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1 The Projection Theorem

Let H be a Hilbert space. When V is a finite dimensional subspace of
H and f € H, we can always find a unique p € V such that ||f — p| =
mingecy || f — v||. This fact is the foundation of least-squares approximation.
What happens when we allow V to be infinite dimensional? We will see that
the minimization problem can be solved if and only if V' is closed.

Theorem 1.1 (The Projection Theorem). Let H be a Hilbert space and let
V' be a subspace of H. For every f € H there is a unique p € V such that
IIf — p|l = minyey ||f — v if and only if V' is a closed subspace of H.

To prove this, we need the following lemma.

Lemma 1.2 (Polarization Identity). Let H be a Hilbert space. For every
pair f,g € H, we have

1F + gll® + 11 = gl* = 2(1LF1* + llg]?).

Proof. Adding the = identities || f £¢|> = || f||> £ (f, g) + (g, f) +|lg|* yields
the result. ]

The polarization identity is an easy consequence of having an inner prod-
uct. It is surprising that if a norm satisfies the polarization identity, then
the norm comes from an inner product]l}

Proof. (Projection Theorem) Showing that the existence of minimizer im-
plies that V is closed is left as an exercise. So we assume that V is closed.
For f € H, let o :=inf,cy v — f]|. It is a little easier to work with this in
an equivalent form, o? = inf,cy |[v — f||?. Thus, for every € > 0 there is a
ve € V such that o? < |lv. — f||* < o® +e. By choosing ¢ = 1/n, where n
is a positive integer, we can find a sequence {v, }5° ; in V such that

1
0< flon— I —a? < - (L1)
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Of course, the same inequality holds for a possibly different integer m, 0 <
[vm — fl|? — a* < 2. Adding the two yields this:

11
0 < [lon = fI? + lom — fII? = 20% < ~ + —. (1.2)
n m

By polarization identity and a simple manipulation, we have

Un + Um
2

We can subtract 4o from both sides and use (1.2)) to get

lon = vm|* + 4] f ~ 1 = 2(Ilf = vall* + 1. = vm1?).

Up + 0 2 2
2L 2 —02) = (] f o+ f v P -20%) < =4
n o m

||Un_vm||2+4(||f_
Because £ (v, + vp) € V, ||f — 25|12 > infey v — fI|* = o®. It follows
that the second term on the left is nonnegative. Dropping it makes the left

side smaller: ) )
v — v ||? < = 4+ —. (1.3)
noom

As n,m — oo, we see that ||v, — vp| — 0. Thus {v,};2, is a Cauchy
sequence in H and is therefore convergent to a vector p € H. Since V is
closed, p € V. Furthermore, taking limits in implies that ||p — f|| =
inf,cy v — f||. The uniqueness of p is left as an exercise. O

There are two important corollaries to this theorem; they follow from
problem 4 of Assignment 1, 2021, and Theorem We list them below.

Corollary 1.3. Let V' be a subspace of H. There exists an orthogonal
projection P : H — V' for which ||f — Pf| = min,ey || f — v|| if and only if
V s closed.

Corollary 1.4. Let V be a closed subspace of H. Then, H =V @V and
(VHt =Vv.

2 The Riesz Representation Theorem

Let V be a Banach space. A bounded linear transformation ® that maps V'
into R or C is called a linear functional on V. The linear functionals form
a Banach space V*, called the dual space of V', with norm defined by

o (v
Py~ = sup| ()| .
vzo |[v]lv
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2.1 The linear functionals on Hilbert space

Theorem 2.1 (The Riesz Representation Theorem). Let H be a Hilbert
space and let & : H — C (or R) be a bounded linear functional on H. Then,
there is a unique g € H such that, for all f € H, ®(f) = (f,g).

Proof. The functional ® is a bounded operator that maps H into the scalars.
It follows from our discussion of bounded operators that the null space of
O, N(®), is closed. If N(®) = H, then ®(f) =0 for all f € H, hence ® = 0.
Thus we may take g = 0. If N(®) # H, then, since N(®) is closed, we
have that # = N(®) @ N(®)*. In addition, since N(®) # H, there exists
a nonzero vector h € N(®)+. Moreover, ®(h) # 0, because h is not in the
null space N(®). Next, note that for f € H, the vector w := ®(h)f — (f)h
is in N(®). To see this, observe that

O(w) = (2(h)f — &(f)h) = 2(h)2(f) — 2(f)@(h) = 0.

Because w = ®(h)f — ®(f)h € N(®), it is orthogonal to h € N(®)*, we
have that
0= (2(h)f = ®(f)h, h) = ®(h){f, h) — (f) (h, h) .

