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Abstract
This work presents a gesture-based approach to estimate task understanding and performance during remote ultrasound 
tasks. Our approach is comprised of two main components. The first component uses the Multi-Agent Gestural Instruc-
tion Comparer (MAGIC) framework to represent and compare the gestures performed by collaborators. Through MAGIC, 
gestures can be compared based in their morphology, semantics, and pragmatics. The second component computes the 
Physical Instructions Assimilation (PIA) metric, a score representing how well are gestures being used to communicate and 
execute physical instructions. To evaluate our hypothesis, 20 participants performed a remote ultrasound task consisting of 
three subtasks: vessel detection, blood extraction, and foreign body detection. MAGIC’s gesture comparison approaches 
were compared against two other approaches based on how well they replicated human-annotated gestures matchings. Our 
approach outperformed the others, agreeing with the human baseline over 76% of the times. Subsequently, a correlation 
analysis was performed to compare PIA’s task understanding insights with those of three other metrics: error rate, idle time 
rate, and task completion percentage. Significant correlations ( p ≤ 0.04 ) were found between PIA and all the other metrics, 
positioning PIA as an effective metric for task understanding estimation. Finally, post-experiment questionnaires were used to 
subjectively evaluate the participants’ perceived understanding. The PIA score was found to be significantly correlated with 
the participants’ overall task understanding ( p ≤ 0.05 ), hinting to the relation between the assimilation of physical instruc-
tions and self-perceived understanding. These results demonstrate that gestures an be used to estimate task understanding 
in remote ultrasound tasks, which can improve how these tasks are performed and assessed.
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1  Introduction

The correct use of ultrasound technologies is crucial in the 
diagnosis of various pathologies. As these technologies 
became more portable and prevalent, their applications have 
been extended to areas such as triage and Point-of-Injury 
care [43]. For instance, portable ultrasound devices have 
been critical to provide medical assistance in the battlefield 
[44], disaster triage for mass casualty events [60], and drug 
delivery procedures [41].

Nonetheless, there is a bottleneck in the way ultrasound 
tasks are assessed. These assessments are often performed 
by experienced medics via clinical examinations, or via self-
assessment questionnaires [55, 59]. Such approaches, how-
ever, are subjective, are limited by the experts’ availability, 
and can become challenging to perform remotely [39]. To 
develop more reliable assessment mechanisms, research has 
been focused on generating objective metrics via neural net-
works and cognitive load measurements [2, 36]. In this con-
text, gestures can be an important avenue to explore. Ges-
tures have been found to be key components of how humans 
interact, collaborate, and communicate [23, 46]. Particularly 
for collaborative tasks, the information encompassed in ges-
tures can reveal important insights of how the tasks are being 
performed and understood [30].

This work explores whether gestures can be used as esti-
mators of task understanding and performance during remote 
ultrasound tasks. We present a methodology comprised by 
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two main components. The first component uses the Multi-
Agent Gestural Instruction Comparer (MAGIC) framework 
to represent and compare the gestures performed by the col-
laborators [48]. Through MAGIC, gestures can be compared 
based on their morphology, semantics, and pragmatics. 
The second component computes the Physical Instructions 
Assimilation (PIA) metric, a score representing how well 
are gestures being used to communicate and execute physi-
cal instructions [49]. By using these two components, an 
objective estimation of task understanding during remote 
ultrasound tasks can be obtained.

The contributions of this work include (1) developing 
a gesture-based approach to estimate task understanding; 
(2) comparing our MAGIC approach against other gesture 
assessment methods in the context of remote tasks; (3) com-
paring our gesture-based approach to objective and subjec-
tive estimators of task understanding; and (4) evaluating our 
gesture-based task understanding estimation approach in a 
remote ultrasound task.

The paper proceeds as follows: Sect. 2 presents prior work 
related to ultrasound tasks and the importance of gestures in 
collaboration. Section 3 discusses the MAGIC framework 
and the PIA metric. Section 4 describes the remote ultra-
sound task, details our data collection, and explains the anal-
yses used to evaluate our approach. Finally, Sect. 5 presents 
and discusses our results, and Sect. 6 concludes the paper.

2 � Previous work

Remote ultrasound technologies have been widely adopted 
through various medical disciplines such as cardiac and pul-
monary Point-of-Injury care [17], Apnea and Pneumothorax 
treatment [39], and Focused Assessed Transthoracic Echo 
of the heart and pleural space [57]. This widespread adop-
tion has to do, in part, with the development of portable, 
prevalent, and easy-to-use ultrasound platforms [43]. Studies 
have shown that novices carried out ultrasound examinations 
successfully when guided by a remote expert [17, 57]. This 
positions ultrasound technologies as a crucial component in 
the diagnosis of various pathologies.

