al. 2019). Instead, our work generates
captions representing instructions in a task by learning visual-
semantic correspondences between images and instructions
using an architecture similar to the one created by Karpathy
and Fei-Fei (2015).

3. Methods

The methodology to create the Al-Medic includes: 1) the creation
of a curated dataset of medical images and their respective step-
by-step descriptions; and 2) the use of such a dataset to train
a DL framework that generates medical instructions from images.

3.1. Creating a dataset for Al surgical instruction

The DAISI dataset contains 17,339 colour images and text
descriptions of instructions to perform surgical procedures.
DAISI contains one example for each of the 290 medical proce-
dures from 20 medical disciplines including ultrasound-guided
diagnosis, trauma and gynaecology. The image-text pairs from
the dataset were compiled from: (a) medical images and
instructions from the Thumbroll app (thumbroll LLC 2020),
a medical training app designed by physicians from
Washington University School of Medicine, Stanford Health
Care; John Hopkins University, UCLA, and University of

Southern California. Overall, we acquired 17,138 images with
descriptions from various medical specialities (e.g. General
Surgery, Internal Medicine), levels of medical training (e.g. clin-
ical Medical Doctor trainee, senior Resident), and medical occu-
pations (e.g. occupational therapy, osteopathic medicine). (b)
Afterwards, we extracted 125 images and captions from anat-
omy textbooks using PDFFigCapX (Li et al. 2019); (c) Lastly, we
used a patient simulator (Tactical Casualty Care Simulator 1,
Operative Experience) to acquire an additional set of 76 images
from procedures as chest needle decompression and intraoss-
eous needle placement. The dataset has 1086 duplicate instruc-
tions (i.e. the same instruction from more than one image),
which represent approximately 6% of the instructions in the
dataset. Additionally, no restriction was imposed regarding the
length of the text descriptions.

3.2. Training an intelligent agent for autonomous
mentoring

We used DAISI to train a DL model for autonomous mentoring.
The algorithm receives images from medical procedures as
input, and predicts an instruction associated with it. To gener-
ate text information from images, an encoder-decoder DL
approach using a ConvNet and a Recursive Neural Network
(RNN) was adopted. The ConvNet extracts and encodes visual
features from the input images, and the RNN decodes these
visual features into text descriptions (see Figure 2).

Captioning techniques require a 1 vocabulary containing
the words appearing in the dataset at least N times (defined
by the Word Count parameter). This constrains the words used
to generate the instruction to a fix set. A token character (UNK)
replaced all words in the training set that appeared fewer times
than the specified Word Count value. Our encoder-decoder
architecture is based on NeuralTalk2 (Karpathy and Fei-Fei
2015). We use the VGG16 model as the encoder network
(Simonyan and Zisserman 2014). This model includes 13 con-
volutional layers with 5 pooling layers in-between. The convo-
lutional layers use 3 x 3 convolutional filters to locate interest
features in the images, and the pooling layers reduce these
features’ dimensionality. All hidden layers are equipped with
Rectified Linear Units (ReLU). We performed cross validation
using the Adam adaptive learning rate optimisation to find
individual learning rates for each parameter in the ConvNet
(Kingma and Ba 2014). Finally, 4 fully connected layers are used
to describe each image with a 1000-dimensional latent vector
representation. We then use a Bidirectional Recurrent Neural
Network (BRNN) as the decoder network to generate the text
instructions (Schuster and Paliwal 1997). The BRNN predicts
instructions not only by receiving the ConvNet’s final latent
vector, but also by leveraging context around the word. This
context is determined via forward and backward hidden states
(hf and hf, respectively) at each index t (t = 1 T), which denotes
the position of a word in a sentence. Therefore, the BRNN
predicts semantically correct sentences based on the
ConvNet’s latent vector and the current word’s context. This
step is necessary to create semantically coherent sentences
rather than disconnected words describing different aspects
of the image. The BRNN'’s 1 formulation follows:



316 e E. ROJAS-MUNOZ ET AL.

