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ABSTRACT
Telementoring generalist surgeons as they treat patients can be essential when in situ expertise is not 
available. However, unreliable network conditions, poor infrastructure, and lack of remote mentors avail
ability can significantly hinder remote intervention. To guide medical practitioners when mentors are 
unavailable, we present the AI-Medic, the initial steps towards an intelligent artificial system for autono
mous medical mentoring. A Deep Learning model is used to predict medical instructions from images of 
surgical procedures. An encoder-decoder model was trained to predict medical instructions given a view of 
a surgery. The training was done using the Dataset for AI Surgical Instruction (DAISI), a dataset including 
images and instructions providing step-by-step demonstrations of 290 different surgical procedures from 
20 medical disciplines. The predicted instructions were evaluated using cumulative BLEU scores and input 
from expert physicians. The evaluation was performed under two settings: with and without providing the 
model with prior information from test set procedures. According to the BLEU scores, the predicted and 
ground truth instructions were as high as 86� 1% similar. Additionally, expert physicians subjectively 
assessed the algorithm subjetively and considered that the predicted descriptions were related to the 
images. This work provides a baseline for AI algorithms assisting in autonomous medical mentoring.
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1. Introduction

In telementoring, a surgeon performing an operation receives 
guidance remotely from an expert using telecommunications. 
Such technology can support life saving interventions in rural, 
remote and even austere settings (Sebajang et al. 2006; 
Greenberg et al. 2015). Techniques, such as telementoring 
through augmented reality and speech have been explored to 
provide generalist surgeons with remote supervision when no 
expert specialist is available on-site (Rojas-Muñoz et al. 2020). 
Two aspects are fundamental requirements for these techniques: 
the availability of the expert that provides medical guidance, and 
having a reliable communication medium. Nonetheless, such 
requirements cannot always be satisfied (e.g. unreliable network 
conditions, cyber-attacks, etc). When these requirements cannot 
be fulfilled (Bilgic et al. 2017), a fallback artificial intelligence (AI) 
mechanism could provide medical practitioners with the neces
sary hands-on knowledge to complete the surgical procedure. 
However, the development of AI-based autonomous mentoring 
frameworks applied to medicine has been limited due to the lack 
of robust predicting models and quality of datasets that are 
required to train such models. Such datasets can include step- 
by-step demonstrations for completing surgical procedures from 
various medical specialities.

This work introduces the AI-Medic, an AI system for autono
mous medical mentoring. The system uses a Deep Learning (DL) 
model to predict medical instructions from images of surgical 
procedures. The model was training using the Dataset for AI 
Surgical Instruction (DAISI; https://engineering.purdue.edu/star 
proj/_daisi), a dataset that includes images and instructions pro
viding step-by-step demonstrations of surgical procedures. DAISI 

includes images and text descriptions of procedures from 20 
medical disciplines. Each image-text pair describes the surgical 
manoeuvres or required instruments to complete one step in the 
procedure. Thedataset was created based on feedback from 20 
expert physicians from various medical centres, extracting data 
from academic medical textbooks related to the surgical techni
que, and acquiring imagery manually. Such a dataset addresses the 
shortage of datasets for autonomous medical mentoring. Figure 1 
showcases images from four procedures in DAISI.

Our AI-Medic uses the DAISI dataset to train an encoder- 
decoder DL architecture capable of predicting instructions given 
the current view of a surgery. The model takes images of medical 
procedures as input, and outputs text descriptions with the 
instructions to perform next by a surgeon. The encoder-decoder 
approach uses a ConvNet as the encoder network, and a Recursive 
Neural Network (RNN) as the decored network. The ConvNet 
extracts and encodes visual features from the input images, and 
the RNN decodes these visual features into text descriptions. The 
instructions predicted by the AI-Medic were evaluated using 
Bilingual Evaluation Understudy (BLEU) scores (Papineni et al. 
2002) and subjective input from expert physicians. The results 
presented in this work serve as a baseline for future AI algorithms 
that can be used as surrogate human mentors.

