Mid-Term—Math 308-509

Instructions: Show all work on the paper provided. Only scientific calculators are allowed.

PART I

- 1. (10 pts.) Find the solution to $y' = (9 y^2) \sin t$, $y(\pi) = 0$.
- **2.** (5 pts.) If L is the operator $L = D^2 xD + 3$, find $L[e^{2x}]$.
- **3.** (15 pts.) Compute the Wronskian of the set $\{xe^{-2x}, xe^{-3x}\}$. Is the set linearly dependent or linearly independent? Can $\{xe^{-2x}, xe^{-3x}\}$ be a fundamental set for L[y] = y'' + p(x)y' + q(x)y = 0, with p and q being continuous for all x? Explain.
- **4.** (10 pts.) Verify that the equation $y^2dx + (2xy \sin(y))dy = 0$ is exact, and solve the IVP comprising this equation together with $y(1) = \pi$.
- 5. (10 pts.) The Gompertz equation, which is given below, is used to model population growth.

$$\frac{dp}{dt} = -rp\ln(p/K), \quad r > 0, K > 0 \text{ are constants, and } p \ge 0$$

Find the equilibrium points. For what points (t_0, p_0) are we assured that the associated IVP with initial conditions $p(t_0) = p_0$ can always be uniquely solved? At p(3) = K/2, is the population increasing or decreasing? Can the population go from p(3) = K/2 to p = 2K? Explain.

6. (10 pts.) Use reduction of order to find a second linearly independent solution to $x^2y'' - 5xy' + 9y = 0$, given that $y_1 = x^3$ is a solution.

PART II

- 1. (20 pts.) The heat in a building is turned on at 6 am and set to 68° . At that time the building's temperature is 55° ; the outside temperature is 45° , and remains so the entire day. If the time constant for the building is 2 hours and if the building's time constant with heating or cooling is 1/3 hours, then what is the temperature in the building at 10 am?
- 2. (20 pts.) A nitric acid solution flows at a constant rate of 6 L/min into a large tank that initially held 200 L of a 0.5% nitric acid solution. The solution inside the tank is kept well stirred and flows out of the tank at a rate of 8 L/min. If the solution entering the tank is 20% nitric acid, determine the volume of nitric acid at any time t > 0.