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Abstract  

This paper addresses the technical challenges of physically realizing some tubular geometrical sculptures, using 
two examples from opposite ends of a spectrum of possible Gosper sculptures.  A first example concerns a large-
scale metal sculpture of a Gosper-Ball with only 38 tubular segments, but which still exhibits the characteristics 
of a 3D Gosper curve quite nicely.  The challenge is how to accurately assemble the 38 tubular pieces while 
realizing the required angles at all 38 joints.  The paper presents a judicious partitioning of the overall sculpture 
and some simple jigs that help to put the different sub-assemblies together. 
The second example concerns 3D-printing of desk-top models of complex Gosper-Globes with up to 756 
segments, where a variant of a 2D plane-filling Gosper curve is constrained to a spherical shell.  The lengthy 
tubular loop representing the Gosper curve requires a lot of support material during the additive fabrication 
phase. This support material is difficult to remove from the inside of the spherical shell.  Partitioning the shell 
into a few smaller domains reduces this problem without unduly complicating the assembly of the overall 
sculpture. 
 

 
Introduction and Previous Work 

Taking a self-similar, 2D plane-filling curve, such as the Hilbert curve [10] or the Gosper curve (Fig.1a) 
into the third dimension offers interesting mathematical design challenges and can result in attractive 
geometrical sculptures [3].  For the last two years, I have been specifically interested in transforming 
variants of the Gosper curve [9][12] into attractive 3D geometrical sculptures [4] (Fig.1c).  Making a 3D 
space-filling Gosper-like curve (Fig.1b) has its own geometrical and algorithmic challenges, which have 
been discussed elsewhere [8][4][5].  Physically realizing such sculptures, either in the form of a 3D-print 
with several hundred cylindrical segments, or as a human-scale sculpture made from metal tube segments, 
poses additional challenges.  Some of these problems can be addressed by judiciously partitioning the 
overall sculpture into a few sub-assemblies that are relatively easy to fabricate, and which then are not too 
difficult to compose into the final sculpture.  In this study, I use two examples from opposite ends of a 
spectrum of possible Gosper sculptures to discuss these fabrication challenges – in accordance with the 
stated interests of the SCULPT track.   
 

                  
                          (a)                                                    (b)                                                     (c)                     

Figure 1:  (a) 2D Gosper curve;  (b) a 3D Gosper curve;  (c) a small Gosper sculpture. 
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The first example concerns a Gosper-Ball of low complexity with only 38 segments made from metal 
tubes.  Here the main problem is how to join the pre-cut metal tube segments while accurately realizing 
the required angles at all the joints, so that the overall sculpture will close nicely into a symmetrical loop.  
The first step is to pick the right sub-structures that can be assembled easily with good accuracy because 
they contain several co-planar segments.  These sub-assemblies are then joined with simple, helpful jigs 
that assist in implementing proper angles and proper spacings. 

The second example concerns 3D-printing of Gosper-Globes, where a variant of a 2D plane-filling 
Gosper curve is constrained to a spherical shell. I discuss making desk-top models of complex Gosper-
Globes with up to 756 segments on low-end 3D-printers.  The thin, lengthy tubular loop needs a lot of 
support material during the additive fabrication phase, which then is difficult to remove from the inside of 
the spherical shell.  Partitioning the shell into a few smaller domains reduces this problem without unduly 
complicating the assembly of the overall sculpture. 

 
Metal Sculpture:  Gosper-Onion_38 

Gosper-Balls fill a roughly spherical domain with a 3D polyline that tries to capture the basic 
characteristics of a 2D Gosper curve.  In one approach, the Gosper strand visits the atomic sites of a face-
centered cubic (FCC) lattice by making equal-size, nearest-neighbor steps.  The FCC lattice is the lattice 
that allows densest sphere-packing.  Figure 1c shows such a Gosper-Ball covering 140 FCC lattice sites. 

