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1 Definition of the Adjoint

Let V and W be real or complex finite dimensional vector spaces with inner
products 〈·, ·〉V and 〈·, ·〉W , respectively. Let L : V → W be linear. If there
is a transformation L∗ : W → V for which

〈Lv,w〉W = 〈v, L∗w〉V (1)

holds for every pair of vectors v ∈ V and w in W , then L∗ is said to be the
adjoint of L. Some of the properties of L∗ are listed below.

Proposition 1.1. Let L : V →W be linear. Then L∗ exists, is unique, and
is linear.

Proof. Introduce an orthonormal basis B for V and C for W . Then, relative
to these bases, the matrix for L is

AL =
[
[Lv1]C [Lv2]C · · · [Lvn]C

]
. (2)

Also, relative to B and C, it is easy to show that the inner products become

〈u, v〉V = [v]∗B[u]B and 〈w, r〉W = [r]∗C [w]C

From this and standard matrix algebra, it follows that

〈Lv,w〉W = [w]∗CAL[v]B = (A∗L[w]C)∗[v]B.

Of course, A∗L ∈ Cn×m exists, is unique, and takes Cm → Cn. Now, let
y = [w]C and set x = A∗Ly. Define v =

∑n
j=1 xjuj , so that x = [v]B
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and, consequently, [v]B = A∗L[w]C . This uniquely defines a (linear) map
L∗ : W → V . Moreover,

〈L∗w, v〉V = [v]∗BA
∗
L[w]C = (AL[v]B)∗[w]C = 〈w,Lv〉W .

Taking conjugates above yields 〈Lv,w〉W = 〈v, L∗w〉V . Thus, L∗ exists and,
obviously, is unique.

It is worthwhile to formally state a result that we actually got in the
course of establishing the Proposition 1.1 results above.

Corollary 1.2. Let V and B be as described above. If L : V → V is a
linear transformation whose matrix relative to B is AL, then the matrix of
L∗ is AL∗ = A∗L.

We say that L : V → V is self adjoint if and only if L∗ = L. Self-
adjoint transformations are extremely important; we will discuss some of
their properties later. Before we do that, however, we should look at a few
examples of adjoints for linear transformations.

Example 1.3. Consider the usual inner product on V = Cn; this is given
by 〈x, y〉CN = y∗x. As noted above, for an n × n matrix A, 〈Ax, y〉CN =
y∗Ax = (A∗y)∗x. Thus A∗ is the conjugate transpose of A, a fact we tacitly
used above.

Example 1.4. Let V = Pn, where we allow the coefficients of the polyno-
mials to be complex valued. For an inner product, take

〈p, q〉 =

∫ 1

−1
p(x)q(x)dx , (5)

and for L take
L(p) = [(1− x2)p′]′ . (6)

Doing an integration by parts yields 〈p, Lq〉 = 〈Lp, q〉. Thus, L = L∗ and L
is self adjoint.

Example 1.5. Let V be the set of all complex valued polynomials that are
of degree n or less. Let L(p) = xp′ and use 〈p, q〉 =

∫ 1
0 p(x)q(x)dx as the

inner product. Again, an integration by parts shows that∫ 1

0
xp′(x)q(x)dx = p(1)q(1) +

∫ 1

0
p(x)(−xq(x))′dx.
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It would seem that L∗q = −(xq(x))′. This isn’t quite correct, however. We
need to take care of the term p(1)q(1). To do this, we begin by finding
a polynomial δ(x)1 such that

∫ 1
0 p(x)δ(x)dx = p(1), for all p ∈ V . This

can be always be done. For example, if n = 2, one can show that δ(x) =
3 − 24x + 30x2. In any case, we see that p(1)q(1) =

∫ 1
0 p(x)q(1)δ(x)dx.

Hence, ∫ 1

0
xp′(x)q(x)dx =

∫ 1

0
p(x)(−xq(x))′ + q(1)γ(x)dx.

It follows that L∗q(x) = −(xq(x))′ + q(1)δ(x).

2 Spectral Theory for Self-Adjoint Operators

Having done a few examples, let us return to our discussion of self-adjoint
transformations. We begin with the general case where the vector space V
is not assumed to be finite dimensional. We have the following important
result.

