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Eigenspaces. We will start with a linear transformation L : V → V , where
V is a finite dimensional vector space. A scalar λ (possibly complex) is an
eigenvalue of L if there is a vector v 6= 0 such that L[v] = λv. When v exists,
it is called an eigenvector associated with λ. The span of all eigenvectors
associated with λ is called the eigenspace of λ, which we will denote by Eλ.

We can rewrite the equation L[v] = λv as (L − λI)v = 0. Conversely,
the latter equation can be expanded out and rearranged to give the former,
and so they are equivalent. The point is that the eigenspace of λ is the null
space of L− λI. In symbols, Eλ = N (L− λI). In addition, the dimension of
Eλ is the nullity of L−λI. This dimension is called the geometric multiplicity
of λ and it will be denoted by γλ.

Diagonalization of linear transformations. The matrix A that rep-
resents the linear transformation L : V → V relative to a basis B =
{v1, . . . ,vn} has columns that are the coordinate vectors [L(vj)]B, j =
1, . . . , n. We say that L is diagonalizable if there is a basis for V for composed
of eigenvectors of L. When this happens the matrix of L in such a basis is
diagonal. Conversely, if L can be represented by a diagonal matrix, then the
basis in which this holds is composed of eigenvectors. We remark here, and
will show below, that not every linear transformation can be diagonalized.

Diagonalizing L starts with finding a matrix A for L relative to some basis
B = {v1, . . . ,vn}. Once this is done, we find the eigenvalues and eigenvectors
for A, following these steps.

1. Find the characteristic polynomial for A, pA(λ) = det(A − λI) and
factor it:

pA(λ) = (λ1 − λ)α1 · · · (λr − λ)αr .
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Here λ1, . . . , λr, which are the distinct roots of pA(λ), are the eigenval-
ues of A (and L, too). The number αj is called the algebraic multiplicity
of λj. It is just the number of times λj is repeated.

2. For each distinct eigenvalue λj find the corresponding eigenvectors that
form a basis for its eigenspace Eλj , which is the null space of A− λjI.
This we do using standard row reduction methods. Since the geometric
multiplicity γj for λj is the dimension of Eλj , there will be exactly γj
vectors in this basis.

3. Theorem: The linear transformation L will be diagonalizable if and
only if γj = αj for j = 1, . . . , r. If that happens, then the matrix

S = [Eλ1basis Eλ2basis · · · Eλrbasis]B−coords

is the matrix that changes from coordinates relative to D, the basis of
of eigenvectors, to coordinates relative to B. Finally, the matrix of L
relative to D is the diagonal matrix Λ = S−1AS.

An example. Let V = P2 and L(p) = ((1−x2)p′)′. Finding A, the matrix
of L relative to B, starts with applying L to each of the polynomials in B :
L[1] = 0, L[x] = −2x, and L[x2] = 2 − 6x2. The B-coordinate vectors for
these are the columns (0 0 0)T , (0 −2 0)T , and (2 0 −6)T , respectively. The
matrix A is thus given by

A =

 0 0 2
0 −2 0
0 0 −6

 .

The characteristic polynomial is pA(λ) = det(A − λI). The determinant is
easy to find. The result is pA(λ) = (−λ)(−2 − λ)(−6 − λ). Thus, there
are three distinct eigenvalues λ1 = 0, λ2 = −2, λ3 = −6, with algebraic
multiplicities α1 = α2 = α3 = 1.

Let’s find the corresponding eigenvectors. For λ1 = 0, we have

[A− 0 · I |0 ] =

 0 0 2 0
0 −2 0 0
0 0 −6 0

⇐⇒
 0 1 0 0

0 0 1 0
0 0 0 0

 .

