
Methods for Finding Bases

1 Bases for the subspaces of a matrix

Row-reduction methods can be used to find bases. Let us now look at an
example illustrating how to obtain bases for the row space, null space, and
column space of a matrix A. To begin, we look at an example, the matrix
A on the left below. If we row reduce A, the result is U on the right.

A =





1 1 2 0
2 4 2 4
2 1 5 −2



 ⇐⇒ U =





1 0 3 −2
0 1 −1 2
0 0 0 0



 . (1)

Let the rows of A be denoted by rj , j = 1, 2, 3, and the columns of A by
ak, k = 1, 2, 3, 4. Similarly, ρj denotes the rows of U . (We will not need the
columns of U .)

1.1 Row space

The row spaces of A and U are identical. This is because elementary row
operations preserve the span of the rows and are themselves reversible op-
erations. Let’s see in detail how this works for A. The row operations we
used to row reduce A are these.

step 1 : R2 = R2 − 2R1 = r2 − 2r1

R3 = R3 − 2R1 = r3 − 2r1

step 2 : R3 = R3 + 1
2R2 = 0

step 3 : R2 = 1
2R2 = 1

2r2 − r1

step 4 : R1 = R1 − R2 = 2r1 −
1
2r2

Inspecting these row operations shows that the rows of U satisfy

ρ1 = 2r1 −
1

2
r2 ρ2 =

1

2
r2 − r1 ρ3 = 0.

It’s not hard to run the row operations backwards to get the rows of A in
terms of those of U .

r1 = ρ1 + ρ2 r2 = 2ρ1 + 4ρ2 r3 = 2ρ1 + ρ2.

Thus we see that the nonzero rows of U span the row space of A.
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They are also linearly independent. To test this, we begin with the
equation

c1ρ1 + c2ρ2 = ( 0 0 0 0 )

Inserting the rows in the last equation we get

( c1 c2 3c1 − c2 −2c1 + 2c2 ) = ( 0 0 0 0 ).

This gives us c1 = c2 = 0, so the rows are linearly independent. Since they
also span the row space of A, they form a basis for the row space of A. This
is a general fact:

Theorem 1.1 The nonzero rows in U , the reduced row echelon form of a
matrix A, comprise a basis for the row space of A.

1.1.1 Rank

The rank of a matrix A is defined to be the dimension of the row space. Since
the dimension of a space is the number of vectors in a basis, the rank of a
matrix is just the number of nonzero rows in the reduced row echelon form
U . That number also equals the number of leading entries in the U , which
in turn agrees with the number of leading variables in the corresponding
homogeneous system.

Corollary 1.2 Let U be the reduced row echelon form of a matrix A. Then,
the number of nonzero zero rows in U , the number of leading entries in
U , and the number of leading variables in the corresponding homogeneous
sustem Ax = 0 all equal rank(A).

As an example, consider the matrices A and U in (1). U has two nonzero
rows, so rank(A) = 2. This agrees with the number of leading entries,
which are U1,1 and U2,1. (These are in boldface in (1)). Finally, the leading
variables for the homogeneous system Ax = 0 are x1 and x2, again there
are two.

1.2 Null space

We recall that the null spaces of A and U are identical, because row oper-
ations don’t change the solutions to the homogeneous equations involved.
Let’s look at an example where A and U are the matrices in (1). The
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equations we get from finding the null space of U – i.e., solving Ux = 0 –
are

x1 + 3x3 − 2x4 = 0

x2 − x3 + 2x4 = 0.

The leading variables correspond to the columns containing the leading en-
tries, which are in boldface in U in (1); these are the variables x1 and x2.
The remaining variables, x3 and x4, are free (nonleading) variables. To em-
phasize this, we assign them new labels, x3 = t1 and x4 = t2. (In class
we frequently used α and β; this isn’t convenient here.) Solving the system
obtained above, we get

x =







x1

x2

x3

x4







= t1







−3
1
1
0







︸ ︷︷ ︸

n1

+t2







2
−2
0
1







︸ ︷︷ ︸

n2

= t1n1 + t2n2 . (2)

From this equation, it is easy to show that the vectors n1 and n2 form a
basis for the null space. Notice that we can get these vectors by solving
Ux = 0 first with t1 = 1, t2 = 0 and then with t1 = 0, t2 = 1.