224x224x3 224x224x64

| 112x112x128

— L5 56x56x256

| 3x3 Convolutions

Convolutional Neural Network (VGG16)

==

A (T | 28x28x512
= ,,{ o P — i % .
i =Ll 1|
AL ==

Bidirectional Recurrent
Neural Network

Fully

Connected Make

incision <END>

Backward

4096x2
n RNN

14x14x512

Forward
RNN

<START> Make

incision

Figure 2. Schematic of our encoder-decoder architecture. The ConvNet obtains vectors representing input images. These vectors are then used in the training of
a BRNN that learns to predict surgical instructions. The VGG16 schematic was generated via LeNail’s NN-SVG (2019).
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Where, Wh;, Wiy, Whe, Whp, Who; b, by, and b, are the parameters
and biases to be learned by the model. ConvNety(Img) is the
ConvNet's final latent vector of the image Img. Thus, the image
context vector ¢, provides the BRNN with information from the
input image. This context vector ¢, is provided only during the
first iteration (iter = 1), as suggested by Karpathy and Fei-Fei
(2015). The x; and y; vectors contain probabilities of each word
in the vocabulary to be the word at the index t. The output
vector y; is used as x;, 1 in the next iteration. In the first iteration,
the output vector y; depends only on the context vector c,, as
X takes a special initialisation value (START) and hf and h? are
initialised to 0. This formulation allows the model to predict
more than one candidate instruction per image. The probability
of each candidate being the correct instruction decreases for
each additional prediction.

3.3. Evaluating the artificial intelligent mentor

We evaluate our Al-Medick and provide a benchmark for
future Al surgical mentors. We validated our approach using
four test folds. For each of these folds, we randomly divided
the 290 procedures into training and testing sets based on
their number of images: approximately 10% of the images
of the entire dataset were separated to be used as test set.
Additionally, we conducted Inter-procedure and Intra-
procedure evaluations. For the Inter-procedure setting, the
model had no prior information regarding the procedures
in the test set. For the Intra-procedure setting, a fraction of
the images P in the same procedure were assigned to the
training set, while the rest remained in the test set. The test
set consisted of every % images from each procedure. In our
case, P was set to 0.5. While the Intra-procedure setting
reduced generalisability among procedures, it enhanced

performance for procedures in the test set. Table 1 presents
the distribution of image-text pairs into training and test
sets, as well as the size of resulting vocabulary for each fold.
Finally, we evaluated our Al mentor using three combina-
tions of the Word Count parameter: 3, 5, and 7. Table 2
showcases the size of the vocabulary constructed for each
fold, for the respective Word Count value.

To evaluate the Al-Medic’s performance, the BLEU metric
was computed between the predicted and the ground truth
instructions. This is a state-of-the-art metric to evaluate text
production models related to image captioning and
machine translation (Papineni et al. 2002). BLEU computes
a 1-to-100 similarity score by comparing two sentences (s;
and s,, candidate and reference respectively) at the word
n-gram level, i.e. analysing contiguous sequences of n words
in a text. For instance, s; and s, will have perfect BLEU
1-gram score if all the words from s; appear in s,.
Similarly, they will have a perfect BLEU 2-gram score if all
possible combinations of two words from s; appear in s,.
Contrarily, the BLEU score between s; and s, will decrease
for each n-gram that is in s, but is not in s;. We report
cumulative BLEU scores for 1-grams to 4-grams for the
model’s top five candidate predictions, as they have
reported correlations with human judgements (Ward and
Reeder 2002).

Table 1. Distribution of image-text pairs into training and test sets per testing
fold and testing approach (inter-procedure and intra-procedure).

Number of images

Inter-procedure Intra-procedure

Fold Number Training Testing Training Testing
F1 13,232 1354 13,909 677
F2 13,302 1284 13,944 642
F3 13,256 1330 13,921 665
F4 13,284 1302 13,935 651
Table 2. Vocabulary size for three different word count values.
Fold Number 3 5 7
F1 2217 2214 2208
F2 2231 2226 2219
F3 2215 2213 2209
F4 2219 2211 2207
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Finally, expert emergency physicians evaluated the algo-
rithm’s performance subjectively. The experts were selected
randomly from a pool of emergency physicians working in an
army medical centre (Madigan Army Medical Center). We ran-
domly selected 16 images from emergency medicine proce-
dures in the test set and their predicted instructions (e.g. Chest
Tube Placement, Cardiopulmonary Resuscitation). Afterwards,
we used a survey to rate how related was each image to its
predicted instruction. Each question in the survey included an
image from a medical procedure, the name of the procedure;
the instruction predicted by the Al-Medic, and five options
rating the relation between the predicted description and the
image. The physicians ranked this relation using a normalised
scale: ‘Very Related’ = 1, ‘Related’ = 0.75, ‘Somewhat
Related’ = 0.5; ‘Not Related’ = 0.25, and ‘Impossible to
Tell' = 0. In addition, the physicians were asked to provide
their own instructions for the steps depicted in the images.
This was done to analyse how consistent the physicians were
on describing the step to perform.

