Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Let \mathcal{H} be a (separable) Hilbert space and let $\mathcal{C}(\mathcal{H})$ be the set of compact operators on \mathcal{H}.
(a) Consider $K \in \mathcal{C}(\mathcal{H})$. Show that if $\{\phi_n\}_{n=0}^{\infty}$ is an orthonormal set in \mathcal{H}, then $\lim_{n \to \infty} K \phi_n = 0$.
(b) Suppose that $K \in \mathcal{C}(\mathcal{H})$ is self adjoint. Let $\lambda \neq 0$ be an eigenvalue of K. Show that the corresponding eigenspace is finite dimensional.
(c) Given that $\|K\| = \sup_{\|u\|=1} |\langle Ku, u \rangle|$, show that either $\|K\|$ or $-\|K\|$ (or possibly both) is an eigenvalue of K.
(d) Briefly explain how (b) and (c) are used to develop the spectral theory of compact self adjoint operators. (Two sentences will suffice.)

Problem 2. Let \mathcal{P} be the set of all polynomials.
(a) State and sketch a proof of the Weierstrass approximation theorem.
(b) Let $\mathcal{H} = L^2_w[0,1]$, where the inner product is $\langle f, g \rangle = \int_0^1 f(x)g(x)w(x)dx$ and where $w \in C[0,1]$, $w(x) \geq c > 0$ on $[0,1]$. Show that \mathcal{P} is dense in $L^2_w[0,1]$. (You may use the density of $C[0,1]$ in $L^2[0,1]$.)
(c) Let $U := \{p_n\}_{n=0}^{\infty}$ be the orthonormal set of polynomials obtained from \mathcal{P} via the Gram-Schmidt process. Show that U is a complete orthonormal set in $L^2_w[0,1]$.

Problem 3. Suppose that $Tu(x) := \int_{-\infty}^{\infty} e^{-|x-y|}u(y)dy$.
(a) Show that T is a bounded operator on $L^2(\mathbb{R})$.
(b) You are given that the set $\phi_j = \chi_{[j,j+1]}$ is an orthonormal basis for $L^2(\mathbb{R})$. Show that $\|T\phi_j\| = \|T\phi_0\|$.
(c) Is T compact? Prove your answer.

Problem 4. Consider the operator $Lu = -u''$ defined on functions in $L^2[0,\infty)$ having u'' in $L^2[0,\infty)$ and satisfying the boundary condition that $u'(0) = 0$; that is, L has the domain $\mathcal{D}_L = \{u \in L^2[0,\infty) \mid u'' \in L^2[0,\infty) \text{ and } u'(0) = 0\}$.
(a) Find the Green’s function $G(x, y; \lambda)$ for $-G'' - \lambda G = \delta(x-y)$, with $G'(0, y; \lambda) = 0$ and $\lambda \in \mathbb{C} \setminus \{0, \infty\}$.
(b) Is G a Hilbert-Schmidt kernel? Prove your answer.