Several Important Theorems
by
Francis J. Narcowich
November, 2014

1 The Projection Theorem

Let \(\mathcal{H} \) be a Hilbert space. When \(V \) is a finite dimensional subspace of \(\mathcal{H} \) and \(f \in \mathcal{H} \), we can always find a unique \(p \in V \) such that \(\|f - p\| = \min_{v \in V} \|f - v\| \). This fact is the foundation of least-squares approximation. What happens when we allow \(V \) to be infinite dimensional? We will see that the minimization problem can be solved if and only if \(V \) is closed.

Theorem 1.1 (The Projection Theorem). Let \(\mathcal{H} \) be a Hilbert space and let \(V \) be a subspace of \(\mathcal{H} \). For every \(f \in \mathcal{H} \) there is a unique \(p \in V \) such that \(\|f - p\| = \min_{v \in V} \|f - v\| \) if and only if \(V \) is a closed subspace of \(\mathcal{H} \).

To prove this, we need the following lemma.

Lemma 1.2 (Polarization Identity). Let \(\mathcal{H} \) be a Hilbert space. For every pair \(f, g \in \mathcal{H} \), we have

\[
\|f + g\|^2 + \|f - g\|^2 = 2(\|f\|^2 + \|g\|^2).
\]

Proof. Adding the \(\pm \) identities \(\|f \pm g\|^2 = \|f\|^2 \pm \langle f, g \rangle \pm \langle g, f \rangle + \|g\|^2 \) yields the result. \(\square \)

The polarization identity is an easy consequence of having an inner product. It is surprising that if a norm satisfies the polarization identity, then the norm *comes* from an inner product.\(^1\)

Proof. (Projection Theorem) Showing that the existence of minimizer implies that \(V \) is closed is left as an exercise. So we assume that \(V \) is closed. For \(f \in \mathcal{H} \), let \(\alpha := \inf_{v \in V} \|v - f\| \). It is a little easier to work with this in an equivalent form, \(\alpha^2 = \inf_{v \in V} \|v - f\|^2 \). Thus, for every \(\varepsilon > 0 \) there is a \(v_\varepsilon \in V \) such that \(\alpha^2 \leq \|v_\varepsilon - f\|^2 < \alpha^2 + \varepsilon \). By choosing \(\varepsilon = 1/n \), where \(n \) is a positive integer, we can find a sequence \(\{v_n\}_{n=1}^{\infty} \) in \(V \) such that

\[
0 \leq \|v_n - f\|^2 - \alpha^2 < \frac{1}{n} \quad \text{(1.1)}
\]

Of course, the same inequality holds for a possibly different integer \(m \), \(0 \leq \| v_m - f \|^2 - \alpha^2 < \frac{1}{m} \). Adding the two yields this:

\[
0 \leq \| v_n - f \|^2 + \| v_m - f \|^2 - 2\alpha^2 < \frac{1}{n} + \frac{1}{m}.
\]

(1.2)

By polarization identity and a simple manipulation, we have

\[
\| v_n - v_m \|^2 + 4\| f - \frac{v_n + v_m}{2} \|^2 = 2(\| f - v_n \|^2 + \| f - v_m \|^2).
\]

We can subtract \(4\alpha^2 \) from both sides and use (1.2) to get

\[
\| v_n - v_m \|^2 + 4(\| f - \frac{v_n + v_m}{2} \|^2 - \alpha^2) = 2(\| f - v_n \|^2 + \| f - v_m \|^2 - 2\alpha^2) < \frac{2}{n} + \frac{2}{m}.
\]

Because \(\frac{1}{2}(v_n + v_m) \in V \), \(\| f - \frac{v_n + v_m}{2} \|^2 \geq \inf_{v \in V} \| v - f \|^2 = \alpha^2 \). It follows that the second term on the left is nonnegative. Dropping it makes the left side smaller:

\[
\| v_n - v_m \|^2 < \frac{2}{n} + \frac{2}{m}.
\]

(1.3)

As \(n, m \to \infty \), we see that \(\| v_n - v_m \| \to 0 \). Thus \(\{ v_n \}_{n=1}^\infty \) is a Cauchy sequence in \(\mathcal{H} \) and is therefore convergent to a vector \(p \in \mathcal{H} \). Since \(V \) is closed, \(p \in V \). Furthermore, taking limits in (1.1) implies that \(\| p - f \| = \inf_{v \in V} \| v - f \| \). The uniqueness of \(p \) is left as an exercise.

There are two important corollaries to this theorem; they follow from problem 4 of Assignment 1, 2021, and Theorem 1.1. We list them below.

Corollary 1.3. Let \(V \) be a subspace of \(\mathcal{H} \). There exists an orthogonal projection \(P : \mathcal{H} \to V \) for which \(\| f - Pf \| = \min_{v \in V} \| f - v \| \) if and only if \(V \) is closed.

Corollary 1.4. Let \(V \) be a closed subspace of \(\mathcal{H} \). Then, \(\mathcal{H} = V \oplus V^\perp \) and \((V^\perp)^\perp = V \).

