Test 1

Instructions: Show all work in your bluebook. Cell phones, laptops, calculators that do linear algebra or calculus, and other such devices are not allowed.

1. (15 pts.) Let $\langle f, g\rangle:=\int_{0}^{1} f(x) g(x) d x$. You are given that $S=\{1, \sqrt{3}(2 x-$ $1)\}$ is an orthonormal set. Find the straight line that best fits e^{x} in $L^{2}[0,1]$, in the least squares sense.
2. Consider the function $f(x):=x$ defined on $0 \leq x \leq \pi$.
(a) (15 pts.) Find the Fourier cosine series (FCS) for f.
(b) (5 pts.) Sketch three periods of the pointwise limit of the FCS for f.
(c) (5 pts.) Define the term uniform convergence. Is the FCS uniformly convergent? Why or why not?
(d) (5 pts.) Define the term convergence in the mean. Is the FCS convergent in the mean? Why or why not?
3. (15 pts.) Find the Fourier series for $h(x)=\left\{\begin{array}{ll}1 & 0 \leq x \leq \pi \\ -1 & -\pi \leq x<0\end{array}\right.$. Use it to sum the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2 k-1}$.
4. Let $g(x)=e^{\frac{1}{4} x}$ on $0<x<2 \pi$
(a) (15 pts.) Show that the complex form of the Fourier series for g is

$$
g(x)=\sum_{n=-\infty}^{\infty} \frac{2\left(e^{\pi / 2}-1\right)}{\pi(1-4 i n)} e^{i n x}, 0<x<2 \pi
$$

(b) (10 pts.) Sum the series $\sum_{n=-\infty}^{\infty} \frac{1}{1+16 n^{2}}$, using the Fourier series above and the complex form of Parseval's Theorem.
5. (15 pts.) Do one of the following.
(a) Let $V_{N}=\operatorname{span}\{1, \cos (x), \sin (x), \ldots, \cos (N x), \sin (N x)\}$. Prove that the $L^{2}[-\pi, \pi]$ projection of $f \in L^{2}$ is the partial sum, $S_{N}(x)=$ $a_{0}+\sum_{n=1}^{N} a_{n} \cos (n x)+b_{n} \sin (n x)$.
(b) Suppose that f and $f^{\prime}=\frac{d f}{d x}$ are continuous 2π-periodic functions having the Fourier series $f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x)$ and $f^{\prime}(x)=a_{0}^{\prime}+\sum_{n=1}^{\infty} a_{n}^{\prime} \cos (n x)+b_{n}^{\prime} \sin (n x)$. Then, show that $a_{0}^{\prime}=0$, and that $a_{n}^{\prime}=n b_{n}, b_{n}^{\prime}=-n a_{n}$, for $n \geq 1$.

Integrals

1. $\int e^{a t} d t=\frac{1}{a} e^{a t}+C$
2. $\int t^{n} e^{a t} d t=\frac{1}{a} t^{n} e^{a t}-\frac{n}{a} \int t^{n-1} e^{a t} d t$
3. $\int t \sin (t) d t=\sin (t)-t \cos (t)+C$
4. $\int t \cos (t) d t=\cos (t)+t \sin (t)+C$
5. $\int e^{a t} \cos (b t) d t=\frac{e^{a t}}{a^{2}+b^{2}}(a \cos (b t)+b \sin (b t))+C$
6. $\int e^{a t} \sin (b t) d t=\frac{e^{a t}}{a^{2}+b^{2}}(a \sin (b t)-b \cos (b t))+C$
7. $\int \cos (a t) \cos (b t) d t=\frac{\sin ((a+b) t)}{2(a+b)}+\frac{\sin ((a-b) t)}{2(a-b)}+C, a \neq b$
8. $\int \sin (a t) \sin (b t) d t=\frac{\sin ((a+b) t)}{2(a+b)}-\frac{\sin ((a-b) t)}{2(a-b)}+C, a \neq b$
9. $\int \sin (a t) \cos (b t) d t=-\frac{\cos ((a+b) t)}{2(a+b)}-\frac{\cos ((a-b) t)}{2(a-b)}+C, a \neq b$