Proposition 2.1. Let V be a complex vector space with an inner product. If
L : V → V is a self-adjoint linear transformation, then the eigenvalues of L
are real numbers, and eigenvectors of L corresponding to distinct eigenvalues
are orthogonal.

Proof. Suppose that λ is an eigenvalue of L and that x is a corresponding
eigenvector. We therefore have Lx = λx, and so 〈Lx, x〉 = 〈λx, x〉 = λ〈x, x〉.
Similarly, we see that 〈x, Lx〉 = 〈x, λx〉 = λ̄〈x, x〉 . Now, because L = L∗, we
have that 〈Lx, x〉 = 〈x, Lx〉, which together with the previous two equations
gives us λ〈x, x〉 = λ̄〈x, x〉. Finally, since x 6= 0, we may divide by 〈x, x〉; the
result is λ = λ̄. This shows that λ is a real number. Now suppose that λ1

and λ2 are distinct eigenvalues with eigenvectors x1 and x2. Observe that,
because L is selfadjoint and the eigenvalues are real, we have λ1〈x1, x2〉 =
〈Lx1, x2〉 = 〈x1, Lx2〉 = λ2〈x1, x2〉. Thus, (λ1 − λ2)〈x1, x2〉 = 0 Since λ1 6=
λ2, dividing by λ1 − λ2 yields 〈x1, x2〉 = 0.

Before we go on to our next result, we need to set down a few facts about
eigenvalues and eigenvectors, and about bases in general. This we now do.

Lemma 2.2. Let V be a complex, finite dimensional vector space, with
dimension n ≥ 1. If L : V → V is linear, then L has at least one eigenvalue.

1δ(x) plays the role of a Dirac delta function for the polynomial space.
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Proof. Let B be a basis for V and let AL be the matrix of L relative to
B-coördinates. Because det(AL − λI) = 0 is a polynomial in λ, it has n
roots, if one counts repetitions. In any case, it has between 1 and n distinct
roots, all of which are eigenvalues. Thus, L has at least one eigenvalue.

Let us again return to our discussion of self-adjoint linear transforma-
tions. This time we will look at the case in which the underlying complex
vector space is finite dimensional. In this case, self-adjoint transformations
are always diagonalizable. Indeed, we can say even more, as the following
result shows.

Theorem 2.3. Let V be a complex, finite dimensional vector space. If L :
V → V is a self-adjoint linear transformation, then there is an orthonormal
basis for V that is composed of eigenvectors of L. The matrix of L relative
to this basis is diagonal.

We will give two proofs for this important theorem. The first is similar to
the one given in Keener’s book and involves invariant subspaces. The second
is one that is more concrete in that it directly uses matrix computations.
Here is the first proof.

Proof. (Proof 1). A subspace U of V is said to be invariant under L : V → V
if and only if L : U → U . Let S := span{eigenvectors of L} and let U = S⊥.
We claim that S⊥ is invariant under L. To see this, let u ∈ U and vj ∈ S be
an eigenvector of L. Since 〈Lu, vj〉 = 〈u, Lvj〉 = 〈u, λjvj〉 and u ∈ U = S⊥,
we have 〈Lu, vj〉 = λj〈u, vj〉 = 0. Thus, Lu ∈ S⊥, so S⊥ is invariant under
L. If S⊥ 6= {0}, so that its dimension is one or more, then, by Lemma 2.2,
L has an eigenvalue λ and with v 6= 0 being its corresponding eigenvector.
But then v, being an eigenvector, is also in S. Thus, v ∈ S ∩ S⊥. It follows
that 〈v, v〉 = 0, and so v = 0. This is a contradiction, so S⊥ = {0} and
V = S. Using Gram-Schmidt if necessary, we may form an o.n. basis from
the eigenvectors of L.