Chris Ohler, who has created several abstract geometrical sculptures in metal [2], is interested in 
building a Gosper sculpture from metal tubing.  When planning to make a first Gosper sculpture from 
individual metal tube segments, it is prudent to keep it rather simple.  This raises the question:  What is 
the minimal number of tube segments that can still present the characteristics of a 3D Gosper curve?  One 
promising approach is to place some typical, hexagon-shaped “Gosper-Claws” in the outermost, 
peripheral layer of the sculpture, where these features can easily be seen, and to construct a small inner 
core that holds these outer elements in place.  I call this the Gosper-Onion approach [4].  Working on the 
FCC lattice, I start with a core of six vertices on the corners of an octahedron (Fig.2a).  I then surround 
this core with a second shell based on a truncated octahedron. This second shell has 24 atomic sites to 
define its convex hall and eight more atoms in the centers of the eight hexagonal faces (Fig.2b).  This 
Onion-Shell approach can be continued.  The third shell would have a total of 102 atomic sites (Fig.2c). 

           
                           (a)                                                   (b)                                                   (c)          

Figure 2:  (a) 6 atoms in shell 1;  (b) 24+8=32 atoms in shell 2;  (c) 6+48+48=102 atoms in shell 3. 
 

Various Design Options 
The 38 sites on the FCC lattice can be connected in many different ways.  To make a simple but 
convincing representation of a 3D Gosper curve, a Level-2 Gosper-Onion seems particularly well suited.  



 
 

The seven sites in the hexagonal faces of shell 2 are perfectly suited to accommodate one typical Gosper-
Claw.  In a first approach, I place two such claws on adjacent faces and combine them into a “Double-
Claw” (Fig.3).  I can do this on two pairs of faces (yellow and orange), and this naturally splits the outer 
shell into two equal halves.  The remaining sites in the other four hexagonal faces are used to connect the 
two outer half-shells to the inner octahedral sites.  I found two different ways of doing this.  In Model A 
(Fig.3a), the two Double-Claws are cross-connected with two inner struts (green and blue) that each use 
three vertices of the central octahedron.  Each of the two internal connecting branches passes through two 
opposite vertices of the central octahedron and exhibits a right-angle bend in between.  This structure 
exhibits 4-fold D2-symmetry (with 3 mutually perpendicular C2 rotation axes).  Some purists may object 
to the 90° bend.  In a second approach (Model B), the two connector branches each use three vertices 
associated with a single triangular face of the central octahedron.  This structure employs only 60° and 
120° bends, like the 2D Gosper curve, but it exhibits only 2-fold C2-symmetry (Fig.3b). 
 

       
                                                    (a)                                                           (b)                                                                   

Figure 3:  Gosper-Onion_38 paths:  (a) Model A with D2 symmetry,  (b) Model B with C2 symmetry. 
 
As an alternative solution, the four hexagon-shaped Gosper-Claws can be placed on four non-adjacent 
hexagonal faces of the truncated octahedron ‒ instead of forming two Double-Claws on two pairs of 
adjacent faces. This approach offers additional possibilities, since the four claws can be rotated or 
reflected individually, whereas in the construction of the Double-Claws, the orientation of the individual 
claws is prescribed.  On the other hand, it is quite a challenging puzzle to find good ways to connect the 
four individual claws into a single loop, while avoiding, as much as possible, bending angles of 90° or 0°, 
and while maintaining at least C2-symmetry. 

         
                               (a)                                                 (b)                                               (c)          

Figure 4:  (a) Claw faces shown as hexagonal rings;  (b) rings replaced with claws to form Model C;   
(c) rings replaced with reversed claws to form Model D. 



 
 

To tackle this design challenge, I present the four hex-faces that were supposed to carry the four 
individual claws as simple hex-rings (Fig.4a). I can then focus on finding four connector paths that 
connect the four claws into a single loop.  This requires that the two connecting points to each of the four 
hex-rings are placed 120° apart with respect to the center of the hex-faces.  The individual claws can then 
be rotated to have their two endpoints (which lie 120° apart) line up with the two path connection points. 

After some amount of searching through possible solutions, I found a nice configuration that exhibits 
C2-symmetry around the (vertical) z-axis (Fig.4b).  This design also keeps the four hex-faces that do not 
carry an individual Gosper-Claw relatively “flat”, without the pointy spikes produced by 120°-bends that 
jut out in the centers of these faces, as is the case in both Model A and Model B.  This model still has two 
of the square faces of the cuboctahedron spanned by four spiky 120°-bends, which may serve as the 
“legs” of an actual sculpture ‒ to give it a rather “airy” look (Figs.19b,c).  However, this model does have 
six bends of 90°.  More recently I found that by reversing the orientation of the four Gosper-Claws I could 
get rid of four of the 90° bends (Fig.4c).  By mixing and matching the orientation of the four Gosper-
Claws, there are other interesting possibilities to create different internal connecter paths. 