The paper proceeds as follows: Section 2 reviews approaches 
for medical autonomous guidance and related datasets. Section 3 
describes DAISI and how it was used to train the AI- 
Medic’s DL model. Section 4 presents and discusses the results 
obtained from evaluating the AI-Medic. Finally, Section 5 con
cludes the paper.
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2. Background

Telementoring systems can be used to deliver expert assistance 
remotely (Kotwal et al. 2016). Several studies demonstrate that 

such systems can provide surgeons with specialised assistance 
in austere settings when no expert is on-site (Sebajang et al. 
2005, 2006). However, telementoring platforms rely on remote 
specialists being available to assist, which often is not possible 

Figure 1. Example of five different images and their associated textual descriptions from four different procedures in the DAISI dataset. The dataset includes images 
from 20 disciplines such as emergency medicine, and ultrasound-guided diagnosis.
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(Geng et al. 2019). A possible approach to convey guidance 
when no mentor is available is by incorporating AI into tele
mentoring systems (de Araújo Novaes and Basu 2020). In this 
way, a virtual intelligent surrogate mentor can be activated to 
guide health practitioners when the mentor is not available.

AI algorithms have been previously explored as means to 
assist users during complex and time sensitive decision-making 
procedures (Cortés et al. 2007). In the healthcare domain, for 
example, AI has been typically used in the diagnosis and prog
nosis of diseases (Patel et al. 2020; Mishra and Banerjee 2020). 
Typically, the diagnosis is given via predictions of an AI model, 
trained using a dataset of medical records (e.g. radiology 
images, metabolic profiles). However, recent approaches have 
also incorporated AI into surgical instruction. The Virtual 
Operative Assistant is an example of an automated educational 
feedback platform (Mirchi et al. 2020). This platform was devel
oped to provide automated feedback to neurosurgeons per
forming a virtual reality brain tumour resection task. Other 
examples include AI to analyse surgical performance during 
virtual reality spine surgeries (Bissonnette et al. 2019), and 
integration with augmented reality to provide surgical naviga
tion during surgery (Auloge et al. 2019; Jha and MB 2019).

Our work follows an approach in which AI is used to train 
models capable of predicting medical image descriptions 
(Kisilev et al. 2016; Singh et al. 2019; Alsharid et al. 2019) 
Similar examples include the ImageCLEFcaption challenge, 
which focuses on using AI to obtain text descriptions from 
radiology images (Lyndon et al. 2017; Pelka et al. 2019; Xu 
et al. 2019). Likewise, IU X-RAY and PEIR GROSS are examples 
of public datasets for radiology image captioning (Jing et al. 
2017; Pavlopoulos et al. 2019). These algorithms, however, are 
trained to generate captions that describe the content of the 
images using techniques such as template-based image cap
tioning, retrieval-based image captioning, and novel caption 
generation (Hossain et al. 2019). Instead, our work generates 
captions representing instructions in a task by learning visual- 
semantic correspondences between images and instructions 
using an architecture similar to the one created by Karpathy 
and Fei-Fei (2015).

3. Methods

The methodology to create the AI-Medic includes: 1) the creation 
of a curated dataset of medical images and their respective step- 
by-step descriptions; and 2) the use of such a dataset to train 
a DL framework that generates medical instructions from images.

3.1. Creating a dataset for AI surgical instruction

The DAISI dataset contains 17,339 colour images and text 
descriptions of instructions to perform surgical procedures. 
DAISI contains one example for each of the 290 medical proce
dures from 20 medical disciplines including ultrasound-guided 
diagnosis, trauma and gynaecology. The image-text pairs from 
the dataset were compiled from: (a) medical images and 
instructions from the Thumbroll app (thumbroll LLC 2020), 
a medical training app designed by physicians from 
Washington University School of Medicine, Stanford Health 
Care; John Hopkins University, UCLA, and University of 

Southern California. Overall, we acquired 17,138 images with 
descriptions from various medical specialities (e.g. General 
Surgery, Internal Medicine), levels of medical training (e.g. clin
ical Medical Doctor trainee, senior Resident), and medical occu
pations (e.g. occupational therapy, osteopathic medicine). (b) 
Afterwards, we extracted 125 images and captions from anat
omy textbooks using PDFFigCapX (Li et al. 2019); (c) Lastly, we 
used a patient simulator (Tactical Casualty Care Simulator 1, 
Operative Experience) to acquire an additional set of 76 images 
from procedures as chest needle decompression and intraoss
eous needle placement. The dataset has 1086 duplicate instruc
tions (i.e. the same instruction from more than one image), 
which represent approximately 6% of the instructions in the 
dataset. Additionally, no restriction was imposed regarding the 
length of the text descriptions.

