
POINCARÉ TYPE INEQUALITIES AND NON-EMBEDDABILITIES:
GROSS TRICK AND SPHERE EQUIVALENCE

MASATO MIMURA

Abstract. This report describes a rough sketch of proofs and explains the motivation of

main results in the paper “Sphere equivalence, Banach expanders, and extrapolation” (in

Int. Math. Res. Notices) [Mim14] by the author. Specially, we indicate some potentially

use of group theory, which we call “the Gross trick”, to study metric embeddings of

general graphs.

1. Motivations

First we give our notation. Unless stating, we always assume the following:

• Γ = (V,E) is a finite connected undirected graph, possibly with multiple edges

and self-loops (here E is the set of oriented edges). Γ is a metric space with the

path metric dΓ (namely, dΓ(v, w) is the shortest length of a path connecting v and

w, and set dΓ(v, v) = 0), and diam(Γ) means the diameter (the length of largest

distance).

• For v ∈ V , deg(v), the degree of v, is the number of edges which starts at v. Note

that a self-loop contributes twice to the degree of the vertex. ∆(Γ) is the maximal

degree maxv∈V deg(v) of Γ.

• {Γn = (Vn, En)}n is a sequence of finite graphs.

• (X, p) is a pair of a Banach space X and an exponent p. We always assume that

p ∈ [1,∞) (in particular, p is always assumed to be finite.)

• Y is also used for a Banach space. q is also used for an exponent in [1,∞).

• For r ∈ [1,∞] and k ≥ 1, ℓkr stands for the real ℓr-space of dimension k. ℓr means

the real ℓr-space over an infinite countable set.

• In this report, X̃(p) means ℓp(N, X).

• For X, S(X) is the unit sphere of X.

• In a metric space L and A,B ⊆ L, dist(A,B) means the distance, namely,

inf{dL(a, b) : a ∈ A, b ∈ B}.
• a ≾ b for two nonnegative functions from the same parameter set T means that

there exists C > 0 independent of t ∈ T such that for any t ∈ T , a(t) ≤ Cb(t).

a ≍ b means both a ≾ b and a ≿ b hold. a ≾q b if parameter set T has variable q

and C = Cq may depend on q.

• We write a ⋨ b if a ≾ b holds but a ≿ b fails to be true.

1.1. Classical spectral gaps. Here assume that Γ is k-regular (that means, deg(v) = k

for all v ∈ V ). Then the (nonnormalized) Laplacian L(Γ) := kIV −A(Γ), A(Γ) being the

adjacency matrix (the matrix (av,w)v,w where av,w is the number of edges connecting v
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and w, counting self-loop twice), is a positive operator and has eigenvalues 0 = λ0(Γ) <

λ1(Γ) ≤ λ2(Γ) ≤ · · · ≤ λ|V |(Γ). This λ1(Γ) is the classical spectral gap of Γ. This has a

Rayleigh quotient formula:

λ1(Γ) =
1

2
inf

f : V→R

∑
v∈V

∑
e=(v,w)∈E |f(w)− f(v)|2∑
v∈V |f(v)−m(f)|2

. · · · (∗)

Here m(f) :=
∑

v∈V f(v)/|V | and f runs over all nonconstant maps.

1.2. Banach spectral gaps. The point in (∗) is that R has a metric and a mean struc-

tures.

Definition 1.1. For (X, p), define the the (X, p)-spectral gap of Γ by

λ1(Γ;X, p) :=
1

2
inf

f : V→X

∑
v∈V

∑
e=(v,w)∈E ∥f(w)− f(v)∥p∑
v∈V ∥f(v)−m(f)∥p

. · · · (∗∗)

Here m(f) :=
∑

v∈V f(v)/|V | and f runs over all nonconstant maps.