Fabrication Issues 
Chris Ohler [2], has committed himself to construct such a low-complexity Gosper sculpture based on 
Model A, using metal tubing with a diameter of 133mm.  He has worked out the relevant cutting angles 
for all 38 tubular segments.  For each tube segment, one needs to know the mitre angle at which the ends 
of the tube must be cut, as well as the torsion angle between the two cuts.  For a poly-line path that lies in 
a plane, these torsion angles are 0° as long as the bending continues in the same CW- or CCW-sense, and 
they are 180° wherever there is an inflection point.  For an arbitrary polyline in 3D space, many possible 
torsion angles may occur.  It is interesting to note that for these Gosper curves that connect nearest 
neighbours on the FCC lattice, only four non-planar torsion angles appear: 54.74°, 70.53°, 109.47°, and 
125.26°.  Figure 5a shows Ohler’s list of cutting angles α and torsion angles β for one quarter of Model A 
discussed above.  The remainder of the model follows the same list ‒ or it’s reversal ‒ because of the 
symmetry of the sculpture.  Figures 5b and 5c show some of the pre-cut metal tubes and the formation of 
a properly mitred turning angle of 120°. 

         
                      (a)                                                  (b)                                                          (c)              

Figure 5:  (a) Cutting angles α and torsion angles β for one quarter of all the tube segments.   
(b) Pre-cut metal tube segments.  (c) A mitered 120° tubular junction. (Images by C. Ohler). 

Assembly Issues 
The next issues to be addressed are:  In what sequence should the individual tube segments be assembled? 
And:  What kinds of jigs are required to hold individual tube segments and partial subassemblies in 
exactly the right positions, so that in the end the Gosper-loop closes nicely on itself?  It would not be 
accurate enough to just match the elliptical cross sections of two consecutive tube segments to obtain a 
clean realization of the whole sculpture.  It is advantageous to have additional help from some suitably 
designed jigs to hold small pre-assembled chains of a few consecutive tubular segment in their proper 
positions.  In the following I present a proposed assembly scheme, verified on a small 3D-print model. 



 
 

In each Gosper-Claw there are six consecutive segments that lie in the same common plane.  It 
makes a lot of sense to preassemble those tube-chains, since this is mostly a 2D layout and we need not 
worry about obtaining the proper torsion angles.  It may also be practical to add one or two additional 
tubular segments at the ends of such a Gosper-Claw.  In the following tests and evaluations of the 
proposed assembly sequences, these parts with five to eight tube segments were 3D-printed as cohesive 
units.  The large, planar regions of the Gosper-Claws then permit the insertion of some judiciously chosen 
“spacer slabs,” which allow additional parts to be added in suitably offset, parallel neighbor-planes. 

An Initial Assembly Step 
Figure 6 shows the six tubular chains that form the sculptural sub-assemblies of Model A: two internal 
cross-connector branches (Fig.6a), two complete Gosper-Claws (Fig.6b), and two partial Gosper-Claws 
that constitute the remainder of a Double-Claw (Fig.6c).   

    
                                       (a)                                  (b)                              (c) 

Figure 6:  Sub-assembly tube chains:  (a) internal connectors,  (b,c) peripheral Gosper claws. 
 

     
                                          (a)                                                                        (b) 

Figure 7:  (a) Jig with proper dihedral angle.  (b) Two simple claws fused into a Double-Claw. 
 

The two Gosper-Claws making up a Double-Claw occupy two adjacent faces of the outer Onion shell and 
form a dihedral angle of 109.47° between them.  A jig with a wall properly slanted at this angle (Fig.7a) 
makes it easy to put two such parts together (Fig.7b) to form one of the two Double-Claws (Fig.8a,b).  
This is also the first step for assembling Model B. 

Next, I needed to find a suitable jig for lining up the two internal connectors.  The two different 
sculpture models, Model A and Model B (Fig.3a,b), require slightly different approaches.   

 



 
 

       
                                                     (a)                                                        (b)                

Figure 8:  The resulting peripheral Double-Claws:  (a) inside view,  (b) outside view. 
 

