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1 The Projection Theorem

Let H be a Hilbert space. When V is a finite dimensional subspace of
H and f ∈ H, we can always find a unique p ∈ V such that ‖f − p‖ =
minv∈V ‖f − v‖. This fact is the foundation of least-squares approximation.
What happens when we allow V to be infinite dimensional? We will see that
the minimization problem can be solved if and only if V is closed.

Theorem 1.1 (The Projection Theorem). Let H be a Hilbert space and let
V be a subspace of H. For every f ∈ H there is a unique p ∈ V such that
‖f − p‖ = minv∈V ‖f − v‖ if and only if V is a closed subspace of H.

To prove this, we need the following lemma.

Lemma 1.2 (Polarization Identity). Let H be a Hilbert space. For every
pair f, g ∈ H, we have

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2).

Proof. Adding the ± identities ‖f±g‖2 = ‖f‖2±〈f, g〉±〈g, f〉+‖g‖2 yields
the result.

The polarization identity is an easy consequence of having an inner prod-
uct. It is surprising that if a norm satisfies the polarization identity, then
the norm comes from an inner product1.

Proof. (Projection Theorem) Showing that the existence of minimizer im-
plies that V is closed is left as an exercise. So we assume that V is closed.
For f ∈ H, let α := infv∈V ‖v − f‖. It is a little easier to work with this in
an equivalent form, α2 = infv∈V ‖v − f‖2. Thus, for every ε > 0 there is a
vε ∈ V such that α2 ≤ ‖vε − f‖2 < α2 + ε. By choosing ε = 1/n, where n
is a positive integer, we can find a sequence {vn}∞n=1 in V such that

0 ≤ ‖vn − f‖2 − α2 <
1

n
(1.1)

1Jordan, P. ; Von Neumann, J. On inner products in linear, metric spaces. Ann. of
Math. (2) 36 (1935), no. 3, 719–723.
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Of course, the same inequality holds for a possibly different integer m, 0 ≤
‖vm − f‖2 − α2 < 1

m . Adding the two yields this:

0 ≤ ‖vn − f‖2 + ‖vm − f‖2 − 2α2 <
1

n
+

1

m
. (1.2)

By polarization identity and a simple manipulation, we have

‖vn − vm‖2 + 4‖f − vn + vm
2

‖2 = 2
(
‖f − vn‖2 + ‖f − vm‖2

)
.

We can subtract 4α2 from both sides and use (1.2) to get

‖vn−vm‖2+4(‖f−vn + vm
2

‖2−α2) = 2(‖f−vn‖2+‖f−vm‖2−2α2) <
2

n
+

2

m
.

Because 1
2(vn + vm) ∈ V , ‖f − vn+vm

2 ‖2 ≥ infv∈V ‖v − f‖2 = α2. It follows
that the second term on the left is nonnegative. Dropping it makes the left
side smaller:

‖vn − vm‖2 <
2

n
+

2

m
. (1.3)

As n,m → ∞, we see that ‖vn − vm‖ → 0. Thus {vn}∞n=1 is a Cauchy
sequence in H and is therefore convergent to a vector p ∈ H. Since V is
closed, p ∈ V . Furthermore, taking limits in (1.1) implies that ‖p − f‖ =
infv∈V ‖v − f‖. The uniqueness of p is left as an exercise.

There are two important corollaries to this theorem; they follow from
problem 4 of Assignment 1, 2021, and Theorem 1.1. We list them below.

Corollary 1.3. Let V be a subspace of H. There exists an orthogonal
projection P : H → V for which ‖f − Pf‖ = minv∈V ‖f − v‖ if and only if
V is closed.

Corollary 1.4. Let V be a closed subspace of H. Then, H = V ⊕ V ⊥ and
(V ⊥)⊥ = V .

2 The Riesz Representation Theorem

Let V be a Banach space. A bounded linear transformation Φ that maps V
into R or C is called a linear functional on V . The linear functionals form
a Banach space V ∗, called the dual space of V , with norm defined by

‖Φ‖V ∗ := sup
v 6=0

|Φ(v)|
‖v‖V

.
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2.1 The linear functionals on Hilbert space

Theorem 2.1 (The Riesz Representation Theorem). Let H be a Hilbert
space and let Φ : H → C (or R) be a bounded linear functional on H. Then,
there is a unique g ∈ H such that, for all f ∈ H, Φ(f) = 〈f, g〉.

