
Math 311-502 (Fall 2004) Name 1

Test II – Key

Instructions: Show all work in your bluebook. Calculators that do linear
algebra or calculus are not allowed.

1. Define each space listed and describe the operations of vector addition
(+) and scalar multiplication ( · ) corresponding to it.

(a) (5 pts.) Pn is the set of all polynomials of degree n or less;
that is, Pn = {a0 + a1x + · · ·+ anxn}. Here are the operations. If
p, q ∈ P, p(x) = a0+a1x+ · · ·+anxn q(x) = b0 +a1x+ · · ·+bnxn ,
then
(p + q)(x) = (a0 + b0) + (a1 + b1)x + · · · + (an + bn)xn.
If c is a scalar, then c · p is the polynomial
(c · p)(x) = ca0 + ca1x + · · ·+ canxn.

(b) (5 pts.) C(1)[0, 1] is the set of all functions f defined and contin-
uously differentiable on the interval [0, 1]. If f, g ∈ C(1)[0, 1], then
f + g is defined by
(f + g)(x) = f(x) + g(x)
and c · f is defined by
(c · f)(x) = cf(x).

2. (15 pts.) Determine whether or not the set S of 2 × 2 matrices M =(
x y
z w

)
such that x + w = 0 is a subspace of M2,2.

Solution. Is 0 =

(
0 0
0 0

)
is in S? Yes, since x+w = 0+0 = 0. Is S

closed under addition? Let M1 =

(
x1 y1

z1 w1

)
and M2 =

(
x2 y2

z2 w2

)

be in S. We need to check whether (x1+x2)+(w1+w2) is 0. Rearranging
terms, we get (x1 +x2)+(w1 +w2) = (x1 +w1)+(x2 +w2) = 0+0 = 0.
Thus, M1 + M2 is in S. Is S closed under scalar multiplication? To
check this, we to see whether cx + cw = 0. Again, this is true because
cx + cw = c(x + w) = c · 0 = 0

3. (15 pts.) Determine whether or not the set {1, ex, e2x} is linearly
independent in C(−∞,∞).



Solution. Start with the equation c1 + c2e
x + c3e

2x ≡ 0. Differentiate
this twice to get c2e

x + 2c3e
2x ≡ 0 and c2e

x + 4c3e
2x ≡ 0. Set x = 0 in

the three equations. This results in the system

c1 + c2 + c3 = 0, c2 + 2c3 = 0, c2 + 4c3 = 0

Subtracting the second equation from the third gives 2c3 = 0, so c3 = 0.
Using this in the second equation gives c2 + 2 · 0 = 0, so c2 = 0. Using
both values in the first equation then gives c1 = 0. It follows that the
set is linearly independent.

4. (10 pts.) Consider G : C(−∞,∞) → C(−∞,∞) given by Gu(x) =∫ x

0
etu(t)dt. Show that G is linear and that it is one-to-one.

Solution. By inspection, the domain and range of G are vector spaces.
Also, by rules from algebra and calculus, we have:

G[u + v](x) =

∫ x

0

et(u(t) + v(t))dt

=

∫ x

0

etu(t)dt +

∫ x

0

etu(t)dt

= Gu(x) + Gv(x).

Thus G is additive. In addition, if c is a scalar, then we have:

G[cu](x) =

∫ x

0

et(cu(t))dt

= c

∫ x

0

etu(t)dt

= cGu(x).

Thus, G is also homogeneous. G thus satisfies the conditions for it to
be linear. To see that G is one-to-one, we need to solve for u when
Gu(x) ≡ 0. The fundamental theorem of calculus implies

d

dx

(∫ x

0

et(cu(t))dt

)
= exu(x) ≡ 0

Dividing by ex then gives us that u = 0. This is equivalent to a linear
function being one-to-one, so G is one-to-one.

2



5. (20 pts.) Find bases for the column space, null space, and row space
of C, and state the rank and nullity of C. What should these sum to?
Do they?

C =


 1 −3 −1 −3

−1 3 2 4
2 −6 4 0




Solution. Use row operations to put C in reduced row echelon form.

C ⇐⇒ R =


 1 −3 0 −2

0 0 1 1
0 0 0 0




By the various methods described in class, the bases for the column
space, row space, and null space are, respectively, follows.





 1

−1
2


 ,


 −1

2
4





 ,

{(
1 −3 0 −2

)
,
(

0 0 1 1
)}

,







3
1
0
0


 ,




2
0
−1
1







.

The rank and nullity of C are both 2. There sum should be 4, which is
the number of columns, and it is.

6. Given that L : P2 → P2 be defined by L(p) = x2p′′ − 2(x − 1)p′ + 3p
is a linear transformation, do the following:

(a) (10 pts.) Find the matrix of L relative to the basis B = {1, x, x2}.
Solution. First we apply L to the basis. L[1] = 3, L[x] = x + 2,
and L[x2] = 2x2 − 4x2 + 4x + 3x2 = x2 + 4x. The matrix for L
then has as columns the coordinate vectors for each of these, and
they are in the same order as B; hence, the matrix is

A =


 3 2 0

0 1 4
0 0 1



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(b) (5 pts.) Find [2 − x + x2]B and use the matrix from part 6a to
solve L(p) = 2 − x + x2 for p.

Solution. First, we have

[2 − x + x2]B =


 2

−1
1




The differential equation is completely equivalent to the matrix
equation A[p]B = [2− x + x2]B. Let’s put this in augmented form
and row reduce it.

 3 2 0 2
0 1 4 −1
0 0 1 1


 ⇐⇒


 1 0 0 4

0 1 0 −5
0 0 1 1




Hence, [p]E = (4 − 5 1)T , and so p(x) = 4 − 5x + x2.

7. Let A =

(
2 −1
2 5

)
.

(a) (10 pts.) Find the eigenvalues and eigenvectors of A.

Solution. The characteristic polynomial is

pA(λ) = det

(
2 − λ −1

2 5 − λ

)

= λ2 − 7λ + 12 = (λ − 3)(λ − 4),

and so there two eigenvalues, λ3 and λ = 4. The two systems we
need to solve to get the eigenvectors are just( −1 −1 0

2 2 0

)
and

( −2 −1 0
2 1 0

)

These give the eigenvectors (−1 1)T and (−1 2)T , for 3, 4, respec-
tively.

(b) (5 pts.) Use the answer to part 7a to solve
dx

dt
= Ax.

Solution x = c1e
3t

( −1
1

)
+ c2e

4t

( −1
2

)
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