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I. Interpolation

We will be considering two types of interpolation problems. Given a continuous function
h: Rn → R, a set of vectors X = {xj}Nj=1 in Rn and scalars {yj}Nj=1, one version of the
scattered data interpolation problem consists in finding a function f such that the system
of equations

f(xj) = yj , j = 1, . . . , N

has a solution of the form

(1.1) f(x) =
N∑

j=1

cjh(x− xj).

Equivalently, one wishes to know when the N ×N matrix A with entries Aj,k = h(xj −xk)
is invertible.

In the second version of the scattered data interpolation problem, we require polyno-
mial reproduction. Let πm−1(R

n) be the set of polynomials in n variables having degree
m− 1 or less. In multi-index notation, p ∈ πm−1(R

n) has the form

p(x) =
∑

|α|≤m−1

pαx
α,

where α = (α1, . . . , αn) is an n-tuple of nonnegative integers and |α| = ∑n
j=1 |αj |.

If every polynomial p ∈ πm−1(R
n) is determined by its values on X, then we will say

that the data set X is unisolvent (for πm−1(R
n)). This condition can also be rephrased in

terms of matrices. Order the monomials xα in some convenient way. Form the matrix P
for which the rows are an xα evaluated at xj , j = 1, . . . , N ; that is, the row corresponding
to α is (xα

1 · · · xα
N ). For example, if n = 2, m = 2 – so we are working in π1(R

2) – and
N = 5, then P would be

P =




1 1 1 1 1
x1 x2 x3 x4 x5

y1 y2 y3 y4 y5




In general, X is unisolvent if and only the rank of the associated matrix P is the dimension
of the corresponding space of polynomials, πm−1(R

n).
For a polynomial reproduction, we consider an interpolant having the form

(1.2) f(x) =

N∑

j=1

cjh(x− xj) +
∑

|α|≤m−1

bαx
α,
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The interpolation conditions yk = f(xk), k = 1, . . . , N , imply that the cj ’s and bα’s satisfy

yk =
N∑

j=1

cjh(xk − xj) +
∑

|α|≤m−1

bαx
α
k , k = 1, . . . , N,

or, in an equivalent matrix form,

ydata = Ac+ PT b.

These give us N equations in the N +dimπm−1(R
n) unknowns; not enough to determine

the unknowns.
The extra equations will come from requiring polynomial reproduction. If the data

comes from a polynomial p ∈ πm−1(R
n) — that is, yk = p(xk), k = 1, . . . , N — then

the interpolant must coincide with p, so p(x) ≡ f(x). Since the set of functions {h(x −
xj}Nj=1 ∪ {xα}|α|≤m−1 is at the very least linearly independent, the sum

∑N
j=1 cjh(x− xj)

vanishes identically and p(x) ≡ ∑
|α|≤m−1 bαx

α. This implies two things. First, the values

of p on X are sufficient to determine p(x) for all x ∈ Rn; X is thus unisolvent. Second,
ypoly data = PT b̃ = Ac + PT b has c = 0 as its only solution; this condition requires
additional equations involving c, as well as conditions on A itself.

We remark that the book by Holger Wendland [18] contains an excellent survey of
results concerning scattered data surface fitting and approximation, and a discussion of
recent results concerning radial basis functions and and other similar basis functions.

II. Conditionally Positive Definite Functions

The conditions on A can be met when the function h belongs to the following class, which
has played an important role in the study of both types of scattered-data interpolation
problems [1-15].

Definition 2.1. Let h: Rn → C be continuous. We say that h is conditionally positive
definite (CPD) of order m (denoted Pn

m) if for every finite set {xj}N1 of distinct points in
Rn and for every set of complex scalars {cj}N1 satisfying

N∑

j=1

cjq(xj) = 0, ∀q ∈ πm−1(R
n), equivalently, Pc = 0

we have cHAc =
∑N

j,k=1 c̄jckh(xk − xj) ≥ 0. If in addition cHAc = 0 implies that c = 0,
we say that h is strictly CPD of order m.

