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Abstract

This work presents a gesture-based approach to estimate task understanding and performance during remote ultrasound
tasks. Our approach is comprised of two main components. The first component uses the Multi-Agent Gestural Instruc-
tion Comparer (MAGIC) framework to represent and compare the gestures performed by collaborators. Through MAGIC,
gestures can be compared based in their morphology, semantics, and pragmatics. The second component computes the
Physical Instructions Assimilation (PIA) metric, a score representing how well are gestures being used to communicate and
execute physical instructions. To evaluate our hypothesis, 20 participants performed a remote ultrasound task consisting of
three subtasks: vessel detection, blood extraction, and foreign body detection. MAGIC’s gesture comparison approaches
were compared against two other approaches based on how well they replicated human-annotated gestures matchings. Our
approach outperformed the others, agreeing with the human baseline over 76% of the times. Subsequently, a correlation
analysis was performed to compare PIA’s task understanding insights with those of three other metrics: error rate, idle time
rate, and task completion percentage. Significant correlations (p < 0.04) were found between PIA and all the other metrics,
positioning PIA as an effective metric for task understanding estimation. Finally, post-experiment questionnaires were used to
subjectively evaluate the participants’ perceived understanding. The PIA score was found to be significantly correlated with
the participants’ overall task understanding (p < 0.05), hinting to the relation between the assimilation of physical instruc-
tions and self-perceived understanding. These results demonstrate that gestures an be used to estimate task understanding
in remote ultrasound tasks, which can improve how these tasks are performed and assessed.
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1 Introduction

The correct use of ultrasound technologies is crucial in the
diagnosis of various pathologies. As these technologies
became more portable and prevalent, their applications have
been extended to areas such as triage and Point-of-Injury
care [43]. For instance, portable ultrasound devices have
been critical to provide medical assistance in the battlefield
[44], disaster triage for mass casualty events [60], and drug
delivery procedures [41].
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Nonetheless, there is a bottleneck in the way ultrasound
tasks are assessed. These assessments are often performed
by experienced medics via clinical examinations, or via self-
assessment questionnaires [55, 59]. Such approaches, how-
ever, are subjective, are limited by the experts’ availability,
and can become challenging to perform remotely [39]. To
develop more reliable assessment mechanisms, research has
been focused on generating objective metrics via neural net-
works and cognitive load measurements [2, 36]. In this con-
text, gestures can be an important avenue to explore. Ges-
tures have been found to be key components of how humans
interact, collaborate, and communicate [23, 46]. Particularly
for collaborative tasks, the information encompassed in ges-
tures can reveal important insights of how the tasks are being
performed and understood [30].

This work explores whether gestures can be used as esti-
mators of task understanding and performance during remote
ultrasound tasks. We present a methodology comprised by
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two main components. The first component uses the Multi-
Agent Gestural Instruction Comparer (MAGIC) framework
to represent and compare the gestures performed by the col-
laborators [48]. Through MAGIC, gestures can be compared
based on their morphology, semantics, and pragmatics.
The second component computes the Physical Instructions
Assimilation (PIA) metric, a score representing how well
are gestures being used to communicate and execute physi-
cal instructions [49]. By using these two components, an
objective estimation of task understanding during remote
ultrasound tasks can be obtained.

The contributions of this work include (1) developing
a gesture-based approach to estimate task understanding;
(2) comparing our MAGIC approach against other gesture
assessment methods in the context of remote tasks; (3) com-
paring our gesture-based approach to objective and subjec-
tive estimators of task understanding; and (4) evaluating our
gesture-based task understanding estimation approach in a
remote ultrasound task.

The paper proceeds as follows: Sect. 2 presents prior work
related to ultrasound tasks and the importance of gestures in
collaboration. Section 3 discusses the MAGIC framework
and the PIA metric. Section 4 describes the remote ultra-
sound task, details our data collection, and explains the anal-
yses used to evaluate our approach. Finally, Sect. 5 presents
and discusses our results, and Sect. 6 concludes the paper.

2 Previous work

Remote ultrasound technologies have been widely adopted
through various medical disciplines such as cardiac and pul-
monary Point-of-Injury care [17], Apnea and Pneumothorax
treatment [39], and Focused Assessed Transthoracic Echo
of the heart and pleural space [57]. This widespread adop-
tion has to do, in part, with the development of portable,
prevalent, and easy-to-use ultrasound platforms [43]. Studies
have shown that novices carried out ultrasound examinations
successfully when guided by a remote expert [17, 57]. This
positions ultrasound technologies as a crucial component in
the diagnosis of various pathologies.