Clinical examinations from expert medics are commonly 
used to assess performance of ultrasound tasks. The experts 
evaluate performance based on their own criteria or pre-
defined checklists [1, 35, 55]. Self-assessment questionnaires 
are also used to evaluate ultrasound skills of novice medics 
[59]. While widely spread, both approaches are prone to 
subjective biases and are limited by the experts’ availability. 
Therefore, research has been focused on creating objective 
assessments of ultrasound tasks. These include kinematic 
representations of the participants’ performances, obtained 
via neural networks [36], and cognitive load measures such 
as eye-based physiological indices [2].

This work explores whether gestures can also be used to 
assess ultrasound tasks objectively. Gestures are key com-
ponents of how humans interact, collaborate, and commu-
nicate. Gestures can help generating novel problem-solving 
strategies [7], facilitate learning [12], and offload working 
memory [50]. Moreover, people tend to gesture as they per-
form a shared physical task [21]. In such cases, gestures are 
not only used to solve the task (e.g., assembling parts), but 
as means of inquire or instruction (e.g., requesting clarifica-
tion) [23]. Additionally, research has shown that gestures can 
facilitate the exchange of ideas and intentions during team-
work, leading to better task performance [3]. Gestures are 
so relevant in collaboration that systems to convey gestures 
remotely have been explored to support better distributed 
collaborative environments [29–31].

Despite studies on gestures’ importance for task perfor-
mance and understanding, gestures have not been explored as 
means to quantitatively assess task understanding. Instead, 
task understanding is usually assessed via objective metrics 
such as task completion percentage, task completion time, 
and number of errors [6, 22, 28, 32], or subjective techniques 
such questionnaires and interviews [58]. While these met-
rics can be effective to estimate understanding, they do not 
consider the information encompassed in the collaborators’ 
gestures. Since gestures are so relevant for collaboration [23, 
34, 46], ignoring them can lead to incomplete estimations 
of understanding.

3 � Methodology

This work presents our methodology to use gestures as esti-
mators of performance and understanding during remote 
ultrasound tasks. Our methodology is divided into two 
main subsections. The first subsection presents an explana-
tion of the MAGIC framework. MAGIC abstracts gestures 
into data structures representing the gesture’s morphology, 
semantics, and pragmatics. Such data structures are later 
leveraged to compare the gestures. The second subsection 
introduces the PIA metric, a score representing how well are 
instructions being received and executed by collaborators. 
The creation of this framework relates back to our first con-
tribution: developing a gesture-based approach to estimate 
task understanding.

3.1 � Multi‑agent gestural instruction comparer

The MAGIC framework represents and obtains similarity 
metrics between gestures [47, 48]. The framework’s goal 
is to abstract and compare gestures using a representation 
that considers aspects such as the gestures’ shape, move-
ment, meaning, and context. To do this, MAGIC starts by 



Pattern Analysis and Applications	

1 3

formally defining the elements involved in the collaborative 
task, summarized in Table 1. Figure 1 presents a schematic 
of the MAGIC framework.

MAGIC uses a three-stage process to obtain the Inter-
pretation Trees �  from the Utterances � and the Context 
� . The first stage uses a gestural taxonomy to generate 
labels describing aspects of the gestures such as iconicity 

and expressiveness (Fig. 1, section 2). These labels are 
used as extra information for subsequent stages. The 
second section uses a dynamic semantics framework to 
represent each Utterance � with a logical form. These 
logical forms provide an abstraction of the gestures’ mor-
phology, semantics, and pragmatics in a single structure 
(Fig. 1, section 3). Afterward, the third section leverages a 

Fig. 1   Schematic of the MAGIC framework. (1) Using speech and 
gestures, two individuals collaborate to complete a shared ultrasound 
task. MAGIC gives a formal definition to the elements involved in 
the collaborative task (e.g., Utterance � , Context � ). (2) A taxon-
omy classification describes aspects of the gesture utterances such 
as iconicity and expressiveness. (3) A dynamic semantics framework 
represents each gesture utterance with a logical form containing the 

gestures’ morphology, semantics, and pragmatics. (4) A constituency 
parsing represents each logical form as a tree data structure (Interpre-
tation Tree �  ). (5) Gestures are matched based on how similar they 
are. This similarity can be computed based on the time the gestures 
were performed, or by comparing the Interpretation Trees �  repre-
senting the gestures

Table 1   Elements and notation of the MAGIC framework

MAGIC element Definition Example

Worker �W Collaborator directly manipulating the environment to 
perform a task

A person executing actions

Helper �H Collaborator communicating the commands required to 
perform a task

A person instructing what actions to perform

Instructions AH Action communicating how to perform a task A verbal command saying “Take the probe,” accompanied 
by a gesture pointing at a probe

Executions AW Action performed to complete a task A gesture performed to reach for the probe
Utterance � The smallest unit of speech or gesture that communicates a 

complete idea
A gesture to pinpoint a probe; a verbal command saying 

“Stop!”
Interpretation Tree � MAGIC’s data structure representing Utterances � See Fig. 1, Sect. 4
Context � Elements and concepts introduced in the current Utterance 

�i , which can be referenced by future Utterances �i+j

Let “Take the probe” and “Use the probe to find the ves-
sel” be the first and second Utterances ( �

1
 and �

2
 ). The 

Context � of �
2
 would include all the elements introduced 

in �
1
 , such as the “Probe” concept.
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constituency parsing approach to convert the logical forms 
into tree data structures (the Interpretation Trees �  ; Fig. 1, 
section 4). These Interpretation Trees �  are constructed to 
quantitatively compare the logical forms from the previ-
ous stage.