Proof. (Proof 2). We will work with the matrix of L relative to an orthonor-
mal basis. We denote this matrix by A. Of course this will be an n× n self
adjoint matrix. By Lemma 2.2, A has an eigenvalue λ1 with corresponding
eigenvector x1, normalized so that ‖x1‖ = 1. Use Gram-Schmidt, if nec-
essary, to form a orthonormal basis B1 = {x1, y2, y3, . . . , yn}. If we change
coordinates to B1, it is easy to show that A, in the new coordinates, becomes

A1 =

(
λ1 0Tn−1

0n−1 Ã1

)
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where Ã1 is a self adjoint (n− 1)× (n− 1) matrix. Repeating the argument
for Ã1, we see that the matrix for Ã1 becomes A2, where

A2 =

 λ1 0 0Tn−2

0 λ2 0Tn−2

0n−2 0n−2 Ã2


Again Ã2 is self adjoint and put in a form similar to those above. Continuing
in this way, we can find an orthonormal system of coordinates in Cn relative
to which the matrix A is diagonal. The corresponding basis for V is also
orthonormal and is composed eigenvectors of L.

Of course, for a self-adjoint matrix A, Theorem 2.3 implies that there
is a matrix S = [x1 · · ·xn], whose columns are an o.n. set of eigenvectors
of A, such that A = SΛS−1, where Λ = diag(λ1, λ2, . . . , λn). – note that
he eigenvalues are listed in the same order as the eigenvectors. Since the
columns of S are an o.n. set, it is easy to show that S−1 = S∗. In this form.
we have

A = SΛS∗, S∗S = I. (3)

3 Applications

There are many important applications of what was discussed in the previous
sections. The theory of adjoints and of self-adjoint linear transformations
comes up in the study of partial differential equations and the eigenvalue
problems that result when the method of separation of variables is used to
solve them. (Partial differential equations arise in connection with heat con-
duction, wave propagation, fluid flow, electromagnetic fields, quantum me-
chanics, and many other areas as well.) Self-adjoint linear transformations
play a fundamental role in formulating quantum mechanics; they represent
the physical quantities that can be observed in a laboratory—the observables
of physics. In this section we will provide a few examples.

Example 3.1. Normal modes for a coupled spring system. In the coupled
spring system shown in Fig. 1, let m1 = m2 = m and k1 = k2 = k3 = k.
Using Hooke’s law and Newton’s law, the equation of motion for the spring
system is, in matrix, form

ẍ = − k
m
Ax, A :=

(
2 −1
−1 2

)
, (4)
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Figure 1: Coupled spring system

A normal mode for the system is a solution of the form x(t) = function(t)x0,
where x0 is independent of t. The usual way to treat this problem is to make
the Ansatz x(t) = eiωtx0, where ω is a constant angular frequency. Plugging
this solution into (4) and canceling the time factor, we obtain

mω2

k x0 = Ax0.

It follows that mω2/k = λ is an eigenvalue of A, with x0 being the cor-
responding eigenvector. In this case, we have two eigenvalues λ = 1, x1 =
(1 1)T and λ = 3, x3 = (1 −1)T . The eigenfrequencies are thus ω1 =

√
k/m

and ω3 =
√

3k/m and the corresponding normal modes are

e±i
√

k/m t

(
1
1

)
and e±i

√
3k/m t

(
1
−1

)
.

Example 3.2. Inertia tensor. The kinetic energy of a rigid body freely
rotating about its center of mass is

T =
1

2
ωTIω.

The vector ω is the angular velocity of the body and I is the 3 × 3 inertia
tensor. If ρ(x) is the mass density of the body, which occupies the region
Ω ⊂ R3, then

I =

∫
Ω

(
|x|2I3×3 − xxT

)
ρ(x)d3x.

The eigenvalues and eigenvectors of I play an important role in the equa-
tion of motion for a rigid body. (For details, see: H. Goldstein, Classical
Mechanics, Addison-Wesley, 1965.)

Example 3.3. Principal axis theorem. Consider the conic 3x2−2xy+3y2 =
1. We want to rotate axes to find new coordinates x′, y′ relative to which

6



the conic is in standard form. Let’s put the equation in matrix form:(
x y

)( 3 −1
−1 3

)
︸ ︷︷ ︸

A

(
x
y

)
= 1.