Proof. The functional Φ is a bounded operator that maps H into the scalars.
It follows from our discussion of bounded operators that the null space of
Φ, N(Φ), is closed. If N(Φ) = H, then Φ(f) = 0 for all f ∈ H, hence Φ = 0.
Thus we may take g = 0. If N(Φ) 6= H, then, since N(Φ) is closed, we
have that H = N(Φ) ⊕ N(Φ)⊥. In addition, since N(Φ) 6= H, there exists
a nonzero vector h ∈ N(Φ)⊥. Moreover, Φ(h) 6= 0, because h is not in the
null space N(Φ). Next, note that for f ∈ H, the vector w := Φ(h)f −Φ(f)h
is in N(Φ). To see this, observe that

Φ(w) = Φ
(
Φ(h)f − Φ(f)h

)
= Φ(h)Φ(f)− Φ(f)Φ(h) = 0.

Because w = Φ(h)f − Φ(f)h ∈ N(Φ), it is orthogonal to h ∈ N(Φ)⊥, we
have that

0 = 〈Φ(h)f − Φ(f)h, h〉 = Φ(h)〈f, h〉 − Φ(f) 〈h, h〉︸ ︷︷ ︸
‖h‖2

.

Solving this equation for Φ(f) yields Φ(f) = 〈f, Φ(h)
‖h‖2h〉. The vector g :=

Φ(h)
‖h‖2h then satisfies Φ(f) = 〈f, g〉. To show uniqueness, suppose g1, g2 ∈ H
satisfy Φ(f) = 〈f, g1〉 and Φ(f) = 〈f, g2〉. Subtracting these two gives
〈f, g2−g1〉 = 0 for all f ∈ H. Letting f = g2−g1 results in 〈g2−g1, g2−g1〉 =
0. Consequently, g2 = g1.

2.2 Adjoints of bounded linear operators

We now turn the problem of showing that an adjoint for a bounded operator
always exists. This is just a corollary of the Riesz Representation Theorem.

Corollary 2.2. Let L : H → H be a bounded linear operator. Then there
exists a bounded linear operator L∗ : H → H, called the adjoint of L, such
that 〈Lf, h〉 = 〈f, L∗h〉, for all f, h ∈ H.

Proof. Fix h ∈ H and define the linear functional Φh(f) = 〈Lf, h〉. Us-
ing the boundedness of L and Schwarz’s inequality, we have |Φh(f)| ≤
‖L‖‖f‖‖h‖ = K‖f‖, and so Φh is bounded. By Theorem 2.1, there is a
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unique vector g in H for which Φh(f) = 〈f, g〉. The vector g is uniquely
determined by Φh; thus g = gh a function of h. We claim that gh is a linear
function of h. Consider h = ah1 +bh2. Note that Φh(f) = 〈Lf, ah1 +bh2〉 =
āΦh1(f) + b̄Φh2(f). Since Φh1(f) = 〈f, g1〉 and Φh2(f) = 〈f, g2〉, we see that

Φh(f) = 〈f, gh〉 = āΦh2(f) + b̄Φh2(f) = 〈f, agh1 + bgh2〉.

It follows that gh = agh1 + bgh2 and that gh is a linear function of h. It is
also bounded. If f = gh, then Φh(gh) = ‖gh‖2. From the bound |Φh(f)| ≤
‖L‖‖f‖‖h‖, we have ‖gh‖2 ≤ |L‖‖gh‖‖h‖. Dividing by ‖gh‖ then yields
‖gh‖ ≤ ‖L‖‖h‖. Thus the correspondence h → gh is a bounded linear
function on H. Denote this function by L∗. Since 〈Lf, h〉 = 〈f, gh〉, we have
that 〈Lf, h〉 = 〈f, L∗h〉.

Corollary 2.3. ‖L∗‖ = ‖L‖.

