
Coordinates and Bases

Coordinate maps. This is a brief discussion of bases and the coordinates
corresponding to them. We begin with a vector space V that has the ordered
basis basis B = {v1, . . . ,vn}. If v ∈ V , then we can always express v ∈ V in
exactly one way as a linear combination of the the vectors in B. Specifically,
for any v ∈ V there are unique scalars x1, . . . , xn such that

v = x1v1 + x2v2 + · · ·+ xnvn . (1)

The xj ’s are the coordinates of v relative to B. We collect them into the
coordinate vector

[v]B =

 x1
...
xn

 .

Because, relative to B, the coordinates of v are uniquely specified, we
may define a map KB : V → Cn (or Rn) via

KB(v) = [v]B.

We will call KB the coordinate map relative to B. It is easy to see that KB

is linear and has the inverse

K−1B (x) = v = x1v1 + x2v2 + · · ·+ xnvn,

where the xj ’s are coordinates of v.

Examples. Here are some examples. Let V = P2 and B = {1, x, x2}.
What is the coordinate vector [5 + 3x− x2]B? Answer:

[5 + 3x− x2]B =

 5
3
−1

 .

If we ask the same question for [5 − x2 + 3x]B, the answer is the same,
because to find the coordinate vector we have to order the basis elements
so that they are in the same order as B.

Let’s turn the question around. Suppose that we are given

[p]B =

 3
0
−4

 ,
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then what is p? Answer: p(x) = 3 · 1 + 0 · x+ (−4) · x2 = 3− 4x2.
Let’s try another space. Let V = span{et, e−t}, which is a subspace

of C(−∞,∞). Here, we will take B = {et, e−t}. What are coordinate
vectors for sinh(t) and cosh(t)? Solution: Since sinh(t) = 1

2e
t − 1

2e
−t and

cosh(t) = 1
2e

t + 1
2e
−t, these vectors are

[sinh(t)]B =

(
1
2

−1
2

)
and [cosh(t)]B =

(
1
2
1
2

)
.

Matrices for linear transformations. The matrix that represents a
linear transformation L : V → W , where V and W are vector spaces with
bases B = {v1, . . . ,vn} and D = {w1, . . . ,wm}, respectively, is easy to get.

V
L−−−−→ W

K −1
B

x yKD

Cn AL−−−−−−−→
KD◦L◦K−1

B

Cn

(2)

Let ek be the n× 1 column vector having 1 as its kth entry and zeros for
the other entries. Recall the ALek is the kth column of AL, so we have that

ALek = KD ◦ L ◦K−1B (ek) = KD(L(vk)) =
[
L(vk)

]
D

From this we we see that

AL =
(
[L(v1)]D [L(v2)]D · · ·

[
L(vn)]D

)
= ([L(B-basis]D) .

In words, to find AL, we first apply L to the B basis vectors, and then find
the D coordintes of the result.

A matrix example. Let V = W = P2, B = D = {1, x, x2}, and L(p) =
((1 − x2)p′)′. To find the matrix A that represents L, we first apply L to
each of the basis vectors in B.

L(1) = 0, L(x) = −2x, and L(x2) = 2− 6x2.

Next, we find the D-basis coordinate vectors for each of these. Since B = D
here, we have

[0]D =

 0
0
0

 [−2x]D =

 0
−2
0

 [2− 6x2]D =

 2
0
−6

 ,
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and so the natrix that represents L is ss

AL =

 0 0 2
0 −2 0
0 0 −6


Suppose that we wanted to solve the eigenvalue problem, L(p) = λp.

This equation is equivalent to the matrix equation AL[p]B = λ[p]B, which is
a standard eigenvalue problem. Solving that problem results in three eigen-
values, 0,−2,−6 and three corresponding eigenvectors, (1 0 0)T , (0 1 0)T ,
(−1/2 0 3/2)T . These are coordinates of the eigenvectors. The eigen-
vectors in polynomial form are K−1B ((1 0 0)T ) = 1, K−1B ((0 1 0)T ) = x,
K−1B ((−1/2 0 3/2)T ) = (3x2− 1)/2.These are the first three Legendre poly-

nomials, P0 = 1, P2 = x, P3 = 3x2−1
2 .