3.2. Training an intelligent agent for autonomous 
mentoring

We used DAISI to train a DL model for autonomous mentoring. 
The algorithm receives images from medical procedures as 
input, and predicts an instruction associated with it. To gener
ate text information from images, an encoder-decoder DL 
approach using a ConvNet and a Recursive Neural Network 
(RNN) was adopted. The ConvNet extracts and encodes visual 
features from the input images, and the RNN decodes these 
visual features into text descriptions (see Figure 2).

Captioning techniques require a 1 vocabulary containing 
the words appearing in the dataset at least N times (defined 
by the Word Count parameter). This constrains the words used 
to generate the instruction to a fix set. A token character (UNK) 
replaced all words in the training set that appeared fewer times 
than the specified Word Count value. Our encoder-decoder 
architecture is based on NeuralTalk2 (Karpathy and Fei-Fei 
2015). We use the VGG16 model as the encoder network 
(Simonyan and Zisserman 2014). This model includes 13 con
volutional layers with 5 pooling layers in-between. The convo
lutional layers use 3 × 3 convolutional filters to locate interest 
features in the images, and the pooling layers reduce these 
features’ dimensionality. All hidden layers are equipped with 
Rectified Linear Units (ReLU). We performed cross validation 
using the Adam adaptive learning rate optimisation to find 
individual learning rates for each parameter in the ConvNet 
(Kingma and Ba 2014). Finally, 4 fully connected layers are used 
to describe each image with a 1000-dimensional latent vector 
representation. We then use a Bidirectional Recurrent Neural 
Network (BRNN) as the decoder network to generate the text 
instructions (Schuster and Paliwal 1997). The BRNN predicts 
instructions not only by receiving the ConvNet’s final latent 
vector, but also by leveraging context around the word. This 
context is determined via forward and backward hidden states 
(hf

t and hb
t , respectively) at each index t (t ¼ 1 T), which denotes 

the position of a word in a sentence. Therefore, the BRNN 
predicts semantically correct sentences based on the 
ConvNet’s latent vector and the current word’s context. This 
step is necessary to create semantically coherent sentences 
rather than disconnected words describing different aspects 
of the image. The BRNN’s 1 formulation follows: 
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cv ¼ Whi½ConvNetθðImgÞ� (1) 

hf
t ¼ ReLUðWhxxt þWhf hf

t� 1 þ bf þ 1ðiter ¼ 1Þ � bvÞ (2) 

hb
t ¼ ReLUðWhxxt þWhbhb

tþ1 þ bb þ 1ðiter ¼ 1Þ � bvÞ (3) 

yt ¼ SoftmaxðWhoðhf
t þ hb

t Þ þ boÞ (4) 

Where, Whi, Whx , Whf , Whb, Who; bf , bb, and bo are the parameters 
and biases to be learned by the model. ConvNetθðImgÞ is the 
ConvNet’s final latent vector of the image Img. Thus, the image 
context vector cv provides the BRNN with information from the 
input image. This context vector cv is provided only during the 
first iteration (iter ¼ 1), as suggested by Karpathy and Fei-Fei 
(2015). The xt and yt vectors contain probabilities of each word 
in the vocabulary to be the word at the index t. The output 
vector yt is used as xtþ1 in the next iteration. In the first iteration, 
the output vector yt depends only on the context vector cv , as 
xt takes a special initialisation value (START) and hf

t and hb
t are 

initialised to 0. This formulation allows the model to predict 
more than one candidate instruction per image. The probability 
of each candidate being the correct instruction decreases for 
each additional prediction.

3.3. Evaluating the artificial intelligent mentor

We evaluate our AI-Medick and provide a benchmark for 
future AI surgical mentors. We validated our approach using 
four test folds. For each of these folds, we randomly divided 
the 290 procedures into training and testing sets based on 
their number of images: approximately 10% of the images 
of the entire dataset were separated to be used as test set. 
Additionally, we conducted Inter-procedure and Intra- 
procedure evaluations. For the Inter-procedure setting, the 
model had no prior information regarding the procedures 
in the test set. For the Intra-procedure setting, a fraction of 
the images P in the same procedure were assigned to the 
training set, while the rest remained in the test set. The test 
set consisted of every 1

P images from each procedure. In our 
case, P was set to 0.5. While the Intra-procedure setting 
reduced generalisability among procedures, it enhanced 

performance for procedures in the test set. Table 1 presents 
the distribution of image-text pairs into training and test 
sets, as well as the size of resulting vocabulary for each fold. 
Finally, we evaluated our AI mentor using three combina
tions of the Word Count parameter: 3, 5, and 7. Table 2 
showcases the size of the vocabulary constructed for each 
fold, for the respective Word Count value.