4. Results & discussion

Figure 3 shows the resulting instructions predicted by the Al-
Medic. The predicted instruction is written inside the images,
whereas the ground truth instruction is written below. The
predicted instructions were semantically correct because of
the relations between images and captions created in the net-
work’s embedding space.

Figure 4 reports the cumulative BLEU scores for Inter-
procedure and Intra-procedure testing. The captions predicted
by our model obtained up to 86 £ 1% 1-gram and 36 + 1%
4-gram BLEU scores. Our results surpassed those reported in
state-of-the-art approaches for medical instructions prediction
(Lyndon et al. 2017). Overall, the BLEU scores were slightly
lower for lower Word Count values. A potential reason is that
an increased-size vocabulary reduced the chances of learning
meaningful relations between the images and the text descrip-
tions. Our algorithm tackles a challenging problem due to the
interclass variance among different medical procedures, which

Cut suture

GT: Cut suture

1-gram BLEU score: 1.00

Carefully remove arachnoid mater overlying
cerebral vasculature

GT: Carefully remove arachnoid mater overlying
cerebral vasculature

1-gram BLEU score: 1.00

GT: Make incision

1-gram BLEU score: 1.00

Use knot pusher to push 3rd throw into the
incision using 1 suture as,the post

GT: Use knot pusher to push 3rd throw into the
incision (using 1 suture as the post)

1-gram BLEU score: 1.00

v g —
Attach syringeto cap withdraw to obtain blood
return

GT: Attach syringe to cap hub & withdraw to
obtain blood return

1-gram BLEU score: 0.89

Isolate small saphenous v sural n within
superficial fat fascia follow superiorly

GT: Isolate small saphenous v. & sural n. within
superficial fat & fascia; follow superiorly

1-gram BLEU score: 0.85

Perform 30 compressions each compression at
rate of 100-120 per min 2 inches deep

GT: Perform 30 compressions. Each compression
is at least 2 inches deep at rate 100-120 per min

1-gram BLEU score:

Continue palpating across abdominal sections

GT: Continue palpating deeper across all
abdominal sections

1-gram BLEU score:

Remove fascia to trace common fibular n distally

GT: Remove fascia to trace deep a. of thigh
distally

1-gram BLEU score:

Figure 3. Examples of instructions predicted by the Al-Medic. The predicted instruction is in white font, inside the images. The ground truth (GT) instruction is written
below. The approach calculates the BLEU scores after removing special characters (e.g. punctuation marks). High and average scores are highlighted in green and

yellow, respectively.
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Perform 30 compressions each compression at
rate of 100-120 per min 2 inches deep

GT: Perform 30 compressions. Each compression
is at least 2 inches deep at rate 100-120 per min

Subjective Score: 0.80 + 0.27 (Related)

Apply tourniquet proximally to occlude venous
outflow

GT: Loop tourniquet around arm & cross the two
ends

Subjective Score: 0.75 * 0.00 (Related)

s

Pull the free end tab to release syringe

GT: Open ABG kit containing a small syringe, a
small safety needle & a heparinized cap

Subjective Score: 0.70 + 0.21 (Related)

Apply gauze dressing

GT: Support patient's wrist with rolled-up gauze
or towel for improved wrist extension

Subjective Score: 0.50 * 0.30 ( )

Remove syringe

GT: Reapproximate skin edges with simple
suture. Tie 3+ knots

Subjective Score: 0.25 + 0.00 (Not Related)

After injecting local anesthetic make small 510
mm incision in skin subcutaneous tissue

GT: Disconnect insertion device leaving flexible
catheter in vein and connect extension tubing

Subjective Score: 0.25 + 0.00 (Not Related)

Figure 4. Cumulative n-gram BLEU scores. Our model was evaluated using three word count values (3, 5, 7) and two testing approaches (Inter-procedure, Intra-
procedure). The model obtained up to 86 + 1% 1-gram, and up to 36 + 1% 4-gram BLEU scores.

in turns has an impact the prediction capability of the network.
As a reference value, the BLEU 1-gram score when comparing
the ground truth instructions with descriptions constructed
using random words from the vocabulary is less than 0.1%.
Therefore, our results show an improvement over random
guess.