Clinical examinations from expert medics are commonly
used to assess performance of ultrasound tasks. The experts
evaluate performance based on their own criteria or pre-
defined checklists [1, 35, 55]. Self-assessment questionnaires
are also used to evaluate ultrasound skills of novice medics
[59]. While widely spread, both approaches are prone to
subjective biases and are limited by the experts’ availability.
Therefore, research has been focused on creating objective
assessments of ultrasound tasks. These include kinematic
representations of the participants’ performances, obtained
via neural networks [36], and cognitive load measures such
as eye-based physiological indices [2].
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This work explores whether gestures can also be used to
assess ultrasound tasks objectively. Gestures are key com-
ponents of how humans interact, collaborate, and commu-
nicate. Gestures can help generating novel problem-solving
strategies [7], facilitate learning [12], and offload working
memory [50]. Moreover, people tend to gesture as they per-
form a shared physical task [21]. In such cases, gestures are
not only used to solve the task (e.g., assembling parts), but
as means of inquire or instruction (e.g., requesting clarifica-
tion) [23]. Additionally, research has shown that gestures can
facilitate the exchange of ideas and intentions during team-
work, leading to better task performance [3]. Gestures are
so relevant in collaboration that systems to convey gestures
remotely have been explored to support better distributed
collaborative environments [29-31].

Despite studies on gestures’ importance for task perfor-
mance and understanding, gestures have not been explored as
means to quantitatively assess task understanding. Instead,
task understanding is usually assessed via objective metrics
such as task completion percentage, task completion time,
and number of errors [6, 22, 28, 32], or subjective techniques
such questionnaires and interviews [58]. While these met-
rics can be effective to estimate understanding, they do not
consider the information encompassed in the collaborators’
gestures. Since gestures are so relevant for collaboration [23,
34, 46], ignoring them can lead to incomplete estimations
of understanding.

3 Methodology

This work presents our methodology to use gestures as esti-
mators of performance and understanding during remote
ultrasound tasks. Our methodology is divided into two
main subsections. The first subsection presents an explana-
tion of the MAGIC framework. MAGIC abstracts gestures
into data structures representing the gesture’s morphology,
semantics, and pragmatics. Such data structures are later
leveraged to compare the gestures. The second subsection
introduces the PIA metric, a score representing how well are
instructions being received and executed by collaborators.
The creation of this framework relates back to our first con-
tribution: developing a gesture-based approach to estimate
task understanding.

3.1 Multi-agent gestural instruction comparer

The MAGIC framework represents and obtains similarity
metrics between gestures [47, 48]. The framework’s goal
is to abstract and compare gestures using a representation
that considers aspects such as the gestures’ shape, move-
ment, meaning, and context. To do this, MAGIC starts by
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Fig.1 Schematic of the MAGIC framework. (1) Using speech and
gestures, two individuals collaborate to complete a shared ultrasound
task. MAGIC gives a formal definition to the elements involved in
the collaborative task (e.g., Utterance m, Context 2). (2) A taxon-
omy classification describes aspects of the gesture utterances such
as iconicity and expressiveness. (3) A dynamic semantics framework
represents each gesture utterance with a logical form containing the

Table 1 Elements and notation of the MAGIC framework

gestures’ morphology, semantics, and pragmatics. (4) A constituency
parsing represents each logical form as a tree data structure (Interpre-
tation Tree ¥). (5) Gestures are matched based on how similar they
are. This similarity can be computed based on the time the gestures
were performed, or by comparing the Interpretation Trees ¥ repre-
senting the gestures

MAGIC element Definition Example
Worker @y, Collaborator directly manipulating the environment to A person executing actions
perform a task
Helper @, Collaborator communicating the commands required to A person instructing what actions to perform

perform a task

Instructions Ay Action communicating how to perform a task

Executions Ay, Action performed to complete a task

Utterance m
complete idea

Interpretation Tree ¥
Context Q2

The smallest unit of speech or gesture that communicates a

MAGIC'’s data structure representing Utterances &

Elements and concepts introduced in the current Utterance
x;, which can be referenced by future Utterances x;;

A verbal command saying “Take the probe,” accompanied
by a gesture pointing at a probe

A gesture performed to reach for the probe

A gesture to pinpoint a probe; a verbal command saying
“Stop!”

See Fig. 1, Sect. 4

Let “Take the probe” and “Use the probe to find the ves-
sel” be the first and second Utterances (; and x,). The

Context Q of m, would include all the elements introduced
in 7y, such as the “Probe” concept.

formally defining the elements involved in the collaborative
task, summarized in Table 1. Figure 1 presents a schematic
of the MAGIC framework.