To evaluate the AI-Medic’s performance, the BLEU metric 
was computed between the predicted and the ground truth 
instructions. This is a state-of-the-art metric to evaluate text 
production models related to image captioning and 
machine translation (Papineni et al. 2002). BLEU computes 
a 1-to-100 similarity score by comparing two sentences (s1 

and s2, candidate and reference respectively) at the word 
n-gram level, i.e. analysing contiguous sequences of n words 
in a text. For instance, s1 and s2 will have perfect BLEU 
1-gram score if all the words from s1 appear in s2. 
Similarly, they will have a perfect BLEU 2-gram score if all 
possible combinations of two words from s1 appear in s2. 
Contrarily, the BLEU score between s1 and s2 will decrease 
for each n-gram that is in s2 but is not in s1. We report 
cumulative BLEU scores for 1-grams to 4-grams for the 
model’s top five candidate predictions, as they have 
reported correlations with human judgements (Ward and 
Reeder 2002).

Figure 2. Schematic of our encoder-decoder architecture. The ConvNet obtains vectors representing input images. These vectors are then used in the training of 
a BRNN that learns to predict surgical instructions. The VGG16 schematic was generated via LeNail’s NN-SVG (2019).

Table 1. Distribution of image-text pairs into training and test sets per testing 
fold and testing approach (inter-procedure and intra-procedure).

Number of images

Inter-procedure Intra-procedure

Fold Number Training Testing Training Testing

F1 13,232 1354 13,909 677
F2 13,302 1284 13,944 642
F3 13,256 1330 13,921 665
F4 13,284 1302 13,935 651

Table 2. Vocabulary size for three different word count values.

Fold Number 3 5 7

F1 2217 2214 2208
F2 2231 2226 2219
F3 2215 2213 2209
F4 2219 2211 2207
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Finally, expert emergency physicians evaluated the algo
rithm’s performance subjectively. The experts were selected 
randomly from a pool of emergency physicians working in an 
army medical centre (Madigan Army Medical Center). We ran
domly selected 16 images from emergency medicine proce
dures in the test set and their predicted instructions (e.g. Chest 
Tube Placement, Cardiopulmonary Resuscitation). Afterwards, 
we used a survey to rate how related was each image to its 
predicted instruction. Each question in the survey included an 
image from a medical procedure, the name of the procedure; 
the instruction predicted by the AI-Medic, and five options 
rating the relation between the predicted description and the 
image. The physicians ranked this relation using a normalised 
scale: ‘Very Related’ = 1, ‘Related’ = 0.75, ‘Somewhat 
Related’ = 0.5; ‘Not Related’ = 0.25, and ‘Impossible to 
Tell’ = 0. In addition, the physicians were asked to provide 
their own instructions for the steps depicted in the images. 
This was done to analyse how consistent the physicians were 
on describing the step to perform.

4. Results & discussion

Figure 3 shows the resulting instructions predicted by the AI- 
Medic. The predicted instruction is written inside the images, 
whereas the ground truth instruction is written below. The 
predicted instructions were semantically correct because of 
the relations between images and captions created in the net
work’s embedding space.

Figure 4 reports the cumulative BLEU scores for Inter- 
procedure and Intra-procedure testing. The captions predicted 
by our model obtained up to 86� 1% 1-gram and 36� 1% 
4-gram BLEU scores. Our results surpassed those reported in 
state-of-the-art approaches for medical instructions prediction 
(Lyndon et al. 2017). Overall, the BLEU scores were slightly 
lower for lower Word Count values. A potential reason is that 
an increased-size vocabulary reduced the chances of learning 
meaningful relations between the images and the text descrip
tions. Our algorithm tackles a challenging problem due to the 
interclass variance among different medical procedures, which 

Figure 3. Examples of instructions predicted by the AI-Medic. The predicted instruction is in white font, inside the images. The ground truth (GT) instruction is written 
below. The approach calculates the BLEU scores after removing special characters (e.g. punctuation marks). High and average scores are highlighted in green and 
yellow, respectively.
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in turns has an impact the prediction capability of the network. 
As a reference value, the BLEU 1-gram score when comparing 
the ground truth instructions with descriptions constructed 
using random words from the vocabulary is less than 0.1%. 
Therefore, our results show an improvement over random 
guess.