Assembling Model A 
In Model A (Fig.3a) the internal connectors form some “crooked” struts that cross each other in the central 
octahedron.  Figure 9 shows how the two inner struts relate to one another.  Pairs of some tubular 
segments in one strut happen to be collinear with the corresponding segments in the other strut.  
Furthermore, the 3-segment, planar end-chains in each strut are parallel to the corresponding end-chains 
in the other strut.  Thus, two spacer-slabs of proper thickness can be used to keep the two struts in proper 
position with respect to one another.  The thickness of this spacer-slab is calculated as the basic path-
segment separation, ss, minus the given tube diameter, td.  In 2D, the distance between nearest parallel 
path segments is:  ul * cos(30°) = 0.866 ul,  where ul is the unit-length step of the Gosper path.  In the 3D 
sculpture, the critical separation of a whole group of coplanar segments from another group in an adjacent 
parallel plane is further reduced by:  sin(109.47°) = 0.9428, (the dihedral angle of the octahedron).  Thus:  

ss = 0.8165 ul,  and thus the spacer-slab thickness, st, should be:  st = 0.8165 ul – td. 
 

With the two spacer slabs in place (Fig.9a), the collinearity mentioned above can be checked and fine-
adjusted, and the two crossing struts can be bundled into a single rigid assembly (Fig.9b).  
 

     
                                     (a)                                                                            (b) 

Figure 9:  (a) Alignment of the two inner cross-connectors:  (a) end-view,  (b) side-view. 
 

The same thickness spacer-slab is also used to define the proper distancing of that central bundle from the 
outer claws. Thus, a spacer-slab can be placed inside one of the Double-Claws (Fig.10a) and the central 
bundle is then placed on top of this slab (Fig.10b).  This brings two connection points into close 
proximity and allows them to be fused with the proper orientation and alignment (see red arrows in 
Figures 10b and 10c). 



 
 

         
                          (a)                                                    (b)                                                       (c)                       
Figure 10:  Inserting cross connectors:  (a) spacer-slab in a Double-Claw;  (b) connector bundle placed; 

(c) the result with two connections made (shown upside down). 
 
Because of the symmetry of this sculpture, the same type of spacer-slab also controls the spacing of the 
central cross-connector bundle to the second Double-Claw.  A spacer-slab is placed onto the central 
bundle, and the second Double-Claw is then draped across this assembly (Fig.11a).  This would allow me 
to make the final two connections to this upper Double-Claw.  However, in reality, it is better to just make 
the connections between the bottom Double-Claw and the connector bundle, and then remove the spacer 
slab.  This results in Figure 10c.  This structure, turned upside down, can then be placed on a second 
configuration that looks like Figure 10a, and the final two connections can be made (Fig.11b).  Eventually 
the last spacer slab is also removed, revealing the completed Model A (Fig.12). 
 

      
                                                     (a)                                                              (b) 

Figure 11:  (a) All four parts properly spaced.  (b) Pre-connected part (Fig.10c) on top of spacer slab. 
 

               
                                                        (a)                                                            (b)                     
Figure 12:  Resulting sculptural maquette:  (a) resting on one Gosper-Claw,  (b) standing on four “legs.” 



 
 

Assembling Model B 
Figure 13 shows the six sub-assemblies for Model B.  The first step is the same as for Model A:  The two 
Double-Claws are formed by re-using the jig shown in Figure 7.  In Model B the internal connectors are 
more compact and do not cross each other.  Figures 13b,c show that in this model, too, there are open 
slots that can accommodate appropriate spacer-slabs.   

         
                                        (a)                                                           (b)                                      (c) 

Figure 13: (a) Sub-assemblies for Model B.  (b,c) Open slots for spacer-slabs in Model B.  
 

First, the two connector parts are aligned and fused against the bottom Double-Claw.  To do this, I form a 
configuration with one spacer-slab placed inside one Double-Claw, as seen in Figure 10a.  On this slab I 
place one of the connector pieces and fuse it with one end to the underlying Double-Claw (yellow arrow 
in Fig.14a).  Then the spacer slab is removed and re-inserted flush against the other half of the same 
Double-Claw.  In this configuration, I add the second connector unit and fuse it to the other end of the 
Double-Claw (yellow arrow in Fig.14b).  Next, I form a new cradle (like Fig.10a) with the 2nd Double-
Claw.  Into this cradle, I drop the assembly described above and fuse both ends of the Double-Claw to the 
two connector units (Fig.15a).  Removal of the spacer slab reveals the completed Model B (Fig.15b). 

