Math 641-600 Fall 2024
Current Assignment
Assignment 12 - Due Monday, December 2, 2024.
- Read sections 4.1, 4.2, 4.3.1, 4.3.2, 4.5.1 and my notes on and
my notes
on
example problems for distributions.
- Do the following problems.
- Section 4.1: 4, 7
- Section 4.2: 1, 3, 4
- Section 4.3: 3
- Let $F:C[0,1]\to C[0,1]$ be defined by $F[u](t) :=
\int_0^1(2+st+u(s)^2)^{-1}ds$, $0\le t\le 1$. Let $\| \cdot
\|:=\|\cdot \|_{C[0,1]}$. Let $B_r:=\{u\in C[0,1]\,|\, \|u\|\le
r\}$.
- Show that $F: B_1\to B_{1/2}\subset B_1$.
- Show that $F$ is Lipschitz continuous on $B_1$,
with Lipschitz constant $0<\alpha \le 1/2$.
- Does $F$ have a fixed point in $B_1$? Why or why not? Be brief.
- Let $Lu=-u''$, $u(0)=0$, $u'(1)=2u(1)$.
- Show that the Green's function
for this problem is
\[
g(x,y)=\left\{
\begin{array}{rl}
-(2y-1)x, & 0 \le x < y \le 1\\
-(2x-1)y, & 0 \le y< x \le 1.
\end{array} \right.
\]
- Let $Kf(x) := \int_0^1 g(x,y)f(y)dy$. Show that $G$ is a self-adjoint
Hilbert-Schmidt operator, and that $0$ is not an eigenvalue of $G$.
- Use (b) and the spectral theory of compact operators to show the
orthonormal set of eigenfunctions for $L$ form a complete set in
$L^2[0,1]$.
- Suppose that $Lu= u''+\lambda u$, with Dom$(L)=\{u\in
L^2[0,\infty):Lu\in L^2[0,\infty)\ \text{and}\ u(0)=0\}$, where
$\lambda\in \mathbb C \setminus [0,\infty)$. In addition, choose
$\text{Im}\sqrt{\lambda}>0$. Show that the Green's function for $L$ is given by
\[ g(x,y, \lambda)=\begin{cases}
\frac{1}{\sqrt{\lambda}}\sin(\sqrt{\lambda} xe^{i\sqrt{\lambda} y} &
0\le x\le y<\infty\\ \frac{1}{\sqrt{\lambda}}\sin(\sqrt{\lambda}
y)e^{i\sqrt{\lambda}x} & 0\le y\le x<\infty \end{cases}\]
Hint: follow the procedure used in Keener, pg. 150, to solve a similar
problem.
Updated 11/24/2024.