Example 1.2. λ1(Γ) = λ1(Γ;R, 2) = λ1(Γ; ℓ2, 2) (the latter equality is by Lemma 1.3). It

is known that λ1(Γ;R, 1) is proportional to h(Γ), the (edge-)isoperimetric constant (also

known as (nonnormalized) Cheeger constant) of Γ, see [Chu97, Theorem 2.5]. Here h(Γ)

is defined as inf{|E(A, V \A)|/|A| : 0 < |A| ≤ |V |/2}, where E(A, V \A) := {e = (v, w) ∈
E : v ∈ A,w ∈ V \ A}.

We note that Mendel and Naor [MN12] have explicitly introduced the notion of nonlin-

ear spectral gaps (for the more general case where X is a metric space) and studied that

in detail.

1.3. Poincaré-type inequality. (∗∗) is equivalent to saying the following:

∀f : V → X,
∑
v∈V

∥f(v)−m(f)∥p ≤ 1

λ1(Γ;X, p)

1

2

∑
v∈V

∑
e=(v,w)∈E

∥f(w)−f(v)∥p. · · · (∗ ∗ ∗)

This bounds the “p-variance” from below by the “p-energy” in a rough sense.

Lemma 1.3. (1) If Y is a subspace of X, then λ1(Γ;Y, p) ≥ λ1(Γ;X, p).

(2) λ1(Γ;X, p) = λ1(Γ; X̃(p), p).

In particular, λ1(Γ;R, p) = λ1(Γ; ℓp, p).

Proof. (1) is trivial. For (2), ≥ is from (1). To get ≤, integrate (∗ ∗ ∗) over N. □

1.4. Banach expanders.

Definition 1.4. A sequence {Γn}n∈N is called (X, p)-anders if the following three condi-

tions are satisfied:

(i) supn∆(Γn) < ∞;

(ii) limn→∞ diam(Γn) = ∞;

(iii) There exists ϵ > 0 such that infn λ1(Γn;X, p) ≥ ϵ.

(Classical) expanders equal (R, 2)-anders, which also equal (R, p)-anders for all p by

Matoušek’s extrapolation (Theorem 1.16). By Lemma 1.3, they are also equal to (ℓp, p)-

anders.
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1.5. Who cares? 1: coarse embeddings.

Definition 1.5. Let (Λ, dΛ) be a metric space. We say f : Λ → X is a coarse embedding

if there exist a nondecreasing ρ−ρ+ : R≥0 → R≥0 with limt→+∞ ρ−(t) = +∞ such that for

any v, w ∈ Λ,

ρ−(dΛ(v, w)) ≤ ∥f(v)− f(w)∥X ≤ ρ+(dΛ(v, w)).

This (ρ−, ρ+) is called a control pair.

For {Γn}n with limn→∞ diam(Γn) = ∞, define a coarse disjoint union
⨿

n Γn to be an

(infinite) metric space (
⨿

n Γn, d) whose point set is
⊔

n Vn and whose metric satisfies:

• For every n, d |Vn×Vn= dn, where dn denotes the original metric on Γn.

• For n ̸= m, dist(Vn, Vm) ≥ diam(Γn) + diam(Γm).

Theorem 1.6 (Matoušek, Gromov, Higson, et al.). Let {Γn}n be (X, p)-anders for some

p. Then
⨿

n Γn does not admit coarse embeddings into X.

Proof. Take ϵ > 0 in Definition 1.4 and K := ϵ−1. Suppose, in contrary, that f :
⨿

n Γn →
X be a coarse embedding with control pair (ρ−, ρ+). Set fn := f |Vn . For considering each

fn, we may assume m(fn) = 0. Then by (∗ ∗ ∗),
1

|Vn|
∑
v∈Vn

∥fn(v)∥p ≤
1

2|Vn|
K

∑
v∈Vn

∑
e=(v,w)∈En

∥fn(w)− fn(v)∥p

≤ K∆(Γn)ρ+(1)
p.

Therefore, by letting M = (2K supn ∆(Γn))
1/pρ+(1) (independent on n), we have that at

least half of v ∈ Vn satisfies ∥fn(v)∥ ≤ M . Because diam(Γn) → ∞, this contradicts that

limt→+∞ ρ−(t) = +∞. □

Remark 1.7. Recently Arzhantseva and Tessera [AT14] prove the following:

Theorem 1.8 ([AT14]). There exists {Γn}n such that

(i) supn∆(Γn) < ∞;

(ii)
⨿

n Γn does not admit coarse embeddings into ℓ2;

(iii) but
⨿

n Γn does not admit weak embeddings of any expanders into itself.