This three-stage process will be applied to all the ges-
tures, generating an Interpretation Tree �  for each of them. 
These Interpretation Trees �  group similar aspects of the 
gestures together. For instance, all the aspects related to 
the gesture’s shape are going to be contained in the Shape 
Subtree, while aspects related to the gesture’s context are 
contained in the Context Subtree. This allows to inspect 
and compare specific aspects of the gestures in isolation. 
A description of the subtrees that can be obtained is found 
in [47].

3.2 � Gesture matching through integer optimization

The final stage of the MAGIC framework involves compar-
ing the gestures by calculating gesture similarity (Fig. 1, 
section 5). These gesture matchings reveal which gestures 
were similar between them and will be used in the subse-
quent PIA calculation.

These gesture matching processes are performed by 
solving three integer optimization formulations: MAGIC-
based, Time-based, and Hybrid [48]. First, let wi be a 
Worker-authored gesture, and hj be a Helper-authored 
gesture. Then, let W  be a set containing all the Worker-
authored gestures wi , and H be a set containing all the 
Helper-authored gestures hj . Subsequently, let a gesture 
matching solution be represented with a matrix E of edge 
weights eij (size |W| × |H| ). Each edge weight eij will take 
a value of 1 if the Helper-authored gesture hj matches (i.e., 
is the most functionally equivalent) to the Worker-authored 
wi , and 0 otherwise. Therefore, the goal of the gesture 
matching stage is to find the gesture matching matrices E 
that maximize (or minimize, for the Time-based) the cost 
function of the optimization problems.

To calculate the gesture matching matrices E , three cost 
coefficient matrices (size |W| × |H| ) need to be obtained: 
a matrix B of similarity scores bij for the MAGIC-based 
approach, a matrix C of temporal scores cij for the Time-
based approach, and a matrix D of hybrid scores dij for 
the hybrid approach. The calculation of these matrices is 
explained in the next subsections.

Once the cost coefficient matrices are obtained, the ges-
ture matching matrices E can be found by solving Eq. 1 
(for the Time-based approach, it changes to a minimiza-
tion problem). The scores aij represent either the similar-
ity scores bij , the temporal scores cij , or the hybrid scores 
dij , depending on the selected approach. This formulation 

is constrained to each Worker-authored gesture wi being 
matched to only one Helper-authored gesture hj.

3.2.1 � MAGIC‑based optimization

The MAGIC-based approach computes similarity from the 
Interpretation Trees �  . The goal is to generate matrices B of 
similarity scores bij describing how similar is each Worker 
Interpretation Tree �W to each Helper Interpretation Tree �H . 
Each similarity score bij is computed as the number of nodes in 
the intersection between two � Interpretation Trees or subtrees 
representing different gestures, as described in Eq. 2:

3.2.2 � Time‑based optimization

The Time-based approach explores the relevance of time when 
comparing gestures: Gestures performed closer in time are 
likely to be related. The time in which gestures were performed 
is stored in two vectors: �W and �H , respectively, for Worker �W 
and the Helper �H . The vectors are then expanded into matrix 
form by multiplying them by vectors of ones (size |H| × 1 and 
|W| × 1 , respectively). Finally, matrices C of temporal scores 
cij are computed with Eq. 3:

3.2.3 � Hybrid optimization

The Hybrid optimization approach combines the previous 
approaches to consider both gesture similarity and tempo-
ral synchrony. The approach computes matrices D of hybrid 
scores dij from the previous B and C matrices. These hybrid 
scores dij are calculated by regulating the effect of the simi-
larity scores bij and temporal scores cij , as depicted in Eq. 4. 
The constants � , � , and � , respectively, control importance of 
the temporal scores cij , when does the function activate, and 
importance of the similarity scores bij.

(1)

maximize

|H|∑

j=1

|W|∑

i=1

aijeij

subject to

|H|∑

j=1

eij = 1,∀i

eij ∈ {0, 1}

i = 1, 2,… , |W|; j = 1, 2,… , |H|

(2)bij =
(
num_nodes�hj

∩ �wi

)
;
i = 1, 2,… , |W|
j = 1, 2,… , |H|

(3)C = �W�
T − � �

T
H
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3.3 � Physical instructions assimilation metric

The PIA score estimates task understanding from how well 
are physical instructions being assimilated (i.e., given, 
understood, and executed). This perspective is currently 
not encompassed by other task understanding estimators. 
PIA draws inspiration from two theories that describe how 
individuals understand each other by observing each oth-
er’s actions and gestures [10, 11, 34, 51, 54]. The approach 
assumes that correct understanding of a Helper �H gestural 
instruction happens whenever the Worker �W executes the 
instruction without errors or asking for clarifications.