Five expert physicians completed our subjective evalua-
tion, for a total 80 responses. The physicians reported having
11.2 £ 3.3 years of medical expertise. On average, the physi-
cians considered the predicted instructions to be ‘Somewhat
Related’ to the medical images (0.51 &+ 0.32). While this is an

encouraging result, a drastic improvement is still required for
useful Al mentoring for surgery. Their evaluations followed
three main trends. The first trend are descriptions considered
as correct predictions: they were similar to the ground truth
and physicians considered them as adequate guidance (e.g.
Figure 5, examples 1, 2, and 3). The second trend were
descriptions that were not similar to the ground truth, but
were consider as adequate guidance by the physicians. These
descriptions included key elements from the image (e.g.
gauze in Figure 5 example 4), but did not use the phrasing
of the ground truth. The third trend comprehends

100

Word Count 3; Intra-procedure
Word Count 5; Intra-procedure
Word Count 7; Intra-procedure
Word Count 3; Inter-procedure

Word Count 5; Inter-procedure i
Word Count 7; Inter-procedure

Instruction Similarity [%]

1-gram Score 2-gram Score

3-gram Score 4-gram Score

Cumulative BLEU Score

Figure 5. Subjective evaluation by physicians of the instructions predicted by the Al-Medic. High, average, and low scores are highlighted in green, yellow and red font,

respectively.
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descriptions considered as incorrect predictions (e.g. Figure 5,
examples 5 and 6).

Nonetheless, similar discrepancies were found when analys-
ing the instructions provided by the expert physicians. For
instance, once physician provided the same instruction as the
one predicted by the Al-Medic in Figure 5 example 4 (‘Apply
gauze dressing’). Other physician, however, described this step
as ‘Place kerlex under the wrist to place it in a hyper extended
position’. Both these instructions, however, were different from
the image’s ground truth (‘Support patient’s wrist with rolled-up
gauze or towel for improved wrist extension’). Nevertheless, it
could be argued that they convey a similar instruction at dif-
ferent levels of detail. This exemplifies the challenge of obtain-
ing a consistent instruction based on medical images. In fact,
the average BLEU 1-gram score between the physicians’
instructions was of 0.41, which was lower than the scores
obtained when comparing the Al-Medic’s predicted instruc-
tions against the ground truth instructions. A possible
approach to alleviate these discrepancies is to expand the
number of ground truth instructions that describe each
image. This would expand the number of correct alternatives
and words used to describe each step in a procedure. Likewise,
the approach to evaluate the predicted instructions could be
modified from a word-by-word metric (BLEU) to a metric that
analyzes the semantic content of the instructions. For instance,
Natural Language Processing approaches such as Word Mover’s
Distance (Kusner et al. 2015), Smooth Inverse Frequency (Arora
et al. 2016), or pre-trained encoders like Google’s Sentence
Encoder (Cer et al. 2018) could be used to compare the instruc-
tions. In doing so, the model would learn to compare the
predicted instructions taking their underlying meaning into
consideration.

The relatively low BLEU scores are a limitation of our
approach that can be attributed to the complexity of the task.
For instance, variations in the medical images provided to the
neural network will have an effect in the inferences made by
the model. Elaborating, the ConvNet would make wrong pre-
dictions if the attending surgeon wore blue gloves instead of
green or white gloves, as such an image was never seen by the
ConvNet during its training process. Other factors include the
position of camera, lighting conditions, and the instruments
used to complete the procedure (e.g. scalpel instead of scis-
sors). All these factors can play a major role in the inferences
made by the network, as they would lead to significantly dis-
tinct images even within same steps of a procedure. Wrong
predictions at this stage could mean that the local mentee
could receive insufficient or incorrect mentoring, which subse-
quently could impact the patient’s health and safety. A possible
countermeasure for this is expanding the dataset by adding
more repetitions per procedure. Such images should include
variations in orientation, illumination, type of instrument used,
etc. While our Intra-procedure testing approach alleviates this
limitation, more repetitions can improve the prediction results
significantly. Additionally, techniques to generate synthetic
data (i.e. generated by a machine learning model) can be
used to increase the size of the dataset. For example,
a Generative Adversarial Neural network (Frid-Adar et al.
2018) could be trained to create new images and descriptions
based on the original data. Overall, these data augmentations

techniques could lead to improving the model’s accuracy,
which could potentially lead to better mentoring and patient
outcomes.