      
                                                 (a)                                                       (b)                       

Figure 14:  (a) Placing and fusing a first connector;  (b) switching spacer slab to place 2nd connector. 

       
                                                        (a)                                                       (b)                       

Figure 15:  (a) One Double-Claw plus two connectors placed on 2nd Double-Claw plus spacer-slab. 
(b) Resulting sculptural maquette, Model B, standing on four “legs.” 



 
 

Assembling Model C 
Model C can also be partitioned into parts that start with a planar, 6-segment Gosper-Claw.  However, in 
this model there are no clearly identifiable internal connector parts.  Instead, the Gosper-Claws are 
enhanced in two different ways.  In the simpler part (Fig.16a), one extra segment is added to each end of 
the Gosper-Claw.  In the more complex part (Fig.16b), one of the ends of the Gosper-Claw carries a chain 
of four tubular segments that form a “zig-zag” path that lies in a plane parallel to the Gosper-Claw 
(Fig.16b).  Figure 16 shows the four 3D-printed subunits, composed of 8 and 11 segments, respectively.   

For a metal tube construction, the 11-segment part may be further partitioned into another simple 
part with 8 segments plus a separate planar branch of three segments, which can be added in a plane offset 
from the Gosper-Claw by using one of the spacer slabs described below. 
 

     
                                       (a)                                                                               (b)           

Figure 16:  Model C:  (a) the two simple parts,  (b) the two complex parts. – (different views). 
 
To assemble these parts, spacer-slabs again come in handy!  Figures 17a,b show that there are spacer-
slabs that fit snuggly into both the simple and the complex part.  Note that the orientation of these slabs is 
perpendicular to the dominant coordinate axes of the octahedron, and the thickness of these spacer-slabs 
thus is only:  ss = 0.7071 * ul – td.   Pairs of identical parts with their inserted slabs then fit together 
nicely, so that the two slabs become parallel to each other.  Between them, they squeeze the zig-zag 
branch that needs to be joined, and they guarantee that this branch remains planar (Fig.17c,d).  
 

            
                    (a)                                       (b)                                         (c)                                  (d) 

Figure 17:  Spacer-slabs:  (a) in the simple part;  (b) in the complex part;   
(c) joining two simple parts;  (d) joining two complex parts. 

 
Figures 18a,b show the resulting joined pairs of identical parts.  To assemble these into the final model, 
two spacer-slabs are used simultaneously (Fig.18c).  These slabs are again parallel to the claw-faces, and 
thus their thickness is again:  st = 0.8165 ul – td,  as discussed above for Model A.  After removal of the 
spacer-slabs, the sculpture Model C emerges (Fig.19). 



 
 

         
                                (a)                                            (b)                                                (c)                       
Figure 18:  The two glued double-parts:  (a) simple;  (b) complex;  (c) aligned with proper spacer-slabs. 
 

         
                           (a)                                                    (b)                                                  (c)                       

Figure 19:  Final sculpture Model C:  (a) placed on one Gosper-Claw,  (b,c) standing on four “legs.” 
 
Similar sub-assemblies and compositions with the help of corresponding spacer-slabs also apply in the 
construction of Model D – and probably for most other variants of this Gosper-Onion_38 with four 
separate Gosper-Claws in different orientations and different rotations. 

Scaling Issues 
In our SLIDE [6] or JIPCAD [1] programs for designing and visualizing these sculptural models, I can 
readily adjust the tube diameter used in the sweep along the Gosper polyline to find the best level of 
“transparency” into the inner parts of the sculpture.  I like a value that leaves a little more than a tube 
diameter of empty space between adjacent parallel tube segments, say, a tube diameter of:  td = 0.4 ul. 

When considering a physical sculpture made from metal tube segments, the diameter of the tubes 
used is typically given, and thus the unit step length, ul, that results in the desired separation between 
nearest parallel tube segments would then be calculated as:  ul = 2.5 td.  Thus, if the sculpture is 
constructed from tubes with a diameter of 133mm, the Gosper polyline would be scaled so that the unit-
step-length, ul, is about 33cm.  The overall Gosper-Onion_38 sculpture would then have a diameter of 
about:  3 ul + td,  or a little more than 1 meter. 
 

