\qquad

Test I

Instructions: Show all work in your bluebook. You may use a calculator for numerical computations. You may not use a graphing calcular or a calculator that can do symbolics.

1. (15 pts.) For $n>0$, let $f_{n}(t)=\left\{\begin{array}{ll}1, & 0 \leq t \leq 1 / n, \\ 0, & \text { otherwise. }\end{array}\right.$ Show that $f_{n} \rightarrow 0$ in $L^{2}[0,1]$. Show that f_{n} does not converge to zero uniformly on $[0,1]$.
2. (20 pts.) Use least squares to fit a straight line to the datra below.

$$
\begin{array}{c|cccc}
x & 1 & 2 & 4 & 5 \\
\hline y & 7.0 & 4.2 & -2.1 & -5.0
\end{array}
$$

3. Let $h(x):=\pi / 2-x, 0 \leq x \leq \pi$.
(a) (10 pts.) Sketch two periods each of the functions to which the Fourier cosine series (FCS) and Fourier sine series (FSS) converge pointwise. Are either of these series uniformly convergent on $[0, \pi]$? How about on $[\pi / 4,3 \pi / 4]$? Why?
(b) ($\mathbf{1 5}$ pts.) Find the FCS for h. Use it to evaluate the sum $\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}$.
(c) (5 pts.) On $[0, \pi], h$ has a symmetry property. State it. Use it to explain why all of the even coefficients in the FCS for h vanish.
4. (20 pts.) Let σ be real, and not an integer. Find the complex form of the Fourier series for the 2π-periodic function F, where $F(x)=e^{-i \sigma x}$ on $-\pi<x<\pi$. Use this and Parseval's theorem to show that

$$
\csc ^{2}(\sigma \pi)=\frac{1}{\pi^{2}} \sum_{k=-\infty}^{\infty} \frac{1}{(\sigma+k)^{2}}
$$

5. (15 pts.) Do one of the following.
(a) Sketch a proof for this theorem. Suppose f is a continuous and 2π periodic function. Then for each point x, where the derivative of f is defined, the Fourier series of f at x converges to $f(x)$.
(b) Recall that the FS for $g(x)=\left\{\begin{array}{cc}\pi-x, & 0 \leq x \leq \pi, \\ -\pi-x, & -\pi \leq x<0\end{array}\right.$ exhibits the Gibbs phenomenon near $x=0$. Briefly describe what this is for g, and then show that it is universal.

Integrals

1. $\int u d v=u v-\int v d u$
2. $\int \frac{d t}{t}=\ln |t|+C$
3. $\int e^{a t} d t=\frac{1}{a} e^{a t}+C$
4. $\int t^{n} e^{a t} d t=\frac{1}{a} t^{n} e^{a t}-\frac{n}{a} \int t^{n-1} e^{a t} d t$
5. $\int e^{a t} \cos (b t) d t=\frac{e^{a t}}{a^{2}+b^{2}}(a \cos (b t)+b \sin (b t))+C$
6. $\int e^{a t} \sin (b t) d t=\frac{e^{a t}}{a^{2}+b^{2}}(a \sin (b t)-b \cos (b t))+C$
7. $\int t \sin (t) d t=\sin (t)-t \cos (t)+C$
8. $\int t \cos (t) d t=\cos (t)+t \sin (t)+C$
9. $\int \sin (a t) d t=-\frac{1}{a} \cos (a t)+C$
10. $\int \cos (a t) d t=\frac{1}{a} \sin (a t)+C$
11. $\int \tan (a t) d t=\frac{1}{a} \ln |\sec (a t)|+C$
12. $\int \cot (a t) d t=\frac{1}{a} \ln |\sin (a t)|+C$
13. $\int \sec (a t) d t=\frac{1}{a} \ln |\sec (a t)+\tan (a t)|+C$
14. $\int \csc (a t) d t=\frac{1}{a} \ln |\csc (a t)-\cot (a t)|+C$
15. $\int \frac{d t}{t^{2}+a^{2}}=\frac{1}{a} \arctan (t / a)+C$
16. $\int \frac{d t}{t^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{t-a}{t+a}\right|+C$