PIA represents perfect understanding of a task with a 
score of 100, which happens when every hj Helper-authored 
gesture is matched to one and only one wi Worker-authored 
gesture. A PIA score less than a 100 means that either mul-
tiple Worker-authored gestures wi matched to the same 
Helper-authored gesture hj , or at least one Helper-authored 
gesture hj not getting matched. As depicted in Eq. 5, the PIA 
metric is calculated based on the gesture matching matrix E 
from the previous step. More details of the PIA formulation 
can be found in [49].

4 � Experimental apparatus

This section describes the setup to validate our gesture-
based approach to assess understanding on a remote ultra-
sound task. First, we illustrate our ultrasound task. Then, 
we describe our data collection process, which analyzes: 
(1) whether our gesture matching approaches could rep-
resent human-annotated gesture matchings; and (2) 
whether the PIA metric is a valid approach to estimate task 
understanding.

4.1 � Remote ultrasound task

Our experimental apparatus relates back to our fourth contri-
bution: evaluating our gesture-based task understanding esti-
mation approach in a remote ultrasound task. Following [4], 
we created an ultrasound phantom with seven vessels using 

(4)
dij=

�
−e−�cij

−e−�cij − �

�−e−�cij − ��
− e−�cij

�
+�

bij

�H�∑
j=1

bij

(5)PIA =
1

|H|

|H|∑

j=1

(|W|∑

i=1

eij

)−1

ballistic gel. The vessels were filled with colored water. Sub-
sequently, the ultrasound phantom was coated with a mixture 
of silicone and paint that emulated skin and hid the location 
of the vessels from plain sight. Afterward, toothpicks were 
inserted into the models to simulate a wooden splinter. The 
dimensions of the resulting foreign body were 6cm length 
× 1.5 cm width × 1.5 mm height. This model, along with 
an ultrasound probe (Telemed MicrUs MC10-5R10S), was 
used by our participants to complete three common tasks in 
ultrasound training curricula.

The first task involved finding vessels, similar to [4]. 
Participants were given 10 min to find vessels in the ultra-
sound phantom using the ultrasound probe. The second task 
involved using a syringe to extract water from the vessels, 
as in [56]. Participants used the ultrasound probe to relocate 
the vessels they found in the previous task. Then, guided by 
the ultrasound image, participants had to insert the syringe 
inside the vessels to extract water from them. Participants 
were also given 10 min to complete this task. The third task 
involved identifying the position, shape, and orientation of 

Fig. 2   Ultrasound task. Our ultrasound simulator is shown in (a). The 
created ultrasound phantom is shown in (b). The vessels as seen in the 
ultrasound are shown in (c). The process of extracting blood is shown 
in (d). The foreign body as seen in the ultrasound is shown in (e)
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the foreign body inside the ultrasound phantom, similar to 
[52]. As in the previous tasks, the participants had to use the 
ultrasound probe to locate the foreign body, which looked as 
a solid patch in the ultrasound image. Participants had 5 min 
to complete this task. Our ultrasound phantom and the tasks 
participants had to perform are showcased in Fig. 2.

4.2 � Data collection

4.2.1 � Participants

Three user studies were conducted with a total of twenty 
participants (graduate students, twelve males, and eight 
females, age mean 27.2 ± 5.3 years old). The participants 
were divided into 10 Helper–Worker pairs to collaboratively 
complete the ultrasound task.

4.2.2 � Procedure

First, our gesture comparison approach was evaluated. This 
evaluation relates back to our second contribution: compar-
ing our MAGIC approach against other gesture assessment 
methods in the context of remote tasks. We compared the 
gesture matching matrices E generated by our approaches 
against two gesture matching baselines: morpho-semantic 
descriptors (MSD) [37], and naïve time synchronization 
(NTS). The first baseline, MSD, used Boolean vectors to 
represent morpho-semantic aspects of the gestures (e.g., 
Does the gesture have leftward movement? Does the gesture 
refer to a specific part of the body?). Each gesture was there-
fore represented with a 48 × 1 vector, where each dimension 
in the vector represented a morpho-semantic description in 
[37]. The gesture matching matrices E were generated by 
comparing the MSD vectors via Hamming distance and 
cosine similarity.

The second baseline, NTS, compared gestures based on 
their temporal occurrence. A timestamp tk , in seconds, was 
assigned to each gesture, where 0 and 1 represented start and 
end of the video, respectively. Afterward, a time window 
before and after the execution of each Helper-authored ges-
ture hj was defined. The Worker-authored gestures wi were 
matched to the Helper-authored gestures hj based on which 
time window they were contained in. The margins of these 
time windows are calculated as tk+1−tk

2
 , where tk and tk+1 are 

the timestamps assigned to two consecutive Helper-authored 
gestures hj . This process was performed until all Worker-
authored gestures wi were contain inside a the time window 
of a Helper-authored gesture hj.