Going back to our discussion of interpolation with polynomial reproduction, observe
that if h is strictly CPD of order m and if c satisfies Pc = 0, then taking adjoints we also
have cHPT = 0. (P is real, so PT = PH .) Consequently, multiplying the polynomial
interpolation equations, PT b̃ = Ac + PT b, on the left by cH yields 0 = cHAc + 0, or
cHAc = 0. Since h is strictly CPD of order m, we have that c = 0. This gives us the result
below.
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Proposition 2.2. Let h be strictly CPD order m. The function f defined in equation
(1.2) is the unique solution to the problem of interpolation with polynomial reproduction,
provided that c is required to satisfy Pc = 0.

If h(x) = F (|x|), then h is called radial . It is easy to show that if h is radial and CPD
of order m in Rn, then it is still an order m CPD function on Rn−1. The converse is false,
however. For example, the function F (r) = max(1− r, 0) is strictly positive definite in R,
but not in higher dimensions.

Are there any radial functions that are order m CPD in all dimensions? Let’s start
with order 0. The answer is, “yes.” Obviously, Gaussians are, because their Fourier
transforms are still Gaussians, no matter what the dimension n is. By Bochner’s Theorem,
they are positive definite, and so are sums and positive (constant) multiples of them. One
can also add limits of such functions to this list, provided one is careful about how one
takes limits. Is there anything else? Surprisingly, no. This is what I. J. Schoenberg proved
some sixty years ago. We will now describe his result.

We begin with the following definition. A function f : (0,∞) → R is said to be com-

pletely monotonic on (0,∞) if f ∈ C∞(0,∞) and if its derivatives satisfy (−1)kf (k)(σ) ≥ 0
for all 0 < σ < ∞ and all k = 0, 1, . . .. We will call this class of functions CM(0,∞). If, in
addition, f is continuous at σ = 0, we will say that f is completely monotonic on [0,∞).
We denote the class of such functions by CM [0,∞).

Here are a few examples. The function 1
σ is in CM(0,∞) and e−σ is in CM [0,∞).

In general, completely monotonic functions are characterized by this result.

Theorem 2.3 (Bernstein-Widder [19]). A function f belongs to CM(0,∞) if and only if
there is a nonnegative Borel measure dη defined on [0,∞) such that

f(σ) =

∫ ∞

0

e−σtdη(t)

is convergent for 0 < σ < ∞. Moreover, f is in CM [0,∞) if and only if the the integral
converges for σ = 0.

Schoenberg found that every radial function that is positive definite in all dimensions is a
monotonic function in r2. The precise statement is this.

Theorem 2.4 (Schoenberg [16]). A radial function F (r) is positive definite on Rn for all
n if and only if f(σ) := F (

√
σ) is in CM [0,∞); that is, f is completely monotonic and

continuous at σ = 0.

Let’s look at the Hardy multiquadric, −
√
1 + r2. Recall that the Laplace transform

L[t−1/2](s) =
√
πs−1/2. Integrating this from s = s1 to s = s2 gives us

2
√
π(s

1/2
2 − s

1/2
1 ) =

∫ s2

s1

(∫ ∞

0

t−1/2e−stdt

)
ds

As long as s1 as s2 are positive, Fubini’s theorem applies and we get

s
1/2
2 − s

1/2
1 = (2

√
π)−1

∫ ∞

0

t−1/2

∫ s2

s1

e−stdsdt

= (2
√
π)−1

∫ ∞

0

t−3/2
(
e−s1t − e−s2t

)
dt
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Since t−3/2 (e−s1t − e−s2t) ≤ t−3/2 (1− e−s2t), which is integrable, we may apply the
Lebesgue Dominated Convergence theorem to obtain

s1/2 = (2
√
π)−1

∫ ∞

0

t−3/2
(
1− e−st

)
dt

This gives us the following representation representation [6,11] for the Hardy multiquadric