MAGIC uses a three-stage process to obtain the Inter-
pretation Trees ¥ from the Utterances & and the Context
Q. The first stage uses a gestural taxonomy to generate
labels describing aspects of the gestures such as iconicity

and expressiveness (Fig. 1, section 2). These labels are
used as extra information for subsequent stages. The
second section uses a dynamic semantics framework to
represent each Utterance & with a logical form. These
logical forms provide an abstraction of the gestures’ mor-
phology, semantics, and pragmatics in a single structure
(Fig. 1, section 3). Afterward, the third section leverages a
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constituency parsing approach to convert the logical forms
into tree data structures (the Interpretation Trees ¥'; Fig. 1,
section 4). These Interpretation Trees ¥ are constructed to
quantitatively compare the logical forms from the previ-
ous stage.

This three-stage process will be applied to all the ges-
tures, generating an Interpretation Tree ¥ for each of them.
These Interpretation Trees ¥ group similar aspects of the
gestures together. For instance, all the aspects related to
the gesture’s shape are going to be contained in the Shape
Subtree, while aspects related to the gesture’s context are
contained in the Context Subtree. This allows to inspect
and compare specific aspects of the gestures in isolation.
A description of the subtrees that can be obtained is found
in [47].

3.2 Gesture matching through integer optimization

The final stage of the MAGIC framework involves compar-
ing the gestures by calculating gesture similarity (Fig. 1,
section 5). These gesture matchings reveal which gestures
were similar between them and will be used in the subse-
quent PIA calculation.

These gesture matching processes are performed by
solving three integer optimization formulations: MAGIC-
based, Time-based, and Hybrid [48]. First, let w; be a
Worker-authored gesture, and h; be a Helper-authored
gesture. Then, let W be a set containing all the Worker-
authored gestures w;, and H be a set containing all the
Helper-authored gestures h;. Subsequently, let a gesture
matching solution be represented with a matrix E of edge
weights e;; (size |W| X |H|). Each edge weight e; will take
a value of 1 if the Helper-authored gesture k; matches (i.e.,
is the most functionally equivalent) to the Worker-authored
w;, and O otherwise. Therefore, the goal of the gesture
matching stage is to find the gesture matching matrices E
that maximize (or minimize, for the Time-based) the cost
function of the optimization problems.

To calculate the gesture matching matrices E, three cost
coefficient matrices (size |[W| X |H|) need to be obtained:
a matrix B of similarity scores b for the MAGIC-based
approach, a matrix C of temporal scores ¢;; for the Time-
based approach, and a matrix D of hybrid scores d;; for
the hybrid approach. The calculation of these matrices is
explained in the next subsections.

Once the cost coefficient matrices are obtained, the ges-
ture matching matrices E can be found by solving Eq. 1
(for the Time-based approach, it changes to a minimiza-
tion problem). The scores a;; represent either the similar-
ity scores by;, the temporal scores ¢;;, or the hybrid scores

d;;, depending on the selected approach. This formulation
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is constrained to each Worker-authored gesture w; being
matched to only one Helper-authored gesture h;.

|H| W]

maximize Z Z aije[j

=1 =
|H|

subject to Zeij: 1,Vi (D
=1
e; € {0,1)
i=1,2,...,|W;j=12,...,|H|

3.2.1 MAGIC-based optimization

The MAGIC-based approach computes similarity from the
Interpretation Trees ¥'. The goal is to generate matrices B of
similarity scores b;; describing how similar is each Worker
Interpretation Tree ¥y, to each Helper Interpretation Tree ¥'y,.
Each similarity score b;; is computed as the number of nodes in
the intersection between two ¥ Interpretation Trees or subtrees
representing different gestures, as described in Eq. 2:
i=12,...,|W|

b = (num_nodes ¥, N 5pw;);j =1,2,...,|H| @

3.2.2 Time-based optimization

The Time-based approach explores the relevance of time when
comparing gestures: Gestures performed closer in time are
likely to be related. The time in which gestures were performed
is stored in two vectors: ty, and t;, respectively, for Worker @y,
and the Helper @,. The vectors are then expanded into matrix
form by multiplying them by vectors of ones (size |H| X 1 and
|W| % 1, respectively). Finally, matrices C of temporal scores
¢; are computed with Eq. 3:

C=t, 17 -1t] 3

3.2.3 Hybrid optimization

The Hybrid optimization approach combines the previous
approaches to consider both gesture similarity and tempo-
ral synchrony. The approach computes matrices D of hybrid
scores d;; from the previous B and C matrices. These hybrid
scores dj; are calculated by regulating the effect of the simi-
larity scores b;; and temporal scores ¢;;, as depicted in Eq. 4.
The constants a, f, and y, respectively, control importance of
the temporal scores i when does the function activate, and
importance of the similarity scores b;.
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3.3 Physical instructions assimilation metric

The PIA score estimates task understanding from how well
are physical instructions being assimilated (i.e., given,
understood, and executed). This perspective is currently
not encompassed by other task understanding estimators.
PIA draws inspiration from two theories that describe how
individuals understand each other by observing each oth-
er’s actions and gestures [10, 11, 34, 51, 54]. The approach
assumes that correct understanding of a Helper @ gestural
instruction happens whenever the Worker @y, executes the
instruction without errors or asking for clarifications.