Proof. By problem 7 in Assignment 7, 2021, ‖L‖ = supf,h |〈Lf, h〉|, where
‖h‖ = ‖f‖ = 1. On the other hand, ‖L∗‖ = supf,h |〈L∗h, f〉|. Since

〈L∗h, f〉 = 〈f, L∗h〉, we have that supf,h |〈L∗h, f〉| = supf,h |〈Lf, h〉|. It
immediately follows that ‖L∗‖ = ‖L‖.

Example 2.4. Let R = [0, 1]× [0, 1] and suppose that k is a Hilbert-Schmidt
kernel. If Lu(x) =

∫ 1
0 k(x, y)u(y)dy, then L∗v(x) =

∫ 1
0 k(y, x)v(y)dy.

Proof. We will use s, t as the integration variables and switch back, to avoid
confusion. We begin with 〈Lu, v〉 =

∫ 1
0

( ∫ 1
0 k(s, t)u(t)dt

)
v(s)ds. By Fubini’s

theorem, we may switch the variables of integration to get this:∫ 1

0

(∫ 1

0
k(s, t)u(t)dy

)
v(s)ds =

∫ 1

0

(∫ 1

0
k(s, t)v(s)ds

)
u(t)dt

=

∫ 1

0

( ∫ 1

0
k(s, t)v(s)ds︸ ︷︷ ︸

L∗v

)
u(t)dt.

=〈u, L∗v〉

The result follows by changing variables from t, s to x, y in the second equa-
tion above .

3 The Fredholm Alternative

Theorem 3.1 (The Fredholm Alternative). Let L : H → H be a bounded
linear operator whose range, R(L), is closed. Then, the equation Lf = g
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and be solved if and only if 〈g, v〉 = 0 for all v ∈ N(L∗). Equivalently,
R(L) = N(L∗)⊥.

Proof. Let g ∈ R(L), so that there is an h ∈ H such that g = Lh. If
v ∈ N(L∗), then 〈g, v〉 = 〈Lh, v〉 = 〈h, L∗v〉 = 0. Consequently, R(L) ⊆
N(L∗)⊥. Let f ∈ N(L∗)⊥. Since R(L) is closed, the projection theorem,
Theorem 1.1, and Corollary 1.3, imply that there exists an orthogonal pro-
jection P onto R(L) such that Pf ∈ R(L) and f ′ = f−Pf ∈ R(L)⊥. More-
over, since f and Pf are both inN(L∗)⊥, we have that f ′ ∈ R(L)⊥∩N(L∗)⊥.
Hence, 〈Lh, f ′〉 = 0 = 〈h, L∗f ′〉, for all h ∈ H. Setting h = L∗f ′ then yields
L∗f ′ = 0, so f ′ ∈ N(L∗). But f ′ ∈ N(L∗)⊥ and is thus orthogonal to
itself; hence, f ′ = 0 and f = Pf ∈ R(L). It immediately follows that
N(L∗)⊥ ⊆ R(L). Since we already know that R(L) ⊆ N(L∗)⊥, we have
R(L) = N(L∗)⊥.

We want to point out that R(L) being closed is crucial for the theorem
to be true. If it is not closed, then the projection P will not exist and the
proof breaks down. In that case, one actually has R(L) = N(L∗)⊥, but not
R(L) = N(L∗)⊥.

The theorem is stated in a variety of ways. The form that emphasizes
the “alternative” is given in the result below, which follows immediately
from Theorem 3.1.

Corollary 3.2. Let L : H → H be a bounded linear operator whose range,
R(L), is closed. Then, either the equation Lf = g has a solution or there
exists a vector v ∈ N(L∗) such that 〈g, v〉 6= 0.

Previous: bounded operators and closed subspaces
Next: an example of the Fredholm Alternative and a resolvent

5

http://people.tamu.edu/~f-narcowich/m641/m641_notes/bdd_ops_subspaces2014.pdf
http://people.tamu.edu/~f-narcowich/m641/m641_notes/resolvent_example.pdf

	The Projection Theorem
	The Riesz Representation Theorem
	The linear functionals on Hilbert space
	Adjoints of bounded linear operators

	The Fredholm Alternative

