Instructions: Show all work in your bluebook. You may use a calculator for numerical computations. You may not use a graphing calcular or a calculator that can do symbolics.

- 1. **(20 pts.)** Let $h(t) = \begin{cases} e^{-2t} & t \geq 0, \\ 0 & t < 0 \end{cases}$ and $f(t) = \begin{cases} 1 & 0 \leq t \leq \pi, \\ 0 & t < 0 \text{ or } t > \pi \end{cases}$. If H is the filter H[f] = h * f, find H[f]. Is H causal? Find the system function, $\sqrt{2\pi}\hat{h}$.
- 2. Let \mathcal{F}_n be the DFT for *n*-periodic sequences (signals).
 - (a) (10 pts.) Briefly describe the FFT. Why is it fast?
 - (b) **(10 pts.)** Find $\mathcal{F}_4[a]$ if a = (-2, 1, 0, 1). Note: for n = 4, $\overline{w} = -i$.
 - (c) (10 pts.) State the (circular) convolution theorem for the DFT, and use it and part 2b above to find the eigenvalues of the circulant matrix A whose first column is $a^T = [-2 \ 1 \ 0 \ 1]^T$.
- 3. (20 pts.) Define multiresolution analysis (MRA). In the case of the Haar MRA, state or define the following items: the approximation spaces, V_j , the scaling function ϕ , the two-scale (scaling) relation, and the wavelet ψ . State what H, L are in Fig. 1.

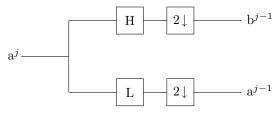


Figure 1: Haar decomposition diagram.

4. (15 pts.) Reconstruct $f \in V_3$, given these coefficients in its Haar wavelet decomposition:

$$a^1 = [3/2, -1] \quad b^1 = [-1, -3/2] \quad b^2 = [-3/2, -3/2, -1/2, -1/2].$$

The first entry in each list corresponds to k = 0. Sketch f.

5. (15 pts.) Prove the Sampling Theorem: Let f be band-limited. That is, suppose that $\hat{f}(\lambda)$ is piecewise smooth, continuous, and that $\hat{f}(\lambda) = 0$ for $|\lambda| > \Omega$, where Ω is some fixed, positive frequency. Then f has the following series expansion:

$$f(t) = \sum_{j=-\infty}^{\infty} f(j\pi/\Omega) \frac{\sin(\Omega t - j\pi)}{\Omega t - j\pi}.$$
 (1)

Fourier Transform Properties

1.
$$\hat{f}(\xi) = \mathcal{F}[f](\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ix\xi}dx$$
.

2.
$$f(x) = \mathcal{F}^{-1}[\hat{f}](x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\xi) e^{ix\xi} d\xi$$
.

3.
$$\mathcal{F}[x^n f(x)](\xi) = i^n \hat{f}^{(n)}(\xi)$$
.

4.
$$\mathcal{F}[f^{(n)}(x)](\xi) = (i\xi)^n \hat{f}(\xi)$$
.

5.
$$\mathcal{F}[f(x-a)](\xi) = e^{-i\xi a}\hat{f}(\xi)$$
.

6.
$$\mathcal{F}[f(bx)](\xi) = \frac{1}{b}\hat{f}(\frac{\xi}{b}).$$

7.
$$\mathcal{F}[f * g] = \sqrt{2\pi}\hat{f}(\xi)\hat{g}(\xi)$$

8.
$$\operatorname{sinc}(x) := \frac{\sin(\pi x)}{\pi x} = \mathcal{F}^{-1}[\chi_{\pi}], \text{ if } \chi_{\pi}(\xi) = \begin{cases} 1/\sqrt{2\pi}, & -\pi \le \xi \le \pi \\ 0, & |\xi| > \pi \end{cases}.$$

Integrals

1.
$$\int u dv = uv - \int v du$$

$$2. \int \frac{dt}{t} = \ln|t| + C$$

3.
$$\int e^{at}dt = \frac{1}{a}e^{at} + C$$

4.
$$\int t^n e^{at} dt = \frac{1}{a} t^n e^{at} - \frac{n}{a} \int t^{n-1} e^{at} dt$$

5.
$$\int e^{at} \cos(bt) dt = \frac{e^{at}}{a^2 + b^2} \left(a \cos(bt) + b \sin(bt) \right) + C$$

6.
$$\int e^{at} \sin(bt) dt = \frac{e^{at}}{a^2 + b^2} (a \sin(bt) - b \cos(bt)) + C$$

7.
$$\int t \sin(t) dt = \sin(t) - t \cos(t) + C$$

8.
$$\int t \cos(t) dt = \cos(t) + t \sin(t) + C$$

9.
$$\int \tan(at)dt = \frac{1}{a} \ln |\sec(at)| + C$$

10.
$$\int \cot(at)dt = \frac{1}{a} \ln \left| \sin(at) \right| + C$$

11.
$$\int \sec(at)dt = \frac{1}{a}\ln\left|\sec(at) + \tan(at)\right| + C$$

12.
$$\int \csc(at)dt = \frac{1}{a}\ln\left|\csc(at) - \cot(at)\right| + C$$

13.
$$\int \frac{dt}{t^2 + a^2} = \frac{1}{a}\arctan(t/a) + C$$