PIA represents perfect understanding of a task with a
score of 100, which happens when every h; Helper-authored
gesture is matched to one and only one w; Worker-authored
gesture. A PIA score less than a 100 means that either mul-
tiple Worker-authored gestures w; matched to the same
Helper-authored gesture A, or at least one Helper-authored
gesture h; not getting matched. As depicted in Eq. 5, the PIA
metric is calculated based on the gesture matching matrix E
from the previous step. More details of the PIA formulation
can be found in [49].

LW -
PIA = — " 5
m2(3e) ®

i=1

4 Experimental apparatus

This section describes the setup to validate our gesture-
based approach to assess understanding on a remote ultra-
sound task. First, we illustrate our ultrasound task. Then,
we describe our data collection process, which analyzes:
(1) whether our gesture matching approaches could rep-
resent human-annotated gesture matchings; and (2)
whether the PIA metric is a valid approach to estimate task
understanding.

4.1 Remote ultrasound task

Our experimental apparatus relates back to our fourth contri-
bution: evaluating our gesture-based task understanding esti-
mation approach in a remote ultrasound task. Following [4],
we created an ultrasound phantom with seven vessels using

ballistic gel. The vessels were filled with colored water. Sub-
sequently, the ultrasound phantom was coated with a mixture
of silicone and paint that emulated skin and hid the location
of the vessels from plain sight. Afterward, toothpicks were
inserted into the models to simulate a wooden splinter. The
dimensions of the resulting foreign body were 6cm length
X 1.5 cm width X 1.5 mm height. This model, along with
an ultrasound probe (Telemed MicrUs MC10-5R10S), was
used by our participants to complete three common tasks in
ultrasound training curricula.

The first task involved finding vessels, similar to [4].
Participants were given 10 min to find vessels in the ultra-
sound phantom using the ultrasound probe. The second task
involved using a syringe to extract water from the vessels,
as in [56]. Participants used the ultrasound probe to relocate
the vessels they found in the previous task. Then, guided by
the ultrasound image, participants had to insert the syringe
inside the vessels to extract water from them. Participants
were also given 10 min to complete this task. The third task
involved identifying the position, shape, and orientation of

Fig.2 Ultrasound task. Our ultrasound simulator is shown in (a). The
created ultrasound phantom is shown in (b). The vessels as seen in the
ultrasound are shown in (¢). The process of extracting blood is shown
in (d). The foreign body as seen in the ultrasound is shown in (e)

@ Springer



Pattern Analysis and Applications

the foreign body inside the ultrasound phantom, similar to
[52]. As in the previous tasks, the participants had to use the
ultrasound probe to locate the foreign body, which looked as
a solid patch in the ultrasound image. Participants had 5 min
to complete this task. Our ultrasound phantom and the tasks
participants had to perform are showcased in Fig. 2.

4.2 Data collection
4.2.1 Participants

Three user studies were conducted with a total of twenty
participants (graduate students, twelve males, and eight
females, age mean 27.2 + 5.3 years old). The participants
were divided into 10 Helper—Worker pairs to collaboratively
complete the ultrasound task.

4.2.2 Procedure

First, our gesture comparison approach was evaluated. This
evaluation relates back to our second contribution: compar-
ing our MAGIC approach against other gesture assessment
methods in the context of remote tasks. We compared the
gesture matching matrices E generated by our approaches
against two gesture matching baselines: morpho-semantic
descriptors (MSD) [37], and naive time synchronization
(NTS). The first baseline, MSD, used Boolean vectors to
represent morpho-semantic aspects of the gestures (e.g.,
Does the gesture have leftward movement? Does the gesture
refer to a specific part of the body?). Each gesture was there-
fore represented with a 48 X 1 vector, where each dimension
in the vector represented a morpho-semantic description in
[37]. The gesture matching matrices E were generated by
comparing the MSD vectors via Hamming distance and
cosine similarity.

The second baseline, NTS, compared gestures based on
their temporal occurrence. A timestamp £, in seconds, was
assigned to each gesture, where 0 and 1 represented start and
end of the video, respectively. Afterward, a time window
before and after the execution of each Helper-authored ges-
ture h; was defined. The Worker-authored gestures w; were
matched to the Helper-authored gestures h; based on which
time window they were contained in. The margins of these
time windows are calculated as t‘*‘T_[" where ¢, and ¢, are
the timestamps assigned to two consecutive Helper-authored
gestures h;. This process was performed until all Worker-
authored gestures w; were contain inside a the time window
of a Helper-authored gesture h;.