It is straightforward to show that the eigenvalues of A are 2 and 4, with
corresponding orthonormal eigenvectors 1√

2
(1 1)T and 1√

2
(−1 1)T . In the

factored form in (3), we have

S =
1√
2

(
1 −1
1 1

)
and Λ =

(
2 0
0 4

)
.

Let x = (x y)T . The original form of the conic was xTAx = 1. If we set
x′ = STx, then the equation of the conic becomes x′TΛx′ = 1 or, in the new
coordinates, 2x′2 + 4y′2 = 1. The matrix S is actually changes from x′-y′

to x-y coordinates. In effect, it gets the x′-y′ axes by rotating the x-y axes
counter clockwise through an angle π/4.

4 The Courant-Fischer Theorem

It is simple to calculate the eigenvalues for small matrices, with n = 2 or 3.
However, direct calculation is not possible for large systems. Thus, we need
a method for approximating them. This is supplied by the Courant-Fischer
Theorem, which we now state.

Theorem 4.1 (Courant-Fischer). Let A be a real n× n self-adjoint matrix
having eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Then,

λk = min
C∈Rk−1×n

max
‖x‖=1
Cx=0

xTAx. (5)

Proof. Use (3) to get xTAx = yTΛy , where y = STx. Because S is
orthogonal, we have ‖x‖ = ‖Sy‖ = ‖y‖. In addition, CS runs over all
matrices in Rk−1×n if C ∈ Rk−1×n does. Thus, we are now trying to show
that

λk = min
C∈Rk−1×n

max
‖y‖=1
Cy=0

yTΛy. (6)

Let q(y) = yTΛy. Of course, q can be written as

q(y) =
n∑

j=1

λjy
2
j .
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The proof proceeds in two steps. First, to satisfy C0y = 0 when C0 =
[e1 · · · ek−1]T , we need only take y =

∑n
j=k yjej . In that case, we have,

since ‖y‖2 =
∑n

j=k y
2
j = 1,

q(y) =

n∑
j=k

λjy
2
j ≤ λk

n∑
j=k

y2
j = λk · 1 = λk,

and so, for C0, we have max ‖y‖=1
C0y=0

q(y) = λk.

The second step is to show that for any C we can find a y′ such that
Cy′ = 0 and q(y′) ≥ λk. If we can do that, then

max
‖y‖=1
Cy=0

q(y) ≥ q(y′) ≥ λk = max
‖y‖=1
C0y=0

q(y),

and (6) follows immediately. To show that such a y exists, start by aug-
menting C by adding rows eTj , j = k + 1, . . . n:

C̃ =


C
eTk+1

...
eTn

 ∈ R(n−1)×n.

Note that since rank(C̃) ≤ n− 1, so nullity(C̃) ≥ 1. Thus there is a vector
y′ 6= 0 such that C̃y′ = 0. This is equivalent to the equations Cy′ = 0 and
y′j = eTj y

′ = 0, j = k + 1, . . . , n. Moreover, this implies that

q(y′) =

k∑
j=1

λjy
′
j
2 ≥ λk

k∑
j=1

y′j
2

= λk · 1 = λk.

This completes the proof.

Example 4.2. Estimating an eigenvalue. Show that λ2 ≤ 0, for the matrix

A =

1 2 3
2 2 4
3 4 3

 .

Because A has positive entries, we expect that the eigenvector for λ1 will
have all positive entries. (This is in fact a consequence of the Perron-
Frobenius Theorem.) Thus, since we want to get an estimate of the mini-
mum of the maximum of xTAx, we guess that C = (1 1 1) and so Cx =
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x1 + x2 + x3 = 0. The quadratic form

q(x) := xTAx = x1x2 + 2x1x3 + 3x2x3.

Let’s solve x1 +x2 +x3 = 0 for x1 and put the result in the expression above
for q(x). Doing so yields

q(x) = −(x2 + x3)(x2 + 2x3) + +3x2x3 = −x2
2 − 2x2

3 ≤ 0. (7)

From this, we see that for C = (1 1 1) and Cx = 0, λ2 ≤ maxCx=0 q(x) ≤ 0.
If we had λ2 = 0, then the inequality (7) would imply that −x2

2 − 2x2
3 = 0,

so we would have x2 = x3 = 0. But x1 + x2 + x3 = 0, which implies that
x1 = 0, too. This is impossible because x2

1 + x2
2 + x2

3 = 1.