After obtaining these baselines, gesture matching ground 
truths needed to be created. To generate such ground truth, 
a member of the research team manually annotated which 
gestures matched each other. For instance, if the Helper �H 
made a gesture to indicate how to properly hold the probe, 

all the gestures performed by the Worker �W to fulfill 
this instruction were matched to that Helper �H gesture. 
Through this process, a matrix Ê of ground truth gesture 
matchings was created for each pair of participants.

All gesture matching matrices E were evaluated based 
on their percentage of agreement with the matrices Ê of 
human-annotated gestures matchings. This is done using 
Eq. 6, which is a variation in the F1-Score formula [24]. 
In Eq. 6, TP represent True Positives (i.e., Êij = Eij = 1), 
FN represent False Negatives (i.e., Êij = 1; Eij = 0); and FP 
represent False Positives (i.e., Êij = 0; Eij = 1).

Additionally, we inspected whether performing the com-
parisons against different subtrees within the Interpretation 
Trees �  affected the Matching Score. This explored whether 
specific aspects of the gestures (e.g., shape, meaning) were 
more relevant in the context of remote ultrasound tasks. 
Specifically, we inspected comparison against: (1) the sub-
tree representing the context (Context Subtree); (2) the sub-
tree representing whether the gesture exemplifies an object 
(Exemplify Subtree); (3) the subtree representing shape 
(Shape Subtree); (4) the subtree encompassing all aspects 
of the gesture excluding its context (Predicative Subtree); 
(5) the entire Interpretation Tree; and (6) the combination 
of subtrees representing meaning (Meaning Subtree). A 
detailed explanation of these subtrees can be found in [47].

Subsequently, our task understanding estimation approach 
was evaluated. This evaluation relates back to our third con-
tribution: comparing our gesture-based approach to objective 
and subjective estimators of task understanding. Our experi-
mental setup evaluated whether the quality of assimilation 
of physical instructions (in the form of our PIA metric) can 
estimate task understanding. This was evaluated by compar-
ing PIA against three other metrics for task understanding: 
error rate, idle time rate, and task completion percentage 
[28, 38]. Error rate was calculated as the rate between the 
instructions in which the Worker �W performed errors and 
the total number of instructions. An error was counted, for 
instance, when the Worker �W inserted the syringe in the 
wrong way. Idle time rate is defined as the rate between the 
time in which the Worker �W did not perform an action 
related to completing the task (e.g., the time spent thinking 
or asking questions), and the total task completion time, in 
seconds. Listening to the Helper �H instructions was not 
considered idle time.

The third metric, task completion percentage, represented 
how much of the entire task did the participants complete. 
This metric was calculated in two ways: (1) the rate between 
the number of vessels found and the total number of vessels 
in the ultrasound phantom (Vessel Detection Completion 
Percentage; VDCP); and (2) the rate between the number of 

(6)Matching Score =
2TP

2TP+FN+FP
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vessels from which blood was successfully extracted and the 
total number of vessels in the ultrasound phantom (Blood 
Extraction Completion Percentage; BECP). These three 
metrics were annotated by members of the research team 
for each pair of participants. Finally, the Pearson product 
moment correlation (r) was computed to inspect the relation-
ship between the metrics [45]. The PIA score was treated as 
the dependent variable, while the other metrics were treated 
as independent variables.

Finally, we compared PIA against human-reported 
understanding evaluations. Participants were given two 
post-experiment questionnaires to assess their performance. 
After compiling their answers, the Pearson product moment 
correlation (r) was computed to analyze the relation between 
the participants’ answers and their PIA. Correlations were 
calculated separately for both the Workers �W and the Help-
ers �H.

The first questionnaire was an Understanding Assessment 
Questionnaire (UAQ) consisting of eight Likert scale ques-
tions (5 = Strongly Agree to 1 = Strongly Disagree) evaluat-
ing the participants’ overall understanding during the task. 
Two out of these eight questions varied depending on the 
participant’s role (i.e., Helper �H or Worker �W ). The ques-
tions included: “I was able to understand the task” (UAQ1), 
“I was able to understand the verbal instructions given by 
the other person” (UAQ2); “I was able to understand the 
gestural instructions given by the other person” (UAQ3), “I 
was able to understand the actions performed by the other 
person” (UAQ4); “I was able to determine if the other person 
was understanding me” (UAQ7), and “I feel I could guide the 
task again with minimal to no challenge” (UAQ8). Questions 
5 and 6 differed with respect to the participant’s role. For 
the Helper �H role, UAQ5 was “I was able to understand 
the questions that were asked to me, if any,” and UAQ6 was 
“I was able to understand when mistakes happened along 
the task, if any.” For the Worker �W role, UAQ5 was “I was 
able to understand which part of the ultrasound phantom was 
the other person referring to,” and UAQ6 was “I was able to 
understand how to find the vessels.”