The results of these experiments provide subjective and
objective evaluation data for the proposed Al mentoring system.
Such algorithms and Al based techniques will enable to study
new results, such as assessment of the duration of sustained
clinical knowledge, the ability to correctly assess the patient
condition, the respective treatment through subjective inter-
rate reliability indices, and objective performance metrics (e.g.
number of errors). By introducing cognitive systems, Al, spatially-
augmented reality and physical interaction into the Operating
Room (OR), the proposed research holds the promise to reduce
morbidity risks due to lack of subspeciality surgical expertise, and
to correct clinical judgement and readiness level. Moreover, we
anticipate that our framework can be integrated into telemen-
toring systems that support medical training and skills, especially
in rural areas, which face significant challenges in securing sub-
specialist care. The proposed research brings a drastic change in
telementoring through the ability of creating a surrogate Al
mentor to assist mentees in a rural area, a forward operating
base, or community clinics. We foresee these datasets and algo-
rithms playing a key role in enhancing medical training which, in
turn, will improve both initial and sustained medical perfor-
mance. As such, we expect these datasets and benchmark be
applicable to the whole medical continuum, producing
a significant improvement on all stages of medical care. There
are, however, several ethical aspects that need to be address
before the implementation of such an Al platform into a fully
commercial product. For instance, FDA approval needs to be
acquired before its integration into surgical curricula of the
United States. For this, the legal implications of such a platform
need to be defined and addressed. This includes, but is not
limited, defining who should be responsible in case of
a medical malpraxis when using the platform in live patients.

Additional future work includes comparing of our approach
against existing methods for Al medical instruction. This is
a challenging task since there are currently no available bench-
mark datasets. The DAISI dataset, in fact, addresses this shortage
of datasets for autonomous medical mentoring by including
step-by-step demonstrations of surgical procedures from var-
ious medical specialities. Nonetheless, a possible approach is to
compare our approach against datasets comprised of only radi-
ology images (Jing et al. 2017; Pelka et al. 2019; Pavlopoulos
et al. 2019). To do this, a subset of the DAISI dataset comprised
of only radiology images should be constructed. However, these
datasets are used to train algorithms that describe the content
of the images. Instead, our approach generates instructions by
learning visual-semantic correspondences between images and
instructions. Therefore, a comparison against such datasets
would require the input of expert radiologists to either convert
the instructions of our dataset into descriptions, or convert the
descriptions of other datasets into instructions. Finally, the
approach can be further improved by including a visual atten-
tion framework into the model, such as the one in Xu et al.
(2015). Visual attention would allow to visualise how the model
focuses its attention over different regions of the input images.
This visualisation could be conveyed via augmented reality,
superimposing the regions of interest as a saliency map over



320 e E. ROJAS-MUNOZ ET AL.

the view of the operating field. Such visualisations could provide
mentees with details on what areas of the operating field are
relevant for each step in the procedures.

5. Conclusion

This work presented initial steps towards the development of
the Al-Medic, an intelligent artificial system for autonomous
medical mentoring. The system uses an encoder-decoder
neural network to predict surgical instructions given the cur-
rent view of a surgery. The Al-Medic was trained using DAISI,
a dataset to train Al algorithms that can act as surrogate
surgical mentors. The dataset includes 17,339 colour images
and captions that provide step-by-step demonstrations for
performing surgical procedures from 20 medical disciplines.
To assess our system, the instructions predicted by the the Al-
Medic were evaluated using cumulative BLEU scores and input
from expert physicians. According to the BLEU scores, the pre-
dicted and ground truth instructions were as high as 86 £ 1%
similar. Moreover, expert physicians considered that randomly
selected images and their predicted descriptions were related.
The results from this work serve as a baseline for future Al
algorithms assisting in autonomous medical mentoring.
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