2 The Riesz Representation Theorem

Let \(V \) be a Banach space. A bounded linear transformation \(\Phi \) that maps \(V \) into \(\mathbb{R} \) or \(\mathbb{C} \) is called a **linear functional** on \(V \). The linear functionals form a Banach space \(V^* \), called the **dual space** of \(V \), with norm defined by

\[
\| \Phi \|_{V^*} := \sup_{v \neq 0} \frac{|\Phi(v)|}{\| v \|}.
\]
2.1 The linear functionals on Hilbert space

Theorem 2.1 (The Riesz Representation Theorem). Let \mathcal{H} be a Hilbert space and let $\Phi : \mathcal{H} \to \mathbb{C}$ (or \mathbb{R}) be a bounded linear functional on \mathcal{H}. Then, there is a unique $g \in \mathcal{H}$ such that, for all $f \in \mathcal{H}$, $\Phi(f) = \langle f, g \rangle$.

Proof. The functional Φ is a bounded operator that maps \mathcal{H} into the scalars. It follows from our discussion of bounded operators that the null space of Φ, $N(\Phi)$, is closed. If $N(\Phi) = \mathcal{H}$, then $\Phi(f) = 0$ for all $f \in \mathcal{H}$, hence $\Phi = 0$. Thus we may take $g = 0$. If $N(\Phi) \neq \mathcal{H}$, then, since $N(\Phi)$ is closed, we have that $\mathcal{H} = N(\Phi) \oplus N(\Phi)\perp$. In addition, since $N(\Phi) \neq \mathcal{H}$, there exists a nonzero vector $h \in N(\Phi) \perp$. Moreover, $\Phi(h) \neq 0$, because h is not in the null space $N(\Phi)$. Next, note that for $f \in \mathcal{H}$, the vector $w := \Phi(h)f - \Phi(f)h$ is in $N(\Phi)$. To see this, observe that

$$\Phi(w) = \Phi(\Phi(h)f - \Phi(f)h) = \Phi(h)\Phi(f) - \Phi(f)\Phi(h) = 0.$$

Because $w = \Phi(h)f - \Phi(f)h \in N(\Phi)$, it is orthogonal to $h \in N(\Phi)\perp$, we have that

$$0 = \langle \Phi(h)f - \Phi(f)h, h \rangle = \Phi(h)\langle f, h \rangle - \Phi(f)\langle h, h \rangle \underbrace{\text{.} \lVert h \rVert^2}_{\text{.}}.$$

Solving this equation for $\Phi(f)$ yields $\Phi(f) = \langle f, \frac{\Phi(h)}{\lVert h \rVert^2}h \rangle$. The vector $g := \frac{\Phi(h)}{\lVert h \rVert^2}h$ then satisfies $\Phi(f) = \langle f, g \rangle$. To show uniqueness, suppose $g_1, g_2 \in \mathcal{H}$ satisfy $\Phi(f) = \langle f, g_1 \rangle$ and $\Phi(f) = \langle f, g_2 \rangle$. Subtracting these two gives $\langle f, g_2 - g_1 \rangle = 0$ for all $f \in \mathcal{H}$. Letting $f = g_2 - g_1$ results in $\langle g_2 - g_1, g_2 - g_1 \rangle = 0$. Consequently, $g_2 = g_1$.

2.2 Adjoints of bounded linear operators

We now turn the problem of showing that an adjoint for a bounded operator always exists. This is just a corollary of the Riesz Representation Theorem.

Corollary 2.2. Let $L : \mathcal{H} \to \mathcal{H}$ be a bounded linear operator. Then there exists a bounded linear operator $L^* : \mathcal{H} \to \mathcal{H}$, called the adjoint of L, such that $\langle Lf, h \rangle = \langle f, L^* h \rangle$, for all $f, h \in \mathcal{H}$.

Proof. Fix $h \in \mathcal{H}$ and define the linear functional $\Phi_h(f) = \langle Lf, h \rangle$. Using the boundedness of L and Schwarz’s inequality, we have $|\Phi_h(f)| \leq \|L\|\|f\|\|h\| = K\|f\|$, and so Φ_h is bounded. By Theorem 2.1 there is a
unique vector \(g \) in \(\mathcal{H} \) for which \(\Phi_h(f) = \langle f, g \rangle \). The vector \(g \) is uniquely determined by \(\Phi_h \); thus \(g = g_h \) a function of \(h \). We claim that \(g_h \) is a linear function of \(h \). Consider \(h = ah_1 + bh_2 \). Note that \(\Phi_h(f) = \langle Lf, ah_1 + bh_2 \rangle = \bar{a} \Phi_{h_1}(f) + b \Phi_{h_2}(f) \). Since \(\Phi_{h_1}(f) = \langle f, g_1 \rangle \) and \(\Phi_{h_2}(f) = \langle f, g_2 \rangle \), we see that

\[
\Phi_h(f) = \langle f, g_h \rangle = \bar{a} \Phi_{h_2}(f) + b \Phi_{h_2}(f) = \langle f, ag_{h_1} + bg_{h_2} \rangle.
\]

