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X-ray Tomography. An important part of X-ray tomography – the CAT
scan – is solving a mathematical problem that goes back to the earlier twen-
tieth century work of the mathematician Johann Radon: Suppose that there
is a function1 f(x, y) defined in a region of the plane and that all we know
about f is the collection of line integrals

∫
L
f(x(s), y(s)ds over each line L

that intersects the region. (See Figure 1.) The problem is to find f , given
this information.

Figure 1: The region where f is defined and a typical line L cutting the
region are shown. L is specified by ρ and the angle θ.

We will assume that the region where f is defined is a disk D := {|x| ≤
1}. In Figure 1, the function is shown as having compact support in D.
The unit vector n that is normal to L and points away from the origin is
n = cos(θ)i+sin(θ)j. The tangent pointing upward is t = − sin(θ)i+cos(θ)j.

1This is an attenuation coefficient in a CAT scan.
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If we let s ≥ 0 be the arc length starting at the point ρn, then any point x
above ρn is specified by x = st + ρn. If x is below ρn, then it is specified by
x = −st + ρn.

We will work with x above the vector ρn. Express x in terms of polar
coordinates (r, φ), x = r cos(φ)i + r sin(φ)j. Of course, r = |x|. Comparing
this with x = st + ρn, we see that r2 = s2 + ρ2 and ρ = x · n = r cos(φ− θ).
Since x is above ρn, we have that φ ≥ θ and thus φ = θ + Cos−1(ρ/r).
When x is below ρn, φ ≤ θ and φ = θ − Cos−1(ρ/r). Breaking the integral∫
L
f(x(s))ds into two pieces, making the change of variables s =

√
r2 − ρ2,

ds = (r2 − ρ2)−1/2rdr, and noting that ρ ≤ r ≤ 1, we have∫
L

f(x(s))ds =

∫
φ≥θ

f(x(s))ds+

∫
θ≥φ

f(x(s))ds

=

∫ 1

ρ

f(r, θ + Cos−1(ρ/r))rdr√
(r2 − ρ2

+

∫ 1

ρ

f(r, θ − Cos−1(ρ/r))rdr√
(r2 − ρ2

=

∫ 1

ρ

(
f(r, θ + Cos−1(ρ/r)) + f(r, θ − Cos−1(ρ/r))

)
rdr√

(r2 − ρ2
.

Assuming the fx) = f(r, φ) is smooth enough, we can expand it in a Fourier
series in φ,

f(r, φ) =
∞∑

n=−∞

f̂n(r)einφ, (1)

and then replace f in the integral on the right above by this series. Again
making the assumption that interchanging sum and integral is possible and
manipulating the resulting expression, we have

F (ρ, θ) :=

∫
L

f(x(s))ds = 2
∞∑

n=−∞

einθ
∫ 1

ρ

f̂n(r)
cos(nCos−1(ρ/r))rdr√

r2 − ρ2
. (2)

Since the line L is specified by the angle θ and distance ρ, the integral over
L,is a function of θ and ρ, which we have denoted by F (ρ, θ). In addition, the
expression Tn(ρ/r) := cos(nCos−1(ρ/r)) is actually an nth degree Chebyshev
polynomial. For example, T2(ρ/r) = 2 cos2(Cos−1(ρ/r)) − 1 = 2(ρ/r)2 − 1.
Using these two facts in connection with (2) we have

F (ρ, θ) =
∞∑

n=−∞

einθ
∫ 1

ρ

2f̂n(r)
Tn(ρ/r)r√
r2 − ρ2

dr, (3)
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which is the Fourier series for F (ρ, θ). It follows that the Fourier coefficients
for F (ρ, θ) are given by

F̂n(ρ) =

∫ 1

ρ

2f̂n(r)
Tn(ρ/r)r√
r2 − ρ2

dr, n ∈ Z. (4)

The point is that F (ρ, θ) =
∫
L
f(x(s))ds is known, and so the Fourier

coefficients F̂n(ρ) are all known. The problem of finding f , given F , is thus

equivalent to solving the integral equations in (4) for the f̂n(r)’s and recov-
ering f(r, φ) from its Fourier series. In fact, these integral equations have
exact solutions (see Keener, §3.7):

f̂n(r) = − 1

π

d

dr

∫ 1

r

rTn(ρ/r)F̂n(ρ)

ρ
√
ρ2 − r2

dρ, n ∈ Z. (5)

Classification of integral equations. Certain types of integral equations
come up often enough that they are grouped into classes, which are described
below. There, the function f and kernel k(x, y) are known, u is the unknown
function to be solved for, and λ is a parameter. The integral equations in (4)
are Volterra equations of the first kind. Below is classification of the most
common types of integral equations.

Fredholm Equations
1st kind. f(x) =

∫ b
a
k(x, y)u(y)dy.

2nd kind. u(x) = f(x) + λ
∫ b
a
k(x, y)u(y)dy.

Volterra Equations
1st kind. f(x) =

∫ x
a
k(x, y)u(y)dy.

2nd kind. u(x) = f(x) + λ
∫ x
a
k(x, y)u(y)dy.
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