——
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Solving this equation for ®(f) yields ®(f) = (f, %h) The vector g :=

%h then satisfies ®(f) = (f, g). To show uniqueness, suppose g1,g2 € H
satisfy ®(f) = (f,g1) and ®(f) = (f,g2). Subtracting these two gives

(f,92—g1) = 0forall f € H. Letting f = go—gy resultsin (go—g1,92—91) =
0. Consequently, go = g1. O

2.2 Adjoints of bounded linear operators

We now turn the problem of showing that an adjoint for a bounded operator
always exists. This is just a corollary of the Riesz Representation Theorem.

Corollary 2.2. Let L : H — H be a bounded linear operator. Then there
exists a bounded linear operator L* : H — H, called the adjoint of L, such

that (Lf,h) = (f,L*h), for all f,h € H.

Proof. Fix h € H and define the linear functional ®(f) = (Lf, h). Us-
ing the boundedness of L and Schwarz’s inequality, we have |®,(f)| <
WL fINAR) = K] f]], and so @5, is bounded. By Theorem there is a



unique vector g in H for which ®,(f) = (f,g). The vector g is uniquely
determined by ®p; thus g = g a function of h. We claim that g, is a linear
function of h. Consider h = ahj +bhsa. Note that @ (f) = (Lf, ah1 +bhs) =
dq)lu (f) + bq)hz (f) Since q)hl (f) = <f’ gl> and <I)h2 (f) = <fa 92>’ we see that

D(f) = (f, 9n) = a®py (f) + b®py (f) = (f, agn, + bgn,).

It follows that g;, = agp, + bgp, and that g, is a linear function of h. It is
also bounded. If f = g, then ®;(gn) = |lgn|?>. From the bound |®,(f)| <
VLA IRl we Bave lgnl® < [Z{llgnllI2]l. Dividing by [lgs]) then yields
llgrnll < |IL||[|R||. Thus the correspondence h — g is a bounded linear
function on H. Denote this function by L*. Since (Lf, h) = (f, gn), we have
that (Lf,h) = (f, L*h). 0

Corollary 2.3. | L*|| = ||L]].
Proof. By problem 7 in Assignment 7, 2021, ||L|| = supy, [(Lf, h)|, where

[Al = [Ifll = 1. On the other hand, ||[L*| = supg, [(L*h, f)|. Since
(L*h, f) = (7, TR}, we have that supy [(L*h, )] = sup | (L, B, Tt
immediately follows that ||L*|| = ||L]|. O

Example 2.4. Let R = [O 1] [O 1] and suppose that k is a H Hzlbert Schmidt
kernel. If Lu(x fo y)dy, then L*v fo y)dy.

Proof. We will use s,t as the mtegratlon Varlables and switch back, to avoid
confusion. We begin with (Lu, v) fo (fo )dt)v(s)ds. By Fubini’s
theorem, we may switch the variables of 1ntegrat10n to get this:

/01 (/01 k(s,t)u ()dy> (s )d.s—/o1 </01k:(s,t)v(5)ds>u(t)dt
2/01 </01k(s,t)v(s)ds)u(t)dt.

L*v

=(u, L*v)

The result follows by changing variables from £, s to z,y in the second equa-
tion above . O

3 The Fredholm Alternative

Theorem 3.1 (The Fredholm Alternative). Let L : H — H be a bounded
linear operator whose range, R(L), is closed. Then, the equation Lf = g



and be solved if and only if (g,v) = 0 for all v € N(L*). FEquivalently,
R(L) = N(L*)*.

Proof. Let g € R(L), so that there is an h € H such that ¢ = Lh. If
v € N(L*), then (g,v) = (Lh,v) = (h,L*v) = 0. Consequently, R(L) C
N(L*)*. Let f € N(L*)*. Since R(L) is closed, the projection theorem,
Theorem and Corollary imply that there exists an orthogonal pro-
jection P onto R(L) such that Pf € R(L) and f' = f— Pf € R(L)*. More-
over, since f and Pf are both in N(L*)*, we have that f' € R(L)*NN(L*)*.
Hence, (Lh, f'y = 0 = (h, L* ), for all h € H. Setting h = L*f’ then yields
L*f =0, so f/ € N(L*). But f' € N(L*)* and is thus orthogonal to
itself; hence, f/ = 0 and f = Pf € R(L). It immediately follows that
N(L*)* C R(L). Since we already know that R(L) C N(L*)‘, we have
R(L) = N(L*)*. O

We want to point out that R(L) being closed is crucial for the theorem
to be true. If it is not closed, then the projection P will not exist and the
proof breaks down. In that case, one actually has R(L) = N(L*)*, but not
R(L) = N(L*)*.

The theorem is stated in a variety of ways. The form that emphasizes
the “alternative” is given in the result below, which follows immediately
from Theorem [B3.11

Corollary 3.2. Let L : H — H be a bounded linear operator whose range,
R(L), is closed. Then, either the equation Lf = g has a solution or there
exists a vector v € N(L*) such that (g,v) # 0.

Previous: bounded operators and closed subspaces
Next: an example of the Fredholm Alternative and a resolvent
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