5 The Fredholm Alternative

We now turn to a discussion of when we can solve Lv = w, for L : V →
W and linear. Both V and W are assumed to be real or complex, finite
dimensional inner product spaces; the dimension of V being n and that of
W is m. We will allow m 6= n. We wish to prove the following theorem.

Theorem 5.1 (The Fredholm Alternative). The equation Lv = w has a
solution if and only if w ∈ Null(L∗)⊥ –i.e., Range(L) = Null(L∗)⊥. Equiv-
alently, either 〈w, u〉W = 0 for all u ∈ Null(L∗), in which case Lv = w has
a solution, or there is some u ∈ Null(L∗) such that 〈w, u〉W 6= 0, in which
case Lv = w does not have a solution.

Proof. Suppose that there is a v ∈ V such that Lv = w. Let u ∈ Null(L∗).
Then, 〈w, u〉W = 〈Lv, u〉W = 〈v, L∗u〉V = 〈v, 0〉V = 0. Hence, w ∈
Null(L∗)⊥, and so Range(L) ⊆ Null(L∗)⊥. We now need to show that
Null(L∗)⊥ = Range(L).

Suppose this is false, so that there is some w ∈ Null(L∗)⊥ that is not
in Range(L). We may also assume that w ∈ Range(L)⊥. To see this, note
that P , the orthogonal projection of w onto Range(L), exists, because all of
the spaces involved are finite dimensional. Consequently, w = (I − P )w +
Pw. Because w is not in the range of L, (I − P )w 6= 0 and is also in
Range(L)⊥. Just replace (I − P )w by w to validate the assumption that
w ∈ Range(L)⊥ ∩ Null(L∗)⊥. Note that if v ∈ V , than Lv ∈ Range(L), so
〈Lv,w〉W = 0 = 〈v, L∗w〉V . Choose v = L∗w, which is in V . Doing so gives
us 〈L∗w,L∗w〉V = 0 and, consequently L∗w = 0, so w ∈ Null(L∗). We also
have that w ∈ Null(L∗)⊥. Since Null(L∗)∩Null(L∗)⊥ = {0}, w = 0. This is
a contradiction. It follows that Range(L) = Null(L∗)⊥.
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Remark 5.2. Later on, we will see that this result holds in a Hilbert space
setting. The only place that we used the finite dimensionality of the spaces
involved was in showing the existence of the orthogonal projection P .

Example 5.3. Let k(x, y) = x + 3x2y + xy2 and 〈f, g〉 =
∫ 1
−1 f(x)g(x)dx.

Consider the operator Lu =
∫ 1
−1 k(x, y)u(y)dy.

1. Show that L : P2 → P2.

2. Find L∗ and Null(L∗).

3. Find a condition on q ∈ P2 for which Lp = q always has a solution.

Solution. (1) We have Lp = x〈p, 1〉 + 3x2〈p, y〉 + x〈p, y2〉, which is in P2.
Thus, L : P2 → P2. (2) It is easy to see that L∗p =

∫ 1
−1 k(y, x)p(y)dy,

and so L∗p =
∫ 1
−1

(
y + 3y2x + x2y

)
p(y)dy = 〈p, y〉 + 3x〈p, y2〉 + x2〈p, y〉.

Furthermore, if p ∈ Null(L∗), then, since 1, x, x2 are linearly independent,
p satisfies 〈p, y〉 = 0 and 〈p, y2〉 = 0. Let p(x) = a0 + a1x + a2x

2. Note
that 〈p, y〉 = 2a1/3 and 〈p, y2〉 = 2a0/3 + 2a2/5 = 0. It follows that a1 = 0
and a2 = −5a0/3, so p(x) = a0(1 − 5x2/3). Consequently, Null(L∗) =
span{1 − 5x2/3}. (3) By the Fredholm Alternative, the condition on q is
then that 〈q(x), 1− 5x2/3〉 = 0.

Previous: coordinates and bases
Next: Banach spaces and Hilbert spaces
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