3D-Printed  Gosper-Globes 
In my Gosper-Globes the Gosper strand is confined to lie in a thin spherical shell.  The sites where the 
strand makes a turn lie on a sphere.  But these sites do not form a completely regular array, and the step-
length between nearest neighbors will vary somewhat.  In the examples discussed in this section, I 
approximate the sphere with a pentakis-dodecahedron (Fig.20a) [11].  I then cover each of the 60 triangles 
with an array of subdivision sites ranging from a subdivision level of 3 (Fig.20c) for the smaller globe 
(Fig.24) to a subdivision level of 5 in the final sculpture (Fig.28). 



 
 

Stability Issues 
To stay true to the 2D Gosper curve, a Gosper sculpture should consist of just one (possibly closed-loop) 
strand.  However, if the Gosper strand has more than a few hundred segments and no intermediate 
support, it would result in a rather flimsy sculpture, where parts of it would sag under the influence of 
gravity.  In order to make more complex Gosper-Globes, I allow the Gosper strand to assume a more 
complex graph structure.  In the following, this graph has the topology of the wire-frame of a cube.  Thus, 
there will be eight 3-way branching points.  The “edges” between two nearest branching points then 
“fractalized,” i.e., deformed into Gosper-like polylines that together will cover the surface of a sphere as 
uniformly as possible.   

To define the best set of “lattice” points on the sphere surface, I want to start with as “round” a 
polyhedron as possible, ‒ not with a cube.  Good candidates are the dodecahedron, or better yet, the 
pentakis-dodecahedron (Fig.20a).  The 60 triangles can then readily yield an array of subdivision points.  
When these points are projected onto the circum-sphere, they yield a nice pattern of almost uniformly 
spaced points.  It is also easy to integrate the desired wire-frame cube with this dodecahedral geometry.  
Each pentagonal region carries one of the 12 cube edges, and these edges connect two non-adjacent 
vertices in each pentagon (Fig.20b).  These 12 wire segments are then “fractalized” to cover the whole 
pentagonal region.  In Figure 20c, one “fractalized cube edge” runs from vertex A to vertex C. 
 

              
                         (a)                                                   (b)                                                     (c)                       

Figure 20:  (a) Pentakis-dodecahedron.  (b) Cube-frame embedded in a dodecahedron.  
(c) Level-3 fractalized cube edge to cover a pentagonal region. 

Fabrication Issues 
Complex spherical balls or shells (Figs. 1c, 22a) formed by an intricate web of tubular pathways, such as 
3D polylines following a Hilbert curve [10] or mimicking a Gosper curve [9][12], are difficult to print on 
most 3D printers that do not provide an all-around, support structure as is the case in SLS (Selective Laser 
Sintering) or in Z-Corp printers [13].  

               
                (a)                                   (b)                                     (c)                                           (d) 
Figure 21:  (a) Down-spike in the Gosper curve,  (b) collapsed because of insufficient support structure, 

(c) fabricated with a copious amount of support material.  (d) Half of a spherical Gosper-Globe. 



 
 

One reason is that it is difficult to remove the support material from the inside regions of the sphere.  A 
second difficulty, more specific to the Gosper sculptures that I am currently interested in, is related to any 
downward-pointing spikes (Fig.21a).  These spiky points may not get an adequate support structure 
(Fig.21b) that would allow them to be anchored in a sturdy enough way, so that they can then support any 
lengthy, complex tubular pathways that connect to this down-spike [4].  This problem can be mitigated by 
using a very generous amount of scaffolding material to support every model facet with a downward-
pointing face normal (Fig.21c).  However, this creates an enormous amount of scaffolding, which may 
fuse into a rather solid block that is near-impossible to remove from the inner parts of the whole structure 
– unless the support material is soluble. 

One idea to work around this problem is to split the spherical shell into two hemispheres and print 
each in the orientation of a hemispherical bowl (Fig.21d).  This places the support material on the outside 
of the bowl and instantiates it radially only as far until the slope of the bowl becomes steep enough so that 
no further support is required.  However, for a hemispherical shell, the amount of support material is still 
relatively voluminous, and down-spikes in the upper, steeper parts of the bowl surface are still a problem. 