Here a sequence {Λm}m of finite graphs is said to admit a weak embedding into a metric

space Z if there exist K > 0 and K-Lipschitz maps fm : Λm → Z such that

limm→∞ supv∈V (Λm) |f−1
m (fm(v))|/|Λm| = 0.

This shows that expanders are not the only obstruction to admitting coarse embeddings

into ℓ2. Their proof of (ii) employs some sorts of relative Poincaré-type inequalities.

1.6. Who cares? 2: distortions.

Definition 1.9. The distortion of Γ into X, denoted by cX(Γ) is defined by

cX(Γ) := inf

{
C > 0 :

∃f : V → X, ∃r > 0 such that ∀v, w ∈ V,

rd(v, w) ≤ ∥f(v)− f(w)∥ ≤ Crd(v, w)

}
.

We have 1 ≤ c
ℓ
|V |
2
(Γ) ≤ diam(Γ). The latter estimate is obtained by the trivial embed-

ding: Γ ∋ v 7→ δv ∈ ℓ2(V ). Hence, by the Dvoretzy theorem, for infinite dimensional X,

we have

1 ≤ cX(Γ) ≾X diam(Γ).
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Theorem 1.10 (Generalized Grigorchuk–Nowak inequality, see [GN12] and Theorem 2.3

of [Mim14] ). For any ϵ ∈ (0, 1),

cX(Γ) ≥
(1− ϵ)1/prϵ(Γ)

2
diam(Γ)

(
λ1(Γ;X, p)

∆(Γ)

)1/p

.

Here rϵ(Γ) is defined as inf{diam(A)/diam(Γ) : |A| ≥ ϵ|V |}.

Theorem 1.11 (Special case of a generalized Jolissaint–Valette inequality, see [JV14] and

Theorem 2.3 of [Mim14]). Let Γ be a vertex-transitive graph (this means that the graph

automorphism group acts V transitively). Then

cX(Γ) ≥ 2−(p−1)/pdiam(Γ)

(
λ1(Γ;X, p)

∆(Γ)

)1/p

.

Note that, as we will recall in Section 3, all Cayley graphs are vertex-transitive.

Corollary 1.12. For infinite dimensional X, assume {Γn}n be (X, p)-anders for some p.

Then cX(Γn) ≍X diam(Γn).

Proof. Note that {Γn}n is in particular a family of expanders (see (3) of Corollary 1.17)

and is of (uniformly) exponential growth. If you do not know this fact, then this is de-

duced from the Matoušek extrapolation (Theorem 1.16) and Example 1.2 on isoperimetric

constants.

Hence the conclusion follows from Theorem 1.10 and the discussion above. □

Lemma 1.13 (Austin’s lemma [Aus11], see also in Lemma 2.7 in [Mim14]). Let {Γn}n
satisfy diam(Γn) ↗ ∞ (possibly with supn∆(Γn) = ∞). Let ρ : R+ ↗ R+ be a map

with limt→+∞ ρ(t) = +∞ which satisfies that ρ(t)/t is nonincreasing for t large enough.

Assume that for n large enough diam(Γn)
ρ(diam(Γn))

⋨ cX(Γn) hold. Then for any C > 0, (ρ, Ct) is

not a control pair of
⨿

n Γn into X.

Proof. Assume, in the contrary, that there exists a coarse embedding f :
⨿

n Γn → X such

that

ρ(d(v, w)) ≤ ∥f(v)− f(w)∥Cd(v, w), v, w ∈
⨿
n

Γn

holds. Set fn := f |Γn : Vn → X. We may assume, by rescaling, that f is a 1-Lipschitz

map and that each fn is biLipschitz. Then we have the following order inequalities.

diam(Γn)

ρ(diam(Γn))
⋨ cX(Γn) ≤ ∥f−1

n ∥Lip ≤ max
v ̸=w∈Vn

d(v, w)

∥fn(v)− fn(w)∥

≾ max
v ̸=w∈Vn

d(v, w)

ρ(d(v, w))
≾ diam(Γn)

ρ(diam(Γn))
.