After obtaining these baselines, gesture matching ground
truths needed to be created. To generate such ground truth,
a member of the research team manually annotated which
gestures matched each other. For instance, if the Helper @y
made a gesture to indicate how to properly hold the probe,
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all the gestures performed by the Worker @y, to fulfill
this instruction were matched to that Helper @y gesture.
Through this process, a matrix E of ground truth gesture
matchings was created for each pair of participants.

All gesture matching matrices E were evaluated based
on their percentage of agreement with the matrices E of
human-annotated gestures matchings. This is done using
Eq. 6, which is a variation in the F1-Score formula [24].
In Eq. 6, TP represent True Positi\ies (.e., E,-j =E;=1),
FN represent False Negatives (iA.e., Eij =1; Eij =0); and FP
represent False Positives (i.e., E; = 0; E; = 1).

2TP

Matching Score = ———
2TP+FN+FP

(6)
Additionally, we inspected whether performing the com-
parisons against different subtrees within the Interpretation
Trees ¥ affected the Matching Score. This explored whether
specific aspects of the gestures (e.g., shape, meaning) were
more relevant in the context of remote ultrasound tasks.
Specifically, we inspected comparison against: (1) the sub-
tree representing the context (Context Subtree); (2) the sub-
tree representing whether the gesture exemplifies an object
(Exemplify Subtree); (3) the subtree representing shape
(Shape Subtree); (4) the subtree encompassing all aspects
of the gesture excluding its context (Predicative Subtree);
(5) the entire Interpretation Tree; and (6) the combination
of subtrees representing meaning (Meaning Subtree). A
detailed explanation of these subtrees can be found in [47].

Subsequently, our task understanding estimation approach
was evaluated. This evaluation relates back to our third con-
tribution: comparing our gesture-based approach to objective
and subjective estimators of task understanding. Our experi-
mental setup evaluated whether the quality of assimilation
of physical instructions (in the form of our PIA metric) can
estimate task understanding. This was evaluated by compar-
ing PIA against three other metrics for task understanding:
error rate, idle time rate, and task completion percentage
[28, 38]. Error rate was calculated as the rate between the
instructions in which the Worker @, performed errors and
the total number of instructions. An error was counted, for
instance, when the Worker @y, inserted the syringe in the
wrong way. Idle time rate is defined as the rate between the
time in which the Worker @y, did not perform an action
related to completing the task (e.g., the time spent thinking
or asking questions), and the total task completion time, in
seconds. Listening to the Helper @ instructions was not
considered idle time.

The third metric, task completion percentage, represented
how much of the entire task did the participants complete.
This metric was calculated in two ways: (1) the rate between
the number of vessels found and the total number of vessels
in the ultrasound phantom (Vessel Detection Completion
Percentage; VDCP); and (2) the rate between the number of
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vessels from which blood was successfully extracted and the
total number of vessels in the ultrasound phantom (Blood
Extraction Completion Percentage; BECP). These three
metrics were annotated by members of the research team
for each pair of participants. Finally, the Pearson product
moment correlation (r) was computed to inspect the relation-
ship between the metrics [45]. The PIA score was treated as
the dependent variable, while the other metrics were treated
as independent variables.

Finally, we compared PIA against human-reported
understanding evaluations. Participants were given two
post-experiment questionnaires to assess their performance.
After compiling their answers, the Pearson product moment
correlation (r) was computed to analyze the relation between
the participants’ answers and their PIA. Correlations were
calculated separately for both the Workers @y, and the Help-
ers @y.

The first questionnaire was an Understanding Assessment
Questionnaire (UAQ) consisting of eight Likert scale ques-
tions (5 = Strongly Agree to 1 = Strongly Disagree) evaluat-
ing the participants’ overall understanding during the task.
Two out of these eight questions varied depending on the
participant’s role (i.e., Helper @ or Worker @y,). The ques-
tions included: “I was able to understand the task” (UAQ]I),
“I was able to understand the verbal instructions given by
the other person” (UAQ?2); “I was able to understand the
gestural instructions given by the other person” (UAQ3), “I
was able to understand the actions performed by the other
person” (UAQ4); “I was able to determine if the other person
was understanding me” (UAQ7), and “I feel I could guide the
task again with minimal to no challenge” (UAQS). Questions
5 and 6 differed with respect to the participant’s role. For
the Helper @ role, UAQ5 was “I was able to understand
the questions that were asked to me, if any,” and UAQ6 was
“I was able to understand when mistakes happened along
the task, if any.” For the Worker @y, role, UAQ5 was “I was
able to understand which part of the ultrasound phantom was
the other person referring to,” and UAQ6 was “I was able to
understand how to find the vessels.”