Solving this system gives us x1 = t (non-leading variable), x2 = 0, and
x3 = 0. The eigenspace Eλ1=0 is thus one dimensional, with [1 0 0]T being
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the only vector in the basis. Since γ1 is the dimension of the eigenspace
Eλ1=0, we see that γ1 = 1 = α1. For λ2 = −2, we have

[A− (−2) · I |0 ] =

 2 0 2 0
0 0 0 0
0 0 −4 0

⇐⇒
 1 0 0 0

0 0 1 0
0 0 0 0

 .

The eigenvector [0 1 0]T is again the only vector in the basis for the eigenspace
E2 ; also, γ2 = 1 = α2. Finally, for λ3 = −6, we have

[A− (−6) · I |0 ] =

 6 0 2 0
0 4 0 0
0 0 0 0

⇐⇒
 1 0 1

3
0

0 1 0 0
0 0 0 0

 .

Solving this, we get the eigenvector [−1 0 3]T , which again is the only vector
in the basis for E3 , and we have γ3 = 1 = α3.

Since γj = αj, j = 1, 2, 3, the theorem above implies that A, and hence
L, is diagonalizable. Using the theorem, we can put the eigenvalues and
eigenvectors together to get the matrices Λ and S:

Λ =

 0 0 0
0 −2 0
0 0 −6

 S =

 1 0 −1
0 1 0
0 0 3

 .

We point out that the original L was a differential operator acting on
P2. The eigenvalues are the same as above, of course. The eigenvectors are
obtained from those of the matrix by recalling that the latter are coordinate
vectors for the former. The eigenvectors are then just {1, x, 3x2 − 1}.

A nondiagonalizable matrix Not every linear transformation is diago-
nalizable. Here is an example of one that it is not. Consider the matrix
below:

A =

(
8 1
−9 2

)
.

The characteristic polynomial is pA(λ) = λ2− 10λ+ 25 = (5−λ)2. thus, the
only eigenvalue of A is λ = 5, which has algebraic multiplicity α = 2. Let’s
find a basis for the null space. We have

[A− 5 · I |0 ] =

(
3 1 0
−9 −3 0

)
⇐⇒

(
1 1

3
0

0 0 0

)
,

so there is only one eigenvector [−1 3]T in the basis for Eλ=5. Hence, the geo-
metric multiplicity is γ = 1 < α = 2. It follows that A is not diagonalizable.
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A diagonalizable matrix with repeated eigenvalues In the previous
example, we had a matrix with repeated eigenvalues that wasn’t diagonaliz-
able. Are there any other matrices with this property? The answer is yes.
Consider the matrix

A =

 2 0 1
0 1 0
1 0 2

 .

The characteristic polynomial for A is pA(λ) = det(A − λI). With a little
work, one can show that pA(λ) = (1− λ)2(3− λ), from which it follows that
the eigenvalues of A are λ1 = 1, which is repeated (α1 = 2), and λ2 = 3,
which is not repeated (α2 = 1).

Let’s find bases for the eigenspaces. For λ1, we have

[A− 1 · I |0 ] =

 1 0 1 0
0 0 0 0
1 0 1 0

⇐⇒
 1 0 1 0

0 0 0 0
0 0 0 0

 .

From the row-reduced form of A on the right, we see that the corresponding
system has x1 as a leading variable, and x2 and x3 as nonleading variables.
Setting x2 = t1 and x3 = t2, the system becomes x1 = −t2, x2 = t1, and
x3 = t2. Putting this in vector form gives us

x = t1

 0
1
0

+ t2

 −1
0
1

 .

Thus, a basis for Eλ1 is {(0 1 0)T , (−1 0 1)T}. Similarly, one can show that
a basis for Eλ2 is {(1 0 1)T}. It follows that γ1 = dim(Eλ1) = 2 = α1, and
γ2 = dim(Eλ2) = 1 = α2. By the theorem above, the matrix is diagonalizable,
and Λ and S are

Λ =

 1 0 0
0 1 0
0 0 3

 S =

 0 −1 1
1 0 0
0 1 1

 .

Previous: cordinates and bases
Next: adjoints and self-adjoint linear transformations
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