The second questionnaire was the National Aeronaut-
ics and Space Administration Task Load Index (NASA-
TLX) [27]. The NASA-TLX evaluates perceived workload 
using six criteria: mental demand (TLX1), physical demand 
(TLX2), temporal demand (TLX3), perceived performance 
(TLX4), effort required (TLX5), and generated frustration 
(TLX6). Each criterion is represented by a 21-level Likert 
Scale question. Higher TLX scores indicate higher task load.

4.2.3 � Apparatus

After signing a written consent form (IRB Protocol 
#1810021222), participants were randomly assigned to 
either the Worker �W or the Helper �H role. In this setup, 

the Helper �H had to remotely guide the Worker �W 
through the ultrasound task. The Helper �H was given an 
instruction booklet with the steps to perform the ultrasound 
task. The Worker �W was instead given the instruments 
to perform the task: the ultrasound probe, the ultrasound 
phantom, and a syringe. Afterward, they were directed to 
different rooms according to their role. Both rooms included 
color and depth cameras, and a large display connected to 
a computer hosting a video call with the other room. This 
video call allowed participants to interact via speech, hand 
gestures, facial expressions, etc.

Our data were comprised of color and depth video record-
ings, acquired as the participants performed the ultrasound 
task. From these recordings, we extracted the audio streams 
and skeletal information. The skeletal information was used 
to represent the shape and movement components of the 
gestures. The audio streams were used to provide the mean-
ing and context components of the gestures. All the gestures 
performed by the participants were compiled, for a total of 
1287 gestures (785 performed by the Helper �H , 502 per-
formed by the Worker �W ) acquired over the span of 7 h 
of video. These included gestures to provide instructions, 
to ask for clarification, to perform the task, and even those 
performed involuntarily. Each of these gestures was repre-
sented using an Interpretation Tree �  and was considered 
in the PIA calculation. Additionally and prior to starting the 
task, the Helper �H received 30 min of side-by-side training 
on how to use the ultrasound probe. The training showed 
how to perform the task and explained possible errors and 
their solutions.

5 � Results and discussion

The optimization problems were solved using IBM’s CPLX 
Optimizer from the NEOS Server [14, 16, 25]. Addition-
ally, the hybrid cost coefficients were calculated by setting 
the constants to � = 0.01, � = 1.01, and � = 2. Figure 3 
showcases the matching scores of the gesture matching 
approaches, using different subtrees to compare the gestures. 
Our results for the ultrasound task are congruent with those 
obtained in our previous work for a block assembly task 
and an origami task [48]: The hybrid approach led to higher 
matching scores.

Both gesture matching baselines (MSD and NTS) were 
outperformed by the MAGIC-based approach. However, our 
results fluctuated significantly based on which subtrees were 
selected to compare the gestures. This is a known limitation 
of the MAGIC-based approach: comparing between subtrees 
with unrelated information (e.g., comparing shape against 
meaning) has a negative impact in the matching scores. The 
highest matching scores were found when comparing the 
Context Subtree of the Worker Interpretation Trees �W 
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against the Meaning Subtree of the Helper Interpretation 
Trees �H . This result highlights the relevance of seman-
tics and pragmatics when comparing gestures. Contrarily, 
comparing only the gestures’ physical appearance led to low 
matching scores since the gestures performed by the Helper 
�H were visually distinct to those performed by the Worker 
�W.

The high scores obtained with Time-based comparison 
approach confirmed that gestures performed one after the 
other are likely to be related. However, such comparison 
should be performed giving higher importance to recently 
performed gestures, as opposed to the NTS approach 
where each gesture was given equal importance. None-
theless, both these approaches are limited to the temporal 
relations between gestures instead of comparing the ges-
tures comprehensively.

The Hybrid approach alleviates the limitations of the 
MAGIC-based: no a priori knowledge (i.e., which subtree 
to select) is required to compare the gestures. Matching 
scores over 76% for all comparisons demonstrated that 
the approach agreed with the human baseline without 
fluctuating based on the selected subtrees. Therefore, the 
Hybrid approach is a more stable option to compare ges-
tures. Overall, the results demonstrate that our approaches 
can represent and compare gestures performed in a remote 
ultrasound task. This addresses our second contribution: 
Our MAGIC approach outperformed other gesture assess-
ment methods for remote tasks.

The results obtained with the Time-based approach out-
performed those obtained with the Hybrid approach for most 
comparisons. This conflicts with the findings from our prior 
work [48] for the block assembly and the origami tasks. In 
such tasks, the Hybrid approach outperformed all the other 
approaches. Nonetheless, lower scores were expected for 
the ultrasound task. The ultrasound task was considerably 
more complex than the other two, as more gestures had to 
be performed to complete each of subtask. Moreover, the 
meaning and context of some of these gestures were very 

similar because the collaborators kept referring to the same 
instruction in different ways (e.g., explaining how to intro-
duce the syringe to extract water). This increased number 
of functionally similar gestures in reduced time spans led 
the Hybrid approach to underperform when compared to 
the Time-based one. However, the results in [48] confirm 
the importance of representing the gestures comprehensively 
instead of only relying on time.