This works in the general case as well: The usual procedure for solv-
ing a homogeneous system Ax = 0 results in a basis for the null space.
More precisely, to find a basis for the null space, begin by identifying the
leading variables xℓ1 , xℓ2 , . . . , xℓr

, where r is the number of leading vari-
ables, and the free variables xf1

, xf2
, . . . , xfn−r

. For the free variables, let
tj = xfj

. Find the n − r solutions to Ux = 0 corresponding to the free-
variable choices t1 = 1, t2 = 0, . . . , tn−r = 0, t1 = 1, t2 = 0, . . . , tn−r = 0,
. . . , t1 = 0, t2 = 0, . . . , tn−r = 1. Call these vectors n1,n2, . . . ,nn−r. The
set {n1,n2, . . . ,nn−r} is a basis for the null space of A (and, of course, U).

1.2.1 Nullity

The nullity of a matrix A is defined to be the dimension of the null space,
N(A). From our discussion above, nullity(A) is just the number of free
variables. However, the number of free variables plus the number of leading
variables is the total number of variables involved, which equals the number
of columns of A. Consequently, we have proved the following result:

Theorem 1.3 Let A ∈ R
m×n. Then,

rank(A) + nullity(A) = n = # of columns of A.
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1.3 Column space

We now turn to finding a basis for the column space of the a matrix A. To
begin, consider A and U in (1). Equation (2) above gives vectors n1 and n2

that form a basis for N(A); they satisfy An1 = 0 and An2 = 0. Writing
these two vector equations using the “basic matrix trick” gives us:

−3a1 + a2 + a3 = 0 and 2a1 − 2a2 + a4 = 0 .

We can use these to solve for the free columns in terms of the leading
columns,

a3 = 3a1 − a2 and a4 = −2a1 + 2a2 .

Thus the column space is spanned by the set {a1, a2}. (a1 and a2 are in
boldface in our matrix A above in (1).) This set is also linearly independent
because the equation

0 = x1a1 + x2a2 = x1a1 + x2a2 + 0a3 + 0a4 = A







x1

x2

0
0







implies that ( x1 x2 0 0 )T is in the null space of A. Matching this
vector with the general form of a vector in the null space shows that the
corresponding t1 and t2 are 0, and therefore so are x1 and x2. It follows
that {a1, a2} is linearly independent. Since it spans the columns as well, it
is a basis for the column space of A. Note that these columns correspond to
the leading variables in the problems, x1 and x2. This is no accident. The
argument that we used can be employed to show that this is true in general:

Theorem 1.4 Let A ∈ R
m×n. The columns of A that correspond to the

leading variables in the associated homogeneous problem, Ux = 0, form a
basis for the column space of A. In addition, the dimension of the column
space of A is rank(A).

2 Another matrix example

Let’s do another example. Consider the matrix A and the matrix U , its row
reduced form, shown below.

A =







1 3 −1 2 3
−2 −1 2 1 1
−1 2 1 3 4
0 5 0 5 7







⇐⇒ U =







1 0 −1 −1 −6
5

0 1 0 1 7
5

0 0 0 0 0
0 0 0 0 0






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From U , we can read off a basis for the row space,

{(
1 0 −1 −1 −6

5

)
,
(

0 1 0 1 7
5

)}
.

Again, from U we see that the leading variables are x1 and x2, so the leading
columns in A are a1 and a2. Thus, a basis for the column space is the set













1
−2
−1
0







,







3
−1
2
5













.

To get a basis for the null space, note that the free variables are x3

through x5. Let t1 = x3, etc. The system corresponding to Ux = 0 then
has the form

x1 − t1 − t2 −
6

5
t3 = 0

x2 + t2 +
7

5
t3 = 0 .