The situation improves as we split the sphere surface into more, and correspondingly “flatter” parts.  
A natural next step is to split the sphere into four quadrants – or rather “tetrants” – since I plan to use a 
partitioning based on tetrahedral symmetry (Fig.22b).  Now the total volume of support material is much 
smaller, and there are no longer any truly “down-pointing” spikes.  Such a partitioning of the sphere also 
allows me to construct maquettes that are somewhat larger than the build volume of the available printer.  
 

Gosper-Globe_276  
As a first demonstration, I am constructing a spherical shell, which I call Gosper-Globe_276 (Fig.22a), on 
an Ultimaker printer [7] with PLA build-material and also with PLA support-material.  In order to make 
this approach work, I want all tubular elements appearing in each sphere-tetrant to be connected to each 
other, forming a reasonably rigid part that can be used as a building block for the whole sphere shell.  
Thus, rather than designing a single-loop Gosper path that winds its way serially through all four tetrant 
domains, I have introduced some branching points.  The resulting tubular structure in the spherical shell 
now has the same connectivity as the wire-frame of a cube: Twelve zig-zag-y paths connect eight 3-way 
branch points.  One of these valence-3 branching points can be found in the center of each of the four 
tetrant domains; the other four junctions appear at three symmetrically spread-out locations on the rims of 
the tetrant domains. 

It was more difficult than anticipated to find a reasonable Gosper path to replace all twelve cube 
edges, so that three of them lie entirely in each tetrant part.  To facilitate the assembly of the four tetrant 
parts, I combined the geometries of the three partial 3-way branch points lying on the periphery of the 
tetrant part into one fully modeled 3-way junction.  I then placed just one of those onto the border of each 
tetrant part, ‒ shown in contrasting colors in Figure 22b. Straight, cylindrical tube connections then 
accommodate the two incoming paths from the other two tetrant parts that connect to this branch point. 

           
                       (a)                                                 (b)                                                          (c) 
Figure 22:  (a) CAD model of Gosper-Globe_276;  (b) one “tetrant” of it.  (c) A first, unsuccessful print. 



 
 

In my first attempt, I used the default settings for the Ultimaker printer as supplied by the Cloud 
3DPrinterOS service [14] offered through the Jacobs Institute for Design Innovation at Berkeley. The 
resulting print had an incomplete support structure that caused some breaks in the 3D tubular pathways 
(Fig.22c).  In my second attempt, I used the expert mode in the 3DPrinterOS.  I lowered the support 
overhang angle from 60° to 40°, and I increased the support density from 15% to 20%.  This resulted in a 
good support structure and nice, sturdy parts.  Figure 23a shows one tetrant part as it came off the 
Ultimaker printer. The reduced overhang angle was sufficient to firmly support the many tubular 
segments that then serve as anchors for additional tubular branches, which may take off at steeper angles 
and which need no further support. The support was easy to break away, and the “spidery” parts 
(Figs.23b,c) were rigid enough to keep their shapes when handled for clean-up and for assembling the 
complete spherical shell. 

      
                               (a)                                                         (b)                                            (c)     

Figure 23:  (a) Tetrant part as it came off the Ultimaker printer.  (b, c) Outside and inside view  
of the tetrant part after its (white) support structure had been removed. 

 
The first two tetrants connect to each other with just two tubular joins.  This leaves the angle of rotation 
around the line through these two connection points rather poorly defined.  To make sure that the two 
parts join at the right angle so that they nicely adhere to the sphere of the final sculpture, I formed a bowl-
shaped supporting jig that kept the parts tilted at the right angles.  Joining a third tetrant part is less 
ambiguous, since it joins the previous two parts at three tubular join-points (Fig.24a).  Adding the fourth 
tetrant by fusing another three joints then completes Gosper-Globe_276  (Fig.24b). 

       
                                              (a)                                                                               (b) 

Figure 24:   (a) Three tetrant parts assembled into a partial spherical shell.  
 (b) The complete spherical shell of Gosper-Globe_276. 



 
 

Gosper-Globe_756 
The construction of the purple Gosper-Globe_276 gave me the confidence that this approach is indeed 
practical.  So, I embarked on building a globe of much higher complexity and of a size that exceeds the 
build volume of the Ultimaker printers to which I had access through the Cloud 3DprintOS.   

