Test 1

Instructions: Show all work in your bluebook. Cell phones, laptops, calculators that do linear algebra or calculus, and other such devices are not allowed.

- 1. (15 pts.) Let $\langle f, g \rangle := \int_0^1 f(x)g(x)dx$. You are given that $S = \{1, \sqrt{3}(2x-1)\}$ is an orthonormal set. Find the straight line that best fits e^x in $L^2[0, 1]$, in the least squares sense.
- 2. Consider the function f(x) := x defined on $0 \le x \le \pi$.
 - (a) (15 pts.) Find the Fourier cosine series (FCS) for f.
 - (b) (5 pts.) Sketch three periods of the pointwise limit of the FCS for *f*.
 - (c) (5 pts.) Define the term *uniform convergence*. Is the FCS uniformly convergent? Why or why not?
 - (d) (5 pts.) Define the term *convergence in the mean*. Is the FCS convergent in the mean? Why or why not?

3. (15 pts.) Find the Fourier series for $h(x) = \begin{cases} 1 & 0 \le x \le \pi \\ -1 & -\pi \le x < 0 \end{cases}$. Use it to sum the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2k-1}$.

- 4. Let $g(x) = e^{\frac{1}{4}x}$ on $0 < x < 2\pi$
 - (a) (15 pts.) Show that the complex form of the Fourier series for g is

$$g(x) = \sum_{n = -\infty}^{\infty} \frac{2(e^{\pi/2} - 1)}{\pi(1 - 4in)} e^{inx}, \ 0 < x < 2\pi.$$

- (b) (10 pts.) Sum the series $\sum_{n=-\infty}^{\infty} \frac{1}{1+16n^2}$, using the Fourier series above and the complex form of Parseval's Theorem.
- 5. (15 pts.) Do one of the following.
 - (a) Let $V_N = \operatorname{span}\{1, \cos(x), \sin(x), \dots, \cos(Nx), \sin(Nx)\}$. Prove that the $L^2[-\pi, \pi]$ projection of $f \in L^2$ is the partial sum, $S_N(x) = a_0 + \sum_{n=1}^N a_n \cos(nx) + b_n \sin(nx)$.
 - (b) Suppose that f and $f' = \frac{df}{dx}$ are continuous 2π -periodic functions having the Fourier series $f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx)$ and $f'(x) = a'_0 + \sum_{n=1}^{\infty} a'_n \cos(nx) + b'_n \sin(nx)$. Then, show that $a'_0 = 0$, and that $a'_n = nb_n$, $b'_n = -na_n$, for $n \ge 1$.

Integrals

1.
$$\int e^{at} dt = \frac{1}{a} e^{at} + C$$

2. $\int t^n e^{at} dt = \frac{1}{a} t^n e^{at} - \frac{n}{a} \int t^{n-1} e^{at} dt$
3. $\int t \sin(t) dt = \sin(t) - t \cos(t) + C$
4. $\int t \cos(t) dt = \cos(t) + t \sin(t) + C$
5. $\int e^{at} \cos(bt) dt = \frac{e^{at}}{a^2 + b^2} (a \cos(bt) + b \sin(bt)) + C$
6. $\int e^{at} \sin(bt) dt = \frac{e^{at}}{a^2 + b^2} (a \sin(bt) - b \cos(bt)) + C$
7. $\int \cos(at) \cos(bt) dt = \frac{\sin((a+b)t)}{2(a+b)} + \frac{\sin((a-b)t)}{2(a-b)} + C, \ a \neq b$
8. $\int \sin(at) \sin(bt) dt = \frac{\sin((a+b)t)}{2(a+b)} - \frac{\sin((a-b)t)}{2(a-b)} + C, \ a \neq b$
9. $\int \sin(at) \cos(bt) dt = -\frac{\cos((a+b)t)}{2(a+b)} - \frac{\cos((a-b)t)}{2(a-b)} + C, \ a \neq b$