Changing bases and coordinates. We are frequently faced with the
problem of replacing a set of coordinates relative to one basis with a set for
another. Let B = {v1, . . . ,vn} and D = {w1, . . . ,wn} be bases for an n
dimensional vector space V . If v ∈ V , then it has coordinate vectors relative
to each basis, x = [v]B and ξ = [v]D. This means that

v = x1v1 + x2v2 + · · ·+ xnvn = ξ1w1 + ξ2w2 + · · ·+ ξnwn.

Suppose that we know x and that we want ξ. First, observe that v =
K−1B (x) and ξ = KD(v). Putting these two together then yields

ξ = KD ◦K−1B (x) = SB→Dx.

The same argument1 that we used to get AL, the matrix of L, we obtain

SB→D = KD ◦K−1B = [[B basis ]D] , (3)

which is the transition matrix from B coordinates to D coordinates. Of
course, SD→B, the transition matrix from D to B coordinates, is

SD→B = KB ◦K−1D = [[D basis ]B] = S−1B→D.

We want come back to what this means for bases. When we change
bases from B to D, we are replacing every vk with a linear combination of

1In fact, if L = I, the identity operator, then AI = KD ◦ I ◦K−1
B = KD ◦K−1

B . Thus
the formula in (3) is in fact a special case of (2).
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wj ’s, which we can get from [vk]D, the coordinates of vk in the D basis. In
terms of S = SB→D, we have

[vk]D = (S1,k S2,k · · · Sn,k)T

Consequently,

vk =

n∑
j=1

Sj,kwj =

n∑
j=1

(ST )k,jwj .

If we let v = (v1 v2 · · · vn)T and w = (w1 w2 · · · wn)T , then we arrive at

v = STw.

We can use this to get the transition matrix in the following example. If
V = P2 and B = {1− x, 1 + x, 1− 2x+ x2} and D = {1, x, x2}, then 1− x

1 + x
1− 2x+ x2


︸ ︷︷ ︸

v

=

1 −1 0
1 1 0
1 −2 1


︸ ︷︷ ︸

ST

 1
x
x2


︸ ︷︷ ︸

w

.

From this we obtain the transition matrix

S = SB→D =

 1 1 1
−1 1 −2
0 0 1

 .

To get the transition matrix for D → B, we just invert SB→D.

SD→B =

 1 1 1
−1 1 −2
0 0 1

−1 =

1/2 −1/2 1/2
1/2 1/2 −3/2
0 0 1

 .

Just to finish this example, we see that 1
x
x2

 =

 1/2 1/2 0
−1/2 1/2 0
1/2 −3/2 1


︸ ︷︷ ︸

ST
D→B

 1− x
1 + x

1− 2x+ x2


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QR factorization. We can use the techniques above to prove an impor-
tant result that is frequently used in numerical analysis.

Proposition 0.1. Let A be an m×n matrix, m ≥ n, such that the columns
of A are linearly independent. Then, there exists an m×n matrix Q, whose
columns are orthonormal, and an n × n upper triangular matrix R, with
positive diagonal entries, such that A = QR.

Proof. See the paragraph in my notes on innerproduct spaces, QR factor-
ization. 2

As a simple example, consider the matrix

A =

1 2
0 −1
1 1

 .

The matrix Q has columns obtained by applying the Gram-Schmidt pro-
cess to the columns of A. To find R see the method outlined in the notes
mentioned in the proof above. Q and R are given below.

Q =


√

2/2
√

6/6

0 −
√

6/3√
2/2 −

√
6/6

 and R =

(√
2 3
√

2/2

0
√

6/2

)
.

Matrices for L in different bases. Let the bases B and D be as above,
and suppose that AL is the matrix for L relative to B and ÃL be the one
for D. We want to relate the two matrices. First, note that we have AL =
KB ◦ L ◦K−1B , and ÃL = KD ◦ L ◦K−1D . Since K−1B ◦KB = I, the identity
operator on V , we have

ÃL = KD ◦K−1B︸ ︷︷ ︸
SB→D

◦KB ◦ L ◦K−1B︸ ︷︷ ︸
AL

◦KB ◦K−1D︸ ︷︷ ︸
SD→B

= SB→DALSD→B. (4)

Freuqently, we let S = SD→B, so SB→D = S−1. In this notation

ÃL = S−1ALS. (5)

The matrices in (5) are similar. In fact, any matrix A represents L in
some basis if and only if it is similar to AL.

Previous: inner products and norms
Next: review of diagonalization
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