The 3D-printed parts from which the Gosper-Globe_276 was assembled have three zig-zag paths 
running from a central 3-way branch point to the three branch points on the periphery of the tetrant in 23 
steps on a set of vertices that correspond to a level-3 subdivision of the 60 triangles of the pentakis-
dodecahedron [11].  In the new Gosper-Globe_756, I used a level-5 subdivision of these triangles, which 
results in the three zig-zag paths in each tetrant having 63 steps.  Figure 25 shows one of those parts as it 
comes off the printer, and later, after about half the support material has been removed (Figs.25b,c). 
 
 

         
                           (a)                                                        (b)                                               (c) 

Figure 25:  One tetrant of the Gosper-Globe_756:  (a) as it comes off the Ultimaker 3D printer,  
 (b) after some support removal,  (c) seen from the support side. 

 
At first, I was worried that each tetrant part would be rather “flimsy” and would deform seriously under 
gravity once it was freed from its support structure.  Therefore, I kept much of the support in place until I 
had properly joined two such tetrants, and I planned to remove the remaining support structure after 
having joined all four parts. 

The first two tetrant parts connect in only two of the 3-way branch points.  To make sure that they 
get joined at the right angle, I constructed a jig that provides two mounting planes with the dihedral angle 
of the tetrahedron (70.5 degrees) between them (Fig.26a).  Figure 26b shows the resulting assembly of the 
first two tetrants joined in this jig. 
 

     
                                           (a)                                                                               (b)  

Figure 26:  (a) Jig to hold two tetrants at the proper angle between them.  
 (b) The resulting fused tetrant pair. 



 
 

 
At this point I started the tricky task of removing some support material from this joined pair without 
stressing or breaking the actual Gosper path.  It tuned out that handling this assembly was awkward, and 
soon one of the glued joints broke.  This encouraged me to remove all the support from one of the tetrants 
to see how “flimsy” the unsupported tetrant part really was.  Fortunately, it turned out that it was stable 
enough, so that I no longer had to worry whether I could properly join unsupported tetrant parts (Fig.27a). 
 

       
                                         (a)                                                                               (b)  

Figure 27:  (a) Two tetrant parts fused together.  (b) Combining the two pairs in a suitable bowl. 
 
The tetrant parts #3 and #4 were individually freed of all support material and then joined into a pair-
constellation like Figure 27a, using again the jig shown in Figure 26a.  Joining the two pairs into the 
complete sphere turned out to more difficult.  The two pairs were indeed rather “flimsy” or “squishy” 
components!  I joined them by placing both parts with the appropriate rough alignment between them into 
a small salad bowl of the right size (Fig.27b) and then lining up and gluing together a first joint between 
the two assemblies (using Duco Cement).  After that joint had hardened sufficiently, I then lined up and 
glued a second joint.  I repeated this process for joints #3 and #4.  With all joints properly fused, the 
completed globe was firm enough to hold its shape under the influence of gravity, even when just placed 
on a flat surface or onto a small supporting ring (Fig.28a).  A nicer way to show off the assembled 
Gosper-Globe_756 is to support it with a small transparent cylinder or a small glass bowl (Fig.28b). 
 

           
                                         (a)                                                                                (b)  

Figure 28:  The final Gosper-Globe_756:  (a) Side view,  (b) View from below. 



 
 

 
Conclusions 

There are many different kinds of Gosper-Sculptures, and there is no standard procedure to design and 
fabricate such sculptures.  Every type of geometry has different design challenges, and the size and type 
of realization of such a sculpture presents additional difficulties.  But in all cases where the complete 
model cannot be built as a single coherent object on a suitable 3D-printer, judiciously partitioning the 
overall sculpture into a few sub-assemblies is an important step.  Smaller sub-assemblies may be easier to 
build, but then the composition of these smaller parts into the final sculpture becomes a bigger problem.  
Complicated scaffolding may be required for the assembly of many small parts into an accurately aligned 
and balanced sculpture.   

For the simple Gosper-Onion_38 metal sculpture, the described, promising approach was driven by 
looking for sub-assemblies that have large co-planar regions, for which it was easy to accurately 
implement the proper torsion angles; these sub-assemblies can then be assembled with the help of a few 
simple jigs.  For the complex Gosper-Globes, I was aiming to have as few partitions as possible and to 
make the largest parts that could be 3D-printed without a lot of difficult-to-remove support material.  
Different Gosper-Sculpture types and different construction materials will require a re-evaluation of these 
tradeoffs. 
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