This is a contradiction. □

Lemma 1.13, together with Corollary 1.12, gives an alternative proof of Theorem 1.6.

Indeed, suppose, in contrary, that there exists a coarse embedding f of (X, p)-anders

into X. By rescaling, we may assume that the control pair for f is (ρ, t) for some ρ

(note that because
⨿

n Γn is uniformly discrete, ρ+ may be taken as linear function). By

replacing ρ with a smaller proper function if necessary, we may also assume that ρ(t)/t is

nonincreasing for t large enough. Then Lemma 1.13 and Corollary 1.12 give the desired

contradiction.
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1.7. Motivating problem. A naive question on (X, p)-anders might be: “Are any ex-

panders are automatically (X, p)-anders for all (X, p)?” The answer is no. Indeed, by the

Fréchet embedding :

Vn ∋ v 7→ (d(v, w))w∈Vn ,

Γn embeds isometrically into ℓ
|Vn|
∞ . Thus if X has trivial cotype, then there exists a

biLipschitz embedding of any
⨿

n Γn into X. Here X is said to have trivial cotype if X

contains uniformly isomorphic (in particular uniformly biLipschitz) copies of {ℓn∞}n.
The following question is a big open problem in this field:

Problem 1.14. Are any expanders are automatically (X, p)-anders for all X of nontrivial

cotype and for all p?

In this report, we study the following two questions:

Problem 1.15. For arbitrarily taken Γ,

(a) estimate λ1(Γ;Y, p) from λ1(Γ;X, p);

(b) estimate λ1(Γ;X, q) from λ1(Γ;X, p).

In both cases, estimates may depend on ∆(Γ), but not on |Γ| itself.

1.8. previously known results.

(b): Matoušek extrapolation

Theorem 1.16 ([Mat97]). (1) For p ∈ [1, 2), λ1(Γ;R, 2)p/2 ≿∆(Γ),p λ1(Γ;R, p) ≿∆(Γ),p

λ1(Γ;R, 2).
(2) For p ∈ [2,∞), λ1(Γ;R, p) ≍∆(Γ),p λ1(Γ;R, 2)p/2.

Corollary 1.17. (1) For any p, {Γn}n are expanders if and only if they are (R, p)-anders.
(2) Expanders do not admit coarse embeddings into ℓp for any p.

(3) For any (X, p), (X, p)-anders are (classical) expanders.

Proof. (1) immediately follows. (2) is from Theorem 1.6. (3) follows from X ⊇ R. □

(a): Pisier [Pis10]

The following definition is in [Pis10], which uses some idea of V. Lafforgue: X is said

to be uniformly curved if limϵ→+0DX(ϵ)= 0 holds. Here DX(ϵ) denote the infimum over

those D ∈ (0,∞) such that for every n ∈ N, every matrix T = (tij)i,j ∈ Mn(R) with

∥T∥ℓn2→ℓn2
≤ ϵ and ∥abs(T )∥ℓn2→ℓn2

≤ 1,

where abs(T ) = (|tij|)i,j is the entrywise absolute value of T , satisfies that

∥T ⊗ IX∥ℓ2(n,X)→ℓ2(n,X) ≤ D.

Theorem 1.18 ([Pis10]). Expanders are automatically (X, 2)-anders for any uniformly

curved Banach space X.

Expamles of uniformly curved Banach spaces are ℓp, Lp, noncommutative Lp spaces,

for p ∈ (1,∞), and more generally are given by complex interpolation theorey.