The second questionnaire was the National Aeronaut-
ics and Space Administration Task Load Index (NASA-
TLX) [27]. The NASA-TLX evaluates perceived workload
using six criteria: mental demand (7LX1), physical demand
(TLX?2), temporal demand (TLX3), perceived performance
(TLX4), effort required (TLX5), and generated frustration
(TLX6). Each criterion is represented by a 21-level Likert
Scale question. Higher TLX scores indicate higher task load.

4.2.3 Apparatus
After signing a written consent form (IRB Protocol

#1810021222), participants were randomly assigned to
either the Worker @y, or the Helper @ role. In this setup,

the Helper @, had to remotely guide the Worker @y,
through the ultrasound task. The Helper @, was given an
instruction booklet with the steps to perform the ultrasound
task. The Worker @y, was instead given the instruments
to perform the task: the ultrasound probe, the ultrasound
phantom, and a syringe. Afterward, they were directed to
different rooms according to their role. Both rooms included
color and depth cameras, and a large display connected to
a computer hosting a video call with the other room. This
video call allowed participants to interact via speech, hand
gestures, facial expressions, etc.

Our data were comprised of color and depth video record-
ings, acquired as the participants performed the ultrasound
task. From these recordings, we extracted the audio streams
and skeletal information. The skeletal information was used
to represent the shape and movement components of the
gestures. The audio streams were used to provide the mean-
ing and context components of the gestures. All the gestures
performed by the participants were compiled, for a total of
1287 gestures (785 performed by the Helper @, 502 per-
formed by the Worker ®y;) acquired over the span of 7 h
of video. These included gestures to provide instructions,
to ask for clarification, to perform the task, and even those
performed involuntarily. Each of these gestures was repre-
sented using an Interpretation Tree ¥ and was considered
in the PIA calculation. Additionally and prior to starting the
task, the Helper @, received 30 min of side-by-side training
on how to use the ultrasound probe. The training showed
how to perform the task and explained possible errors and
their solutions.

5 Results and discussion

The optimization problems were solved using IBM’s CPLX
Optimizer from the NEOS Server [14, 16, 25]. Addition-
ally, the hybrid cost coefficients were calculated by setting
the constants to « = 0.01, f# = 1.01, and y = 2. Figure 3
showcases the matching scores of the gesture matching
approaches, using different subtrees to compare the gestures.
Our results for the ultrasound task are congruent with those
obtained in our previous work for a block assembly task
and an origami task [48]: The hybrid approach led to higher
matching scores.

Both gesture matching baselines (MSD and NTS) were
outperformed by the MAGIC-based approach. However, our
results fluctuated significantly based on which subtrees were
selected to compare the gestures. This is a known limitation
of the MAGIC-based approach: comparing between subtrees
with unrelated information (e.g., comparing shape against
meaning) has a negative impact in the matching scores. The
highest matching scores were found when comparing the
Context Subtree of the Worker Interpretation Trees ¥y
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Fig.3 Gesture matching scores
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against the Meaning Subtree of the Helper Interpretation
Trees Wy . This result highlights the relevance of seman-
tics and pragmatics when comparing gestures. Contrarily,
comparing only the gestures’ physical appearance led to low
matching scores since the gestures performed by the Helper
@, were visually distinct to those performed by the Worker
Dy

The high scores obtained with Time-based comparison
approach confirmed that gestures performed one after the
other are likely to be related. However, such comparison
should be performed giving higher importance to recently
performed gestures, as opposed to the NTS approach
where each gesture was given equal importance. None-
theless, both these approaches are limited to the temporal
relations between gestures instead of comparing the ges-
tures comprehensively.

The Hybrid approach alleviates the limitations of the
MAGIC-based: no a priori knowledge (i.e., which subtree
to select) is required to compare the gestures. Matching
scores over 76% for all comparisons demonstrated that
the approach agreed with the human baseline without
fluctuating based on the selected subtrees. Therefore, the
Hybrid approach is a more stable option to compare ges-
tures. Overall, the results demonstrate that our approaches
can represent and compare gestures performed in a remote
ultrasound task. This addresses our second contribution:
Our MAGIC approach outperformed other gesture assess-
ment methods for remote tasks.