It follows that \(g_h = ag_{h_1} + bg_{h_2} \) and that \(g_h \) is a linear function of \(h \). It is also bounded. If \(f = g_h \), then \(\Phi_h(g_h) = \|g_h\|^2 \). From the bound \(|\Phi_h(f)| \leq \|L\| \|f\| \|h\| \), we have \(\|g_h\|^2 \leq \|L\| \|g_h\| \|h\| \). Dividing by \(\|g_h\| \) then yields \(\|g_h\| \leq \|L\| \|h\| \). Thus the correspondence \(h \rightarrow g_h \) is a bounded linear function on \(\mathcal{H} \). Denote this function by \(L^* \). Since \(\langle Lf, h \rangle = \langle f, g_h \rangle \), we have that \(\langle Lf, h \rangle = \langle f, L^*h \rangle \).

Corollary 2.3. \(\|L^*\| = \|L\| \).

Proof. By problem 7 in Assignment 7, 2021, \(\|L\| = \sup_{f,h} \|\langle Lf, h \rangle\| \), where \(\|h\| = \|f\| = 1 \). On the other hand, \(\|L^*\| = \sup_{f,h} \|\langle L^*h, f \rangle\| \). Since \(\langle L^*h, f \rangle = \langle f, L^*h \rangle \), we have that \(\sup_{f,h} \|\langle L^*h, f \rangle\| = \sup_{f,h} \|\langle Lf, h \rangle\| \). It immediately follows that \(\|L^*\| = \|L\| \).

Example 2.4. Let \(R = [0, 1] \times [0, 1] \) and suppose that \(k \) is a Hilbert-Schmidt kernel. If \(Lu(x) = \int_0^1 k(x, y)u(y)dy \), then \(L^*v(x) = \int_0^1 \bar{k}(y, x)v(y)dy \).

Proof. We will use \(s, t \) as the integration variables and switch back, to avoid confusion. We begin with \(\langle Lu, v \rangle = \int_0^1 (\int_0^1 k(s, t)u(t)dt)v(s)ds \). By Fubini’s theorem, we may switch the variables of integration to get this:

\[
\int_0^1 \left(\int_0^1 k(s, t)u(t)dt \right)v(s)ds = \int_0^1 \left(\int_0^1 k(s, t)v(s)ds \right)u(t)dt
= \int_0^1 \left(\int_0^1 \bar{k}(s, t)v(s)ds \right)u(t)dt.
\]

The result follows by changing variables from \(t, s \) to \(x, y \) in the second equation above.

3 The Fredholm Alternative

Theorem 3.1 (The Fredholm Alternative). Let \(L : \mathcal{H} \to \mathcal{H} \) be a bounded linear operator whose range, \(R(L) \), is closed. Then, the equation \(Lf = g\)
and be solved if and only if \(\langle g, v \rangle = 0 \) for all \(v \in N(L^*) \). Equivalently, \(R(L) = N(L^*)^\perp \).

Proof. Let \(g \in R(L) \), so that there is an \(h \in \mathcal{H} \) such that \(g = Lh \). If \(v \in N(L^*) \), then \(\langle g, v \rangle = \langle Lh, v \rangle = \langle h, L^*v \rangle = 0 \). Consequently, \(R(L) \subseteq N(L^*)^\perp \). Let \(f \in N(L^*)^\perp \). Since \(R(L) \) is closed, the projection theorem, Theorem 1.1 and Corollary 1.3 imply that there exists an orthogonal projection \(P \) onto \(R(L) \) such that \(Pf \in R(L) \) and \(f' = f - Pf \in R(L)^\perp \). Moreover, since \(f \) and \(Pf \) are both in \(N(L^*)^\perp \), we have that \(f' \in R(L)^\perp \cap N(L^*)^\perp \). Hence, \(\langle Lh, f' \rangle = 0 = \langle h, L^*f' \rangle \), for all \(h \in \mathcal{H} \). Setting \(h = L^*f' \) then yields \(L^*f' = 0 \), so \(f' \in N(L^*) \). But \(f' \in N(L^*)^\perp \) and is thus orthogonal to itself; hence, \(f' = 0 \) and \(f = Pf \in R(L) \). It immediately follows that \(N(L^*)^\perp \subseteq R(L) \). Since we already know that \(R(L) \subseteq N(L^*)^\perp \), we have \(R(L) = N(L^*)^\perp \).

We want to point out that \(R(L) \) being closed is crucial for the theorem to be true. If it is not closed, then the projection \(P \) will not exist and the proof breaks down. In that case, one actually has \(R(L) = N(L^*)^\perp \), but not \(R(L) = N(L^*)^\perp \).

The theorem is stated in a variety of ways. The form that emphasizes the “alternative” is given in the result below, which follows immediately from Theorem 3.1.

Corollary 3.2. Let \(L : \mathcal{H} \to \mathcal{H} \) be a bounded linear operator whose range, \(R(L) \), is closed. Then, either the equation \(Lf = g \) has a solution or there exists a vector \(v \in N(L^*) \) such that \(\langle g, v \rangle \neq 0 \).