Five expert physicians completed our subjective evalua
tion, for a total 80 responses. The physicians reported having 
11:2� 3:3 years of medical expertise. On average, the physi
cians considered the predicted instructions to be ‘Somewhat 
Related’ to the medical images (0:51� 0:32). While this is an 

encouraging result, a drastic improvement is still required for 
useful AI mentoring for surgery. Their evaluations followed 
three main trends. The first trend are descriptions considered 
as correct predictions: they were similar to the ground truth 
and physicians considered them as adequate guidance (e.g. 
Figure 5, examples 1, 2, and 3). The second trend were 
descriptions that were not similar to the ground truth, but 
were consider as adequate guidance by the physicians. These 
descriptions included key elements from the image (e.g. 
gauze in Figure 5 example 4), but did not use the phrasing 
of the ground truth. The third trend comprehends 

Figure 4. Cumulative n-gram BLEU scores. Our model was evaluated using three word count values (3, 5, 7) and two testing approaches (Inter-procedure, Intra- 
procedure). The model obtained up to 86� 1% 1-gram, and up to 36� 1% 4-gram BLEU scores.

Figure 5. Subjective evaluation by physicians of the instructions predicted by the AI-Medic. High, average, and low scores are highlighted in green, yellow and red font, 
respectively.
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descriptions considered as incorrect predictions (e.g. Figure 5, 
examples 5 and 6).

Nonetheless, similar discrepancies were found when analys
ing the instructions provided by the expert physicians. For 
instance, once physician provided the same instruction as the 
one predicted by the AI-Medic in Figure 5 example 4 (‘Apply 
gauze dressing’). Other physician, however, described this step 
as ‘Place kerlex under the wrist to place it in a hyper extended 
position’. Both these instructions, however, were different from 
the image’s ground truth (‘Support patient’s wrist with rolled-up 
gauze or towel for improved wrist extension’). Nevertheless, it 
could be argued that they convey a similar instruction at dif
ferent levels of detail. This exemplifies the challenge of obtain
ing a consistent instruction based on medical images. In fact, 
the average BLEU 1-gram score between the physicians’ 
instructions was of 0.41, which was lower than the scores 
obtained when comparing the AI-Medic’s predicted instruc
tions against the ground truth instructions. A possible 
approach to alleviate these discrepancies is to expand the 
number of ground truth instructions that describe each 
image. This would expand the number of correct alternatives 
and words used to describe each step in a procedure. Likewise, 
the approach to evaluate the predicted instructions could be 
modified from a word-by-word metric (BLEU) to a metric that 
analyzes the semantic content of the instructions. For instance, 
Natural Language Processing approaches such as Word Mover’s 
Distance (Kusner et al. 2015), Smooth Inverse Frequency (Arora 
et al. 2016), or pre-trained encoders like Google’s Sentence 
Encoder (Cer et al. 2018) could be used to compare the instruc
tions. In doing so, the model would learn to compare the 
predicted instructions taking their underlying meaning into 
consideration.

The relatively low BLEU scores are a limitation of our 
approach that can be attributed to the complexity of the task. 
For instance, variations in the medical images provided to the 
neural network will have an effect in the inferences made by 
the model. Elaborating, the ConvNet would make wrong pre
dictions if the attending surgeon wore blue gloves instead of 
green or white gloves, as such an image was never seen by the 
ConvNet during its training process. Other factors include the 
position of camera, lighting conditions, and the instruments 
used to complete the procedure (e.g. scalpel instead of scis
sors). All these factors can play a major role in the inferences 
made by the network, as they would lead to significantly dis
tinct images even within same steps of a procedure. Wrong 
predictions at this stage could mean that the local mentee 
could receive insufficient or incorrect mentoring, which subse
quently could impact the patient’s health and safety. A possible 
countermeasure for this is expanding the dataset by adding 
more repetitions per procedure. Such images should include 
variations in orientation, illumination, type of instrument used, 
etc. While our Intra-procedure testing approach alleviates this 
limitation, more repetitions can improve the prediction results 
significantly. Additionally, techniques to generate synthetic 
data (i.e. generated by a machine learning model) can be 
used to increase the size of the dataset. For example, 
a Generative Adversarial Neural network (Frid-Adar et al. 
2018) could be trained to create new images and descriptions 
based on the original data. Overall, these data augmentations 

techniques could lead to improving the model’s accuracy, 
which could potentially lead to better mentoring and patient 
outcomes.