To get n1, set t1 = 1, t2 = t3 = 0 and solve for x1 and x2. This gives us

n1 =
(

1 0 1 0 0
)T

. For n2, set t1 = 0, t2 = 1, t3 = 0, in the system

above; the result is n2 =
(

1 −1 0 1 0
)T

. Last, set t1 = 0, t2 = 0,

t3 = 1 to get n3 =
(

6
5 −7

5 0 0 1
)T

. The basis for the null space is
thus 





n1 =









1
0
1
0
0









, n2 =









1
−1
0
1
0









, n3 =









6
5
−7

5
0
0
1















.

We want to make a few remarks on this example, concerning the dimensions
of the spaces involved. The common dimension of both the row space and the
column space is rank(A) = 2, which is also the number of leading variables.
The dimension of the null space is the nullity of A. Here, nullity(A) = 3.
Thus, in this case we have verified that

rank(A) + nullity(A) = 5,

the number of columns of A.
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3 Rank and Solutions to Systems of Equations

One of the most important applications of the rank of a matrix is determin-
ing whether a system of equations is inconsistent (no solutions) or consis-
tent, and if it is consistent, whether it has one solution or infinitely many
solutions. Consider this system S of linear equations:

S :







a11x1 + · · · + a1nxn = b1

a21x1 + · · · + a2nxn = b2
...

...
...

am1x1 + · · · + amnxn = bm

Put S into augmented matrix form [A|b], where A is the m × n coefficient
matrix for S, x is the n × 1 vector of unknowns, and b is the m × 1 vector
of bj ’s. Then we have the following theorem, which is a tool that will help
in deciding whther S has none, one or many solutions.

Theorem 3.1 Consider the system S with coefficient matrix A and aug-
mented matrix [A|b]. As above, the sizes of b, A, and [A|b] are m × 1,
m × n, and m × (n + 1), respectively; in addition, n is the number of un-
knowns. We have these possibilities:

1. S is inconsistent if and only if rank[A] < rank[A|b].

2. S has a unique solution if and only if rank[A] = rank[A|b] = n .

3. S has infinitely many solutions if and only if rank[A] = rank[A|b] < n .

We will skip the proof, which essentially involves what we have already
learned about row reduction and linear systems. Instead, we will do a few
examples.

Example 3.2 Let A =





1 −1
1 0
2 3



 and b = (1 − 3 4)T . Determine

whether the system Ax = b is consistent.

Form the augnented matrix

[A|b] =





1 −1 1
1 0 −3
2 3 4




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and find its reduced row echelon form, U :

[A|b] ⇐⇒ U =





1 0 0
0 1 0
0 0 1



 .

Because of the way the row reduction process is done, the first two columns
of U are the reduced row echelon form of A. that is,

A ⇐⇒





1 0
0 1
0 0





From the equations above, we see that rank(A) = 2 < rank[A|b] = 3. By
part 1 of Theorem 3.1, the system is inconsistent.

Example 3.3 Let A =

(
1 1 −1 2
2 2 −3 1

)

and b = (3 − 1)T . Determine

whether the system Ax = b is consistent.

The augmented form of the system and its reduced row echelon form are
given below.

[A|b] =

(
1 1 −1 2 3
2 2 −3 1 −1

)

⇐⇒ U =

(
1 1 0 5 10
0 0 1 3 7

)

As before, the first four columns of U comprise the reduced row echelon
form of A; that is,

A =

(
1 1 −1 2
2 2 −3 1

)

⇐⇒

(
1 1 0 5
0 0 1 3

)

Inspecting the matrices, we see that rank(A) = rank[A|b] = 2 < 4. By part
3 of Theorem 3.1, the system is consistent and has infinitely many solutions.

We close by pointing out that for any system [A|b] ∈ R
m×(n+1), the

first n columns of the reduced echelon form of [A|b] always comprise the
reduced echelon form of A. As above, we can use this to easily find rank(A)
and rank[A|b], without any additional work.
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