Name: ____________________________

Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping. No extra credit for doing all four.

Problem 1. Let \(\mathcal{P} \) be the set of all polynomials.

(a) State and sketch a proof of the Weierstrass Approximation Theorem.\(^1\)
(b) Use (a) to show that \(\mathcal{P} \) is dense in \(L^2[0,1] \). (You may use the the fact that \(C[0,1] \) is dense in \(L^2[0,1] \).)
(c) Let \(U := \{ p_n \}_{n=0}^{\infty} \) be the orthonormal set of polynomials obtained from \(\mathcal{P} \) via the Gram-Schmidt process. Show that \(U \) is a complete set in \(L^2[0,1] \).

Problem 2. Let \(\mathcal{D} \) be the set of compactly supported functions defined on \(\mathbb{R} \) and let \(\mathcal{D}' \) be the corresponding set of distributions.

(a) Define convergence in \(\mathcal{D} \) and \(\mathcal{D}' \).
(b) Show that \(\psi \in \mathcal{D} \) satisfies \(\psi = \phi'' \) for some \(\phi \in \mathcal{D} \) if and only if
\[
\int_{-\infty}^{\infty} \psi(x) dx = 0 \quad \text{and} \quad \int_{-\infty}^{\infty} x\psi(x) dx = 0.
\]
(c) Find all distributions \(T \in \mathcal{D}' \) such that \(T''(x) = \delta(x+1) - 2\delta(x) + \delta(x-1) \).

Problem 3. Let \(\mathcal{H} \) be a Hilbert space and let \(\mathcal{C}(\mathcal{H}) \) be the set of compact operators on \(\mathcal{H} \).

(a) State and prove the Fredholm Alternative.
(b) State the Closed Range Theorem.
(c) Let \(\mathcal{H} = L^2[0,1] \). Define the kernel \(k(x,y) := x^3y^2 \) and let \(Ku(x) = \int_0^1 k(x,y) u(y) dy \). Show that \(K \) is in \(\mathcal{C}(\mathcal{H}) \).
(d) Let \(L = I - \lambda K \), \(\lambda \in \mathbb{C} \), with \(K \) as defined in part (c) above. Find all \(\lambda \) for which \(Lu = f \) can be solved for all \(f \in L^2[0,1] \). For these values of \(\lambda \), find the resolvent \((I - \lambda K)^{-1} \).

Problem 4. Consider the kernel \(k(x,y) = \sum_{n=0}^{\infty} (1 + n)^{-2} P_{n+1}(x) P_n(y) \), where the \(P_n \)’s are the orthogonal set of Legendre polynomials, relative to \(L^2[-1,1] \). They are normalized so that \(\int_{-1}^{1} P_n(x)^2 dx = \frac{2}{2n+1} \).

(a) Show that \(Ku(x) = \int_{-1}^{1} k(x,y) u(y) dy \) is a compact operator on \(L^2[-1,1] \).
(b) Determine the spectrum of \(K \).

\(^1\)You may use these identities involving the Bernstein polynomials. The last two identities start the sum at \(j = 0 \), rather than \(j = 1 \).
\[
1 = \sum_{j=0}^{n} \beta_j,n(x), \quad x = \sum_{j=0}^{n} \frac{j}{n} \beta_j,n(x) \quad \frac{1}{n} x + (1 - \frac{1}{n})x^2 = \sum_{j=0}^{n} \frac{j^2}{n^2} \beta_j,n(x).
\]