
Matlab M-Files
There are four ways of doing code in Matlab. One can directly enter code
in a terminal window. This amounts to using Matlabas a kind of calculator,
and it is good for simple, low-level work. The second method is to create a
script M-file. Here, one makes a file with the same code one would enter in a
terminal window. When the file is “run”, the script is carried out. The third
method is the function M-file. This method actually creates a function, with
inputs and outputs. The fourth method will not be discussed here. It is a
way to incorporate C code or FORTRAN code into Matlab; this method
uses .mex files. We will not disucss it here.

1 Terminal Input

One can type the code in the Matlab terminal window. For example, if we
wish to plot x sin(3x2)e−x2/4 in the range [−π, π], we could type the following
in the terminal window.

x=(-pi):pi/40:pi; ENTER

y=x.*sin(3*x.ˆ2).*exp(-x.ˆ2/4); ENTER

plot(x,y) ENTER

The code listed above creates the row vector x, and then uses it to form a row
vector y whose entries are the values of the function x sin(3x2)e−x2/4 for each
entry in x. The operations preceded by a “dot,” such as .* or .ˆ are array
operations. They allow entry-by entry multiplications or powers. Without
the “dot,” these are matrix operations. After creating the arrays x and y,
an x-y plot is made.

This method of doing calculations is good for short, one-time-only calcu-
lations or for calculations where one does not wish to change any parameters.

2 Script M-Files

If we wish to execute repeatedly some set of commands, and possibly change
input parameters as well, then one should create a script M-file. Such a file
alsways has a “.m” extension, and consists of the same commands one would
use as input to a terminal. For example, to do the plot in section 1, one
would create the file my plot.m:

1



x=(-pi):pi/40:pi;
y=x.*sin(3*x.ˆ2).*exp(-x.ˆ2/4);
plot(x,y)

To execute the “script”, one would use this command:

my plot ENTER

Script M-files are ideal for repeating a calculation, but with some param-
eters changed. They are also useful for doing demonstrations. As an exercise,
create and execute the script file sc plot.m:

m=menu(’Pick a plot’,’Sine plot’,’Cosine plot’);
if m==1,
x=(-pi):pi/40:pi;
y=sin(x);
title(’Sine’)
else
x=(-pi):pi/40:pi;
y=cos(x);
title(’Cosine’)
end
plot(x,y)

As before, to execute the script file, type

sc plot ENTER

3 Function M-Files

Most of the M-files that one ultimately uses will be function M-files. These
files again have the “.m” extension, but they are used in a different way then
scripts. Function files have input and output arguments, and behave like
FORTRAN subroutines or C-functions. The structure of a typical function
file, say my fun.m, is as follows:

function outputs=my fun(inputs)
code
...
code
outputs=· · ·

2



Note that the word function appears at the start of the file, and in lower
case letters. In addition, the outputs and inputs and name of the function
are listed. Let us return to the plot done in section 1. Suppose that instead
of giving the vector x, we want to make it a variable. At the same time, we
want to have available the data that we plotted. Here is a function file that
would do this.

function y=my fun(x)
y=x.*sin(3*x.ˆ2).*exp(-x.ˆ2/4);
plot(x,y)

Function files are normally used to combine functions in Matlab to get
new functions. For example, suppose that we want to have at our disposal
a function that computes the inverse of the square of a matrix, and returns
an error message if the matrix is close to singular or singular. Call this file
inv sq.m.

One more thing. In the code below, note that Aˆ2 is used, not A.ˆ2.
This is because we are computing the square of a matrix, not a matrix with
the entries of A squared.

function B=inv sq(A)
if abs(det(A))< 0.0001,
error(’The matrix is singular’)
else
B=inv(Aˆ2);
end

4 Anonymous Functions

There is another important way to represent a function in Matlab. Fre-
quently, we want to use simple functions, such as the one we’ve been working
with, in a single session. While an m file can be used to do this, it adds
clutter to the collection of m files. To do this, Matlab provides what it
calls an anonymous function. Here is an example of how it works.

fnct=@(x) x.*sin(3*x.ˆ2).*exp(-x.ˆ2/4); ENTER

The function fnct can be used in a seesion that same way as sin, say. To
find the value of the function at x = 2.3, use type in fnct(2.3). To plot it
against x=(-pi):pi/40:pi; use the command plot(x,fnct(x)).

3