The results of these experiments provide subjective and 
objective evaluation data for the proposed AI mentoring system. 
Such algorithms and AI based techniques will enable to study 
new results, such as assessment of the duration of sustained 
clinical knowledge, the ability to correctly assess the patient 
condition, the respective treatment through subjective inter- 
rate reliability indices, and objective performance metrics (e.g. 
number of errors). By introducing cognitive systems, AI, spatially- 
augmented reality and physical interaction into the Operating 
Room (OR), the proposed research holds the promise to reduce 
morbidity risks due to lack of subspeciality surgical expertise, and 
to correct clinical judgement and readiness level. Moreover, we 
anticipate that our framework can be integrated into telemen
toring systems that support medical training and skills, especially 
in rural areas, which face significant challenges in securing sub
specialist care. The proposed research brings a drastic change in 
telementoring through the ability of creating a surrogate AI 
mentor to assist mentees in a rural area, a forward operating 
base, or community clinics. We foresee these datasets and algo
rithms playing a key role in enhancing medical training which, in 
turn, will improve both initial and sustained medical perfor
mance. As such, we expect these datasets and benchmark be 
applicable to the whole medical continuum, producing 
a significant improvement on all stages of medical care. There 
are, however, several ethical aspects that need to be address 
before the implementation of such an AI platform into a fully 
commercial product. For instance, FDA approval needs to be 
acquired before its integration into surgical curricula of the 
United States. For this, the legal implications of such a platform 
need to be defined and addressed. This includes, but is not 
limited, defining who should be responsible in case of 
a medical malpraxis when using the platform in live patients.

Additional future work includes comparing of our approach 
against existing methods for AI medical instruction. This is 
a challenging task since there are currently no available bench
mark datasets. The DAISI dataset, in fact, addresses this shortage 
of datasets for autonomous medical mentoring by including 
step-by-step demonstrations of surgical procedures from var
ious medical specialities. Nonetheless, a possible approach is to 
compare our approach against datasets comprised of only radi
ology images (Jing et al. 2017; Pelka et al. 2019; Pavlopoulos 
et al. 2019). To do this, a subset of the DAISI dataset comprised 
of only radiology images should be constructed. However, these 
datasets are used to train algorithms that describe the content 
of the images. Instead, our approach generates instructions by 
learning visual-semantic correspondences between images and 
instructions. Therefore, a comparison against such datasets 
would require the input of expert radiologists to either convert 
the instructions of our dataset into descriptions, or convert the 
descriptions of other datasets into instructions. Finally, the 
approach can be further improved by including a visual atten
tion framework into the model, such as the one in Xu et al. 
(2015). Visual attention would allow to visualise how the model 
focuses its attention over different regions of the input images. 
This visualisation could be conveyed via augmented reality, 
superimposing the regions of interest as a saliency map over 
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the view of the operating field. Such visualisations could provide 
mentees with details on what areas of the operating field are 
relevant for each step in the procedures.

5. Conclusion

This work presented initial steps towards the development of 
the AI-Medic, an intelligent artificial system for autonomous 
medical mentoring. The system uses an encoder-decoder 
neural network to predict surgical instructions given the cur
rent view of a surgery. The AI-Medic was trained using DAISI, 
a dataset to train AI algorithms that can act as surrogate 
surgical mentors. The dataset includes 17,339 colour images 
and captions that provide step-by-step demonstrations for 
performing surgical procedures from 20 medical disciplines. 
To assess our system, the instructions predicted by the the AI- 
Medic were evaluated using cumulative BLEU scores and input 
from expert physicians. According to the BLEU scores, the pre
dicted and ground truth instructions were as high as 86� 1% 
similar. Moreover, expert physicians considered that randomly 
selected images and their predicted descriptions were related. 
The results from this work serve as a baseline for future AI 
algorithms assisting in autonomous medical mentoring.
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