Table 2 summarizes the results of the task understand-
ing estimation metrics, for each Helper–Worker pair (H–W 
Pair). Better understanding is hinted by higher PIA scores 
and task completion percentages, and lower error and idle 
time rates. Additionally, the Pearson correlation matrix 
in Fig. 4 presents the relationship between the compared 
metrics. All metrics were significantly correlated with each 
other ( p ≤ 0.04).

Our results indicate that gestures can be used as estima-
tors of understanding in ultrasound tasks. This reaffirms the 
idea that task understanding in shared tasks can be increased 
by observing someone else’s actions [15]. The significant 
correlations between PIA and all other metrics position PIA 
as an effective gesture-based task understanding estimator. 

Fig. 3   Gesture matching scores 
for the ultrasound task. The 
scores represent the percent-
age of agreement of the gesture 
matching approaches with the 
human baseline

Table 2   Task understanding proxy metrics on a ultrasound task

Results indicate percentages over 100 [%]

H–W pair PIA VDCP BECP Error rate Idle time rate

1 52.86 28.57 28.57 35.14 18.31
2 65.00 85.71 85.71 27.50 10.44
3 75.24 100.00 100.00 16.42 5.13
4 62.22 100.00 100.00 30.91 5.55
5 60.71 42.86 14.29 30.91 12.36
6 55.71 42.86 0.00 37.29 8.93
7 52.24 57.14 42.86 38.30 6.30
8 79.69 100.00 100.00 10.53 2.11
9 72.53 85.71 71.43 13.73 2.66
10 47.69 14.29 14.29 41.86 13.71
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Elaborating, whenever the PIA score of a task was low, the 
task completion percentage also tended to be low, and error 
and idle time rates tended to be high. These lower PIA scores 
were linked to those participants that performed a large num-
ber of unnecessary gestures while completing the task. Over-
all, these correlations can have positive impact in how col-
laborative tasks are assessed. For instance, Helper–Worker 
pairs that perform a lot of unnecessary gestures while com-
pleting a task should be corrected, as they will likely incur 
in more errors, more idle time and less task completion per-
centages [19, 26]. These results confirm our third contribu-
tion: Our gesture-based approach successfully served as an 
objective estimator of task understanding.

Additionally, the PIA metric addressed certain inconsist-
encies in the participants’ performance that the other met-
rics could not express. For instance, although the error rate 
and PIA score of the fourth Helper–Worker pair were aver-
age, they had perfect task completion percentages. A closer 
inspection of this pair’s performance revealed a critical mis-
take: This pair reported finding nine vessels, even though the 
ultrasound phantom only had seven vessels. This mistake led 
this pair to perform several unnecessary gestures and errors 
trying to unsuccessfully relocate these extra vessels during 
the blood extraction task.

Additionally, PIA offers interesting insights regarding 
the overall quality of the understanding. For example, dis-
tinctions between “good,” “decent,” and “bad” assimilation 
of physical instructions (hence, task understanding) could 
be obtained by setting thresholds based on the PIA scores. 
Elaborating, if an empirical threshold of 70 was to be estab-
lished as an indicator of “decent” task understanding, only 
three Helper–Worker pairs would have achieved this goal. 
Another advantage of the PIA metric is its generalizability: 

PIA is agnostic to the framework utilized to create the ges-
ture matching matrices E required for its computation. In 
this work, we used the MAGIC framework to generate the 
matrices. Nonetheless, the scores could also be generated 
from the matrices E generated from other gesture matching 
approaches, such as MSD or NTS.

Figure 5 presents the normalized UAQ answers for the 
ultrasound task, according to the participants’ role. Like-
wise, Fig. 6 presents the normalized TLX answers for the 
task. Finally, Fig. 7 presents the correlations between the 
PIA metric and all the UAQ and TLX questions, divided 
based on the participants’ role.

The correlations between the participants’ answers to 
the questionnaires and the PIA metric revealed interesting 
insights. First, significant positive correlations were found 
between the Workers �W answers to half of the UAQ ques-
tions and the PIA metric. These correlations represent a 
link between the assimilation of physical instructions (in 
the form of PIA) and task understanding. Specifically, 
Workers �W that received higher PIA scores tended to 
report an overall better understanding of the task. Fur-
thermore, significant negative correlations were found 
between the Workers �W answers to half of the TLX cri-
teria and the PIA metric. Specifically, the PIA scores were 

Fig. 4   Pearson correlation matrix for the task understanding metrics. 
All metrics were significantly correlated ( p ≤ 0.04 ). The cells’ num-
bers represent the strength of the correlation

Fig. 5   Normalized UAQ answers, divided based on the participants’ 
role (Helper �

