
Coordinate Vectors and Examples

Coordinate vectors. This is a brief discussion of coordinate vectors and
the notation for them that was presented in class. Here is the setup for
all of the problems. We begin with a vector space V that has a basis
B = {v1, . . . ,vn}. We always keep the same order for vectors in the ba-
sis. Technically, this is called an ordered basis. If v ∈ V , then we can
always express v ∈ V in exactly one way as a linear combination of the the
vectors in B. Specifically, for any v ∈ V there are scalars x1, . . . , xn such
that

v = x1v1 + x2v2 + · · · + xnvn . (1)

The xj ’s are the coordinates of v relative to B. We collect them into the
coordinate vector

[v]B =






x1

...
xn




 .

We remark that the operation of finding coordinates is a linear one. That
is, we have that

[v + w] = [v] + [w] and [cv] = c[v].

This is a very important property and allows us to deal use matrix methods
in connection with solving problems in finite dimensional spaces.

Examples. Here are some examples. Let V = P2 and B = {1, x, x2}.
What is the coordinate vector [5 + 3x − x2]B? Answer:

[5 + 3x − x2]B =





5
3
−1



 .

If we ask the same question for [5 − x2 + 3x]B, the answer is the same,
because to find the coordinate vector we have to order the basis elements
so that they are in the same order as B.

Let’s turn the question around. Suppose that we are given

[p]B =





3
0
−4



 ,
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then what is p? Answer: p(x) = 3 · 1 + 0 · x + (−4) · x2 = 3 − 4x2.
Let’s try another space. Let V = span{et, e−t}, which is a subspace

of C(−∞,∞). Here, we will take B = {et, e−t}. What are coordinate
vectors for sinh(t) and cosh(t)? Solution: Since sinh(t) = 1

2
et − 1

2
e−t and

cosh(t) = 1

2
et + 1

2
e−t, these vectors are

[sinh(t)]B =

(
1

2

−1

2

)

and [cosh(t)]B =

(
1

2

1

2

)

.

There is an important special case. Suppose that the vector space V is
an inner product space and the basis B is an orthogonal set of vectors – i.e.,
〈vk,vj〉 = 0 if j 6= k and ‖vj‖

2 > 0. From (1), we have

〈v,vj〉 = 〈x1v1 + x2v2 + · · · + xnvn,vj〉

= x1〈v1,vj〉 + x2〈v2,vj〉 + · · · + xn〈vn,vj〉

= xj‖vj‖
2.

This gives us the following: Relative to an orthogonal basis, the coordinate

xj is given by

xj =
〈v,vj〉

‖vj‖2
.

Matrices for linear transformations. The matrix that represents a
linear transformation L : V → W , where V and W are vector spaces with
bases B = {v1, . . . ,vn} and D = {w1, . . . ,wm}, respectively, is easy to get.

We start with the equation w = L(v). Express v in terms of the basis
B for V : v = x1v1 + x2v2 + · · ·+ xnvn . Next, apply L to both sides of this
equation and use the fact that L is linear to get

w = L(v) = L(x1v1 + x2v2 + · · · + xnvn)

= x1L(v1) + x2L(v2) + · · · + xnL(vn) .

Now, take C coordinates of both sides of w = x1L(v1) + x2L(v2) + · · · +
xnL(vn):

[w]D = [x1L(v1) + x2L(v2) + · · · + xnL(vn)]D

= x1[L(v1)]D + x2[L(v2)]D + · · · + xn[L(vn)]D

= Ax,

where the columns of A are the coordinate vectors [L(vj)]D, j = 1, . . . , n.
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A matrix example. Let V = W = P2, B = D = {1, x, x2}, and L(p) =
((1 − x2)p′)′. To find the matrix A that represents L, we first apply L to
each of the basis vectors in B.

L(1) = 0, L(x) = −2x, and L(x2) = 2 − 6x2.

Next, we find the D-basis coordinate vectors for each of these. Since B = D

here, we have

[0]D =





0
0
0



 [−2x]D =





0
−2
0



 [2 − 6x2]D =





2
0
−6



 ,

and so the natrix that represents L is

A =





0 0 2
0 −2 0
0 0 −6





Changing coordinates. We are frequently faced with the problem of
replacing a set of coordinates relative to one basis with a set for another.
Let B = {v1, . . . ,vn} and B′ = {v′

1
, . . . ,v′n} be bases for a vector space V .

If v ∈ V , then it has coordinate vectors relative to each basis, x = [v]B and
x′ = [v]B′ . This means that

v = x1v1 + x2v2 + · · · + xnvn = x′
1
v′

1
+ x′

2
v′

2
+ · · · + x′nv

′

n.

If we take coordinates relative to B on both sides, then we arrive at the
chain of equations below:

x = x′
1
[v′

1
]B + x′

2
[v′

2
]B + · · · + x′n[v′n]B

=
[
[v′

1
]B · · · [v′n]B

]

︸ ︷︷ ︸

C

x′ = Cx′.

Of course, we also have x′ = C−1x. We point out that these matrices have
the forms below:

C = CB←B′ =
[
[B′ basis ]B

]
and C−1 = CB′

←B = [[B basis ]B′ ] .
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