−
√

1 + r2 = (2
√
π)−1

∫ ∞

0

e−(1+r2)t − 1

t3/2
dt

If we replace r2 by σ and differentiate with respect to σ, we recover

−1

2
√
1 + σ

= −(2
√
π)−1

∫ ∞

0

e−(1+σ)t

t1/2
dt

This the negative of a completely monotonic function. In [11], Micchelli showed that a
continuous radial function F (r) was an order 1 CPD function if and only if − d

dσF (
√
σ)

is completely monotonic on (0,∞). This generalizes Schoenberg’s theorem to the m = 1
case.

What about m > 1? Is there an analogue then? Yes. K. Guo, S. Hu and X. Sun [6,17]
proved the following result.

Theorem 2.5. A continuous radial function F (r) is orderm conditionally positive definite
on Rn for all n if and only (−1)m dm

dσmF (
√
σ) is completely monotonic on (0,∞).

Consider Duchon’s thin-plate spline [2], F (r) = r2 ln r2. To use the theorem, we note

that F (
√
σ) = σ lnσ. It is easy to check that (−1)2 d2

dσ2 (σ lnσ) = 1/σ, which – as we
mentioned above – is in CM(0,∞). Thus, the thin plate spline is an order 2 CPD radial
function.

III. Order m Radial Basis Functions

Continuous radial functions that are order m strictly conditionally positive definite in all
Rn are called radial basis functions (RBFs) of order m. The simplest and probably most

important example of an order 0 radial basis function is the Gaussian, G(x) = e−t|x|2 ,
where t > 0 is a parameter. The Fourier transform convention

Ĝ(ξ) =

∫

Rn

G(x)e−iξ·xdnx = (π/t)n/2e−|ξ|2/(4t)

The quadratic form associated with the Gaussian is

(3.1) Qt :=

N∑

j,k=1

cj c̄ke
−|xk−xj |

2t.
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If we write the Gaussian using the Fourier inversion theorem for Rn, interchange the finite
sums and the integral, and do an algebraic manipulation, this quadratic form becomes

Qt = (π/t)n/2
∫

Rn

e−|ξ|2/(4t)

∣∣∣∣
∑

j

cje
−ixj ·ξ

∣∣∣∣
2

dnξ.

If Qt = 0, then since the integrand is nonnegative and continuous, we have that the
integrand vanishes identically; hence, we have that

∑

j

cje
−ixj ·ξ ≡ 0.

The complex exponentials are linearly independent, so all cj ’s are 0. Thus the Gaussian
is strictly positive definite in all dimensions.

We can use this to establish that the Hardy multiquadric is an order 1 RBF. From
the integral representation for −

√
1 + r2, we see that the quadratic form associated with

the multiquadric is

cHAc = (2
√
π)−1

∫ ∞

0

e−tQt − |∑ cj |2

t3/2
dt

To establish that the multiquadric is SCPD of order 1, we assume that
∑

j cj = 0 and set

cHAc = 0. From the previous equation, we obtain

∫ ∞

0

e−tQt

t3/2
dt = 0.

The integrand is nonnegative and continuous, even at t = 0. Consequently, it must vanish.
We then have for all t > 0, Qt = 0. By the result above, we again have that c = 0. Thus
the multiquadric is an order 1 RBF. Similar considerations can be used to show that F (r)
is an order m RBF if (−1)m dm

dσmF (
√
σ) is a non-constant, completely monotonic function

on (0,∞). The thin-plate spline is thus an order 2 RBF.
We close by remarking that the results described here concerning RBFs can be used

to discuss how well interpolants approximate a function belonging to certain classes of
smooth functions [9,10] – band-limited ones, for example – and to discuss the numerical
stability of interpolation matrices associated with RBFs, in terms of both norms of inverses
and condition numbers [1,12-14].
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