The results obtained with the Time-based approach out-
performed those obtained with the Hybrid approach for most
comparisons. This conflicts with the findings from our prior
work [48] for the block assembly and the origami tasks. In
such tasks, the Hybrid approach outperformed all the other
approaches. Nonetheless, lower scores were expected for
the ultrasound task. The ultrasound task was considerably
more complex than the other two, as more gestures had to
be performed to complete each of subtask. Moreover, the
meaning and context of some of these gestures were very
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similar because the collaborators kept referring to the same
instruction in different ways (e.g., explaining how to intro-
duce the syringe to extract water). This increased number
of functionally similar gestures in reduced time spans led
the Hybrid approach to underperform when compared to
the Time-based one. However, the results in [48] confirm
the importance of representing the gestures comprehensively
instead of only relying on time.

Table 2 summarizes the results of the task understand-
ing estimation metrics, for each Helper—Worker pair (H-W
Pair). Better understanding is hinted by higher PIA scores
and task completion percentages, and lower error and idle
time rates. Additionally, the Pearson correlation matrix
in Fig. 4 presents the relationship between the compared
metrics. All metrics were significantly correlated with each
other (p <0.04).

Our results indicate that gestures can be used as estima-
tors of understanding in ultrasound tasks. This reaffirms the
idea that task understanding in shared tasks can be increased
by observing someone else’s actions [15]. The significant
correlations between PIA and all other metrics position PIA
as an effective gesture-based task understanding estimator.

Table 2 Task understanding proxy metrics on a ultrasound task

H-W pair PIA VDCP BECP  Errorrate Idle time rate
1 52.86  28.57 28.57 35.14 18.31
2 65.00 85.71 85.71 27.50 10.44
3 7524 100.00 100.00 16.42 5.13
4 6222 100.00 100.00 30091 5.55
5 60.71  42.86 14.29 30.91 12.36
6 55771 4286 0.00 37.29 8.93
7 5224 57.14 42.86 38.30 6.30
8 79.69 100.00 100.00 10.53 2.11
9 72.53  85.71 71.43 13.73 2.66
10 47.69 14.29 14.29 41.86 13.71

Results indicate percentages over 100 [%]
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Fig.4 Pearson correlation matrix for the task understanding metrics.
All metrics were significantly correlated (p < 0.04). The cells’ num-
bers represent the strength of the correlation

Elaborating, whenever the PIA score of a task was low, the
task completion percentage also tended to be low, and error
and idle time rates tended to be high. These lower PIA scores
were linked to those participants that performed a large num-
ber of unnecessary gestures while completing the task. Over-
all, these correlations can have positive impact in how col-
laborative tasks are assessed. For instance, Helper—Worker
pairs that perform a lot of unnecessary gestures while com-
pleting a task should be corrected, as they will likely incur
in more errors, more idle time and less task completion per-
centages [19, 26]. These results confirm our third contribu-
tion: Our gesture-based approach successfully served as an
objective estimator of task understanding.

Additionally, the PIA metric addressed certain inconsist-
encies in the participants’ performance that the other met-
rics could not express. For instance, although the error rate
and PIA score of the fourth Helper—Worker pair were aver-
age, they had perfect task completion percentages. A closer
inspection of this pair’s performance revealed a critical mis-
take: This pair reported finding nine vessels, even though the
ultrasound phantom only had seven vessels. This mistake led
this pair to perform several unnecessary gestures and errors
trying to unsuccessfully relocate these extra vessels during
the blood extraction task.

Additionally, PIA offers interesting insights regarding
the overall quality of the understanding. For example, dis-
tinctions between “good,” “decent,” and “bad” assimilation
of physical instructions (hence, task understanding) could
be obtained by setting thresholds based on the PIA scores.
Elaborating, if an empirical threshold of 70 was to be estab-
lished as an indicator of “decent” task understanding, only
three Helper—Worker pairs would have achieved this goal.
Another advantage of the PIA metric is its generalizability:

PIA is agnostic to the framework utilized to create the ges-
ture matching matrices E required for its computation. In
this work, we used the MAGIC framework to generate the
matrices. Nonetheless, the scores could also be generated
from the matrices E generated from other gesture matching
approaches, such as MSD or NTS.

Figure 5 presents the normalized UAQ answers for the
ultrasound task, according to the participants’ role. Like-
wise, Fig. 6 presents the normalized TLX answers for the
task. Finally, Fig. 7 presents the correlations between the
PIA metric and all the UAQ and TLX questions, divided
based on the participants’ role.

