## Final Examination

This take-home exam is due at 3 pm on Tuesday, May 8. You may consult any written or online source. You may *not* consult any person, either a fellow student or faculty member, except your instructor

- 1. (5 pts.) Let T be a bounded self-adjoint operator on a Hilbert space  $\mathcal{H}$ . In addition, suppose that 0 is in the continuous spectrum of T. If D is the range of T, show that  $H = T^{-1}$ , with domain H being D, is a self-adjoint operator.
- 2. Let  $Lu = -r^{-2} \frac{d}{dr} r^2 \frac{du}{dr}$ ,  $0 < r < \infty$ , with boundary conditions  $r^2 u' \to 0$  and u bounded as  $r \to 0$ , and similar conditions as  $r \to +\infty$ .
  - (a) **(5 pts.)** Show that *L* is (formally) self adjoint in the inner product  $\langle u, v \rangle = \int_0^\infty u(r) \overline{v(r)} r^2 dr$ .
  - (b) (10 pts.) Find the Green's function for L.
  - (c) (15 pts.) Use Stone's formula (or the book's contour technique) to find the associated spectral transform. In addition, you may make use of any asymptotic formulas required in the problem.
- 3. (15 pts.) Problem 6(a), section 7.5, p. 333 in the text.
- 4. **(10 pts.)** Consider  $E_1(x) = \int_x^\infty t^{-1} e^{-t} dt$ , x > 0. Find the asymptotic expansion for  $E_1(x)$  as  $x \to +\infty$ . (Hint: show that  $E_1(x) = e^{-x} \int_0^\infty (1+t)^{-1} e^{-xt} dt$ .)
- 5. (10 pts.) Problem 11(a), section 10.3, p. 465 in the text.
- 6. **(15 pts.)** Consider  $f(x) = \int_0^2 e^{ix(t^2-2t)} dt$ , x > 0. Use the method of steepest descent to show that  $f(x) = e^{i(\pi/4-x)} \sqrt{\frac{\pi}{x}} (1 + \mathcal{O}(x^{-1/2}))$  as  $x \to +\infty$ .
- 7. **(15 pts.)** Prove this version of the principle of stationary phase: For all  $\lambda \in \mathbb{R}$ , let  $F(\lambda) := \int_{-\infty}^{\infty} e^{i\lambda h(t)} g(t) dt$ , where  $g \in C^{(2)}(\mathbb{R})$ ,  $g, g' \in L^1(\mathbb{R})$ ,  $g(0) \neq 0$ , and where  $h \in C^{(3)}(\mathbb{R})$  is real valued, and satisfies h'(0) = 0, h''(t) > 0 for all  $t \in \mathbb{R}$ . Then,  $F(\lambda) \sim \sqrt{\frac{2\pi}{\lambda h''(0)}} g(0) e^{i\lambda h(0) + i\pi/4}$  as  $\lambda \to +\infty$ .