H
 or Worker �

W
)

Fig. 6   Normalized NASA-TLX answers, divided based on the partici-
pants’ role (Helper �

H
 or Worker �

W
)
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correlated to the Workers �W TLX1 (mental demand), 
TLX4 (perceived performance), and TLX6 (frustration) 
criteria. Elaborating, these correlations mean that Work-
ers �W that received lower PIA scores tended to report 
higher mental demand, being unsatisfied with their perfor-
mance, and feeling more frustrated. A possible explana-
tion for these trends is how performing errors and correct-
ing accordingly can increase a person’s frustration levels 
[18]. Nonetheless, no correlations were found between the 
Helpers �H questionnaire answers and their PIA scores. 
Reduced levels of engagement due to the remote nature 
of the task could be a possible explanation for the lack of 
correlations [20].

Our approach presents some limitations. First, PIA does 
not consider verbal-only utterances in its calculation. This 
happens because verbal-only utterances lack the morpho-
logical aspects of gestures (e.g., shape, movement) required 
to generate Interpretation Trees �  . For instance, a verbal 
instruction indicating to rotate the ultrasound probe will be 
ignored in the PIA calculation if it is not accompanied with 
a gesture. This implies that our approach will not act as an 
adequate metric to measure understanding in tasks where the 
Helper �H decides not to accompany the instructions with 
gestures, or in tasks that do not involve physical instruc-
tions. Examples of such tasks can include mathematical 
problem-solving tasks or memory tasks, where the perfor-
mance does not necessary depends on the physical actions 
(although embodiment theories indicate that even in those 
cases, physical action leads to better task performance [5, 
61]). Nonetheless, the verbal utterances are not completely 
ignored, as their information is included as part of the con-
text of the Interpretation Trees �  when comparing between 
gestures.

Moreover, our manual annotation approach needs 
to be improved. Although we annotate the data 

semi-autonomously, annotating each gesture can take up to 
1 min. Machine learning techniques can address this bot-
tleneck. For example, context-aware image captioning rou-
tines could be used to annotate the gestures’ pragmatics [13], 
and speech-to-text techniques can be used to retrieve verbal 
information autonomously [9].

More avenues of future work include evaluations with a 
larger and more diverse population, as a population com-
prised only of graduate students can introduce biases [8, 
53]. A larger subject pool should also consider participants 
from diverse cultures, as gestures are known to be culture-
dependent [42]. Moreover, novice medical personnel should 
be consulted for further specialization of the platform in the 
medical domain.

Overall, the assessment of remote ultrasound tasks can 
be improved by considering the insights provided by this 
work. As ultrasound devices are becoming more relevant 
to provide remote medical assistance [33, 39, 40], the way 
in which these procedures are assessed needs to improve. 
Our gesture-based criteria could capture task understanding 
aspects ignored by other metrics, which in turn could lead 
to more reliable assessments of understanding and perfor-
mance during ultrasound tasks. This evaluation relates back 
to our fourth contribution: Our gesture-based successfully 
estimated task understanding in a remote ultrasound task.

6 � Conclusion

This work presented a gesture-based approach to estimate 
task understanding and performance during a remote ultra-
sound task. The approach uses the Multi-Agent Gestural 
Instructions Comparer (MAGIC) framework to represent 
and compare the gestures performed by collaborators. After-
ward, the Physical Instructions Assimilation (PIA) metric is 

Fig. 7   Correlations between the 
PIA metric and all the UAQ and 
TLX questions, divided based 
on the participants’ role (Helper 
�

H
 or Worker �

W
 ). Asterisks 

represent statistical significance 
between PIA and the respective 
criterion ( p ≤ 0.05)
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used to obtain task understanding insights from the gestures 
used to complete the task. Twenty participants performed 
a remote ultrasound task consisting of three subtasks: ves-
sel detection, blood extraction, and foreign body detection. 
MAGIC’s gesture comparison approaches were compared 
against two other gestures comparison approaches based on 
how well they replicated human-annotated gestures match-
ings. Our approach outperformed the others, agreeing with 
the human baseline over 76% of the times. Subsequently, a 
correlation analysis was performed to compare PIA’s task 
understanding insights with those of three other metrics: 
error rate, idle time rate, and task completion percentage. 
Significant correlations were found between PIA and all 
the other metrics for task understanding estimation. This 
trend positions PIA as an effective gesture-based task under-
standing estimator, as it successfully complemented the task 
understanding insights obtained with the other commonly 
used metrics. Finally, post-experiment questionnaires were 
used to subjectively evaluate the participants’ perceived 
understanding. The PIA score was found to be significantly 
correlated with the participants’ overall task understanding, 
hinting to the relation between physical knowledge assimila-
tion and self-perceived understanding. Overall, the results 
indicate that a gesture-based metric can be used to estimate 
task understanding during ultrasound tasks, which can have 
a positive impact in these techniques are performed and 
assessed.
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