The correlations between the participants’ answers to
the questionnaires and the PIA metric revealed interesting
insights. First, significant positive correlations were found
between the Workers @y, answers to half of the UAQ ques-
tions and the PIA metric. These correlations represent a
link between the assimilation of physical instructions (in
the form of PIA) and task understanding. Specifically,
Workers @y, that received higher PIA scores tended to
report an overall better understanding of the task. Fur-
thermore, significant negative correlations were found
between the Workers @y, answers to half of the TLX cri-
teria and the PIA metric. Specifically, the PIA scores were
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Fig.5 Normalized UAQ answers, divided based on the participants’
role (Helper @y or Worker ®@y,)
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Fig.6 Normalized NASA-TLX answers, divided based on the partici-
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Fig.7 Correlations between the
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correlated to the Workers @y, TLX] (mental demand),
TLX4 (perceived performance), and TLX6 (frustration)
criteria. Elaborating, these correlations mean that Work-
ers @y, that received lower PIA scores tended to report
higher mental demand, being unsatisfied with their perfor-
mance, and feeling more frustrated. A possible explana-
tion for these trends is how performing errors and correct-
ing accordingly can increase a person’s frustration levels
[18]. Nonetheless, no correlations were found between the
Helpers @, questionnaire answers and their PIA scores.
Reduced levels of engagement due to the remote nature
of the task could be a possible explanation for the lack of
correlations [20].

Our approach presents some limitations. First, PIA does
not consider verbal-only utterances in its calculation. This
happens because verbal-only utterances lack the morpho-
logical aspects of gestures (e.g., shape, movement) required
to generate Interpretation Trees ¥. For instance, a verbal
instruction indicating to rotate the ultrasound probe will be
ignored in the PIA calculation if it is not accompanied with
a gesture. This implies that our approach will not act as an
adequate metric to measure understanding in tasks where the
Helper @y decides not to accompany the instructions with
gestures, or in tasks that do not involve physical instruc-
tions. Examples of such tasks can include mathematical
problem-solving tasks or memory tasks, where the perfor-
mance does not necessary depends on the physical actions
(although embodiment theories indicate that even in those
cases, physical action leads to better task performance [5,
61]). Nonetheless, the verbal utterances are not completely
ignored, as their information is included as part of the con-
text of the Interpretation Trees ¥ when comparing between
gestures.

Moreover, our manual annotation approach needs
to be improved. Although we annotate the data
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semi-autonomously, annotating each gesture can take up to
1 min. Machine learning techniques can address this bot-
tleneck. For example, context-aware image captioning rou-
tines could be used to annotate the gestures’ pragmatics [13],
and speech-to-text techniques can be used to retrieve verbal
information autonomously [9].

More avenues of future work include evaluations with a
larger and more diverse population, as a population com-
prised only of graduate students can introduce biases [8,
53]. A larger subject pool should also consider participants
from diverse cultures, as gestures are known to be culture-
dependent [42]. Moreover, novice medical personnel should
be consulted for further specialization of the platform in the
medical domain.

Overall, the assessment of remote ultrasound tasks can
be improved by considering the insights provided by this
work. As ultrasound devices are becoming more relevant
to provide remote medical assistance [33, 39, 40], the way
in which these procedures are assessed needs to improve.
Our gesture-based criteria could capture task understanding
aspects ignored by other metrics, which in turn could lead
to more reliable assessments of understanding and perfor-
mance during ultrasound tasks. This evaluation relates back
to our fourth contribution: Our gesture-based successfully
estimated task understanding in a remote ultrasound task.

6 Conclusion

This work presented a gesture-based approach to estimate
task understanding and performance during a remote ultra-
sound task. The approach uses the Multi-Agent Gestural
Instructions Comparer (MAGIC) framework to represent
and compare the gestures performed by collaborators. After-
ward, the Physical Instructions Assimilation (PIA) metric is
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used to obtain task understanding insights from the gestures
used to complete the task. Twenty participants performed
a remote ultrasound task consisting of three subtasks: ves-
sel detection, blood extraction, and foreign body detection.
MAGIC'’s gesture comparison approaches were compared
against two other gestures comparison approaches based on
how well they replicated human-annotated gestures match-
ings. Our approach outperformed the others, agreeing with
the human baseline over 76% of the times. Subsequently, a
correlation analysis was performed to compare PIA’s task
understanding insights with those of three other metrics:
error rate, idle time rate, and task completion percentage.
Significant correlations were found between PIA and all
the other metrics for task understanding estimation. This
trend positions PIA as an effective gesture-based task under-
standing estimator, as it successfully complemented the task
understanding insights obtained with the other commonly
used metrics. Finally, post-experiment questionnaires were
used to subjectively evaluate the participants’ perceived
understanding. The PIA score was found to be significantly
correlated with the participants’ overall task understanding,
hinting to the relation between physical knowledge assimila-
tion and self-perceived understanding. Overall, the results
indicate that a gesture-based metric can be used to estimate
task understanding during ultrasound tasks, which can have
a positive impact in these techniques are performed and
assessed.
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