Remark 1.19. Pisier also showed in [Pis10] that uniformly curved Banah spaces are super-

reflexive, which is equivalent to admitting equivalent and uniformly convex norms. Recall

that X is said to be uniformly convex if for any ϵ ∈ (0, 2],

sup{∥x+ y∥/2 : x, y ∈ S(X), ∥x− y∥ ≥ ϵ} < 1.
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We also mention that the existence of “special expanders”, which have the expander

property for a wider class of Banach spaces, is known independently by V. Lafforgue

[Laf08] and Mendel–Naor [MN12]:

Theorem 1.20 ([Laf08], [MN12]). There exist (explicitly constructed) expanders {Γn}n
which are (X, 2)-anders for any X of nontrivial type.

Here recall that X has trivial type if and only if X contains uniformly isomorphic copies

of {ℓn1}n.

2. Main results

2.1. Sphere equivalence and Ozawa’s result. In [Mim14], the author call the follow-

ing equivalence the sphere equivalence. This has been intensively studied for several years,

and we refer the reader to Chapter 9 of [BL00].

Definition 2.1. X and Y are said to be sphere equivalent, written as X ∼S Y , if there

exists a uniform homeomorphism (, namely, a biuniformly continuous map) between S(X)

and S(Y ). We write [Y ]S for the sphere equivalence class of Y .

If X and Y are isomorphic (in other words, if Y has an equivalent norm to that of X),

then clearly X ∼S Y . There, however, exist many nonisomorphic Banach spaces which

are sphere equivalent.

Example 2.2. The sphere equivalence class of Hilbert spaces for instance contains the

following:

• ℓp, Lp for any p: a uniform homeomophism is given by the Mazur map. For ℓp,

the Mazur map is

Mp,2 : S(ℓp) → S(ℓ2); (ai)i 7→ (sign(ai)|ai|p/2)i.

• Noncommutative Lp spaces associated with arbitrary von Neumann algebras [Ray02].

• Any Banach space of nontrivial cotype with unconditional basis [OS94].

Note that this sphere equivalence may go beyond superreflexivity; and moreover having

nontrivial type. Indeed, the results mentioned above on (noncommutative) Lp spaces hold

even for p = 1.

Example 2.3. Another example is given by complex interpolations (for a comprehensive

treatise of complex interpolation, see a book [BL76]). Theorem 9.12 in [BL00] states that

for a complex interpolation pair (X0, X1), if either X0 or X1 is uniformly convex, then

any 0 < θ < θ′ < 1, Xθ ∼S Xθ′ . This result will be used for the proof of our main results.

On (a) of Problem 1.15, Ozawa [Oza04] made the first contribution.

Theorem 2.4 ([Oza04]). If X ∼S ℓ2, then expanders do not admit coarse embeddings

into X. In fact, any expanders satisfy a weak form of (X, 1)-ander condition for such X.

2.2. Main results. Here we exhibit main results in this report, extracted from [Mim14].

Theorem A (For more precise statement, see Theorem 4.1 in [Mim14]). Assume X ∼S Y .

Then for any p ∈ [1,∞), and a sequence {Γn}n, {Γn}n are (X, p)-anders if and only if

they are (Y, p)-anders.

More precisely, for a uniform homeomorphism ϕ : S(X) → S(Y ), we may bound λ1(Γ;X, p)

from below in terms of
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• λ1(Γ;Y, p);

• the modulus of continuity of ϕ;

• and some constants depending on p, ∆(Γ), and the modulus of continuity of ϕ−1.

For instance, if ϕ is α-Hölder continuous for some α ∈ (0, 1], then we have

λ1(Γ;X, p) ≿p,∆(Γ),M λ1(Γ;Y, p)
1/α.

Here M is a constant only depend on the modulus of continuity of ϕ−1.

Note that on the estimation above, the order of the estimate (for instance, the Hölder

exponent if we have an estimate of such type) depends only on the modulus of continuity

of ϕ. The modulus of continuity of the inverse map ϕ−1 appears only on postive scalar

constant in our estimate.

Theorem B (Generalization of Matoušek’s extrapolation). Let (∞ >)p, q > 1. Then

for any X sphere equivalent to a uniformly convex Banach space, and a sequence {Γn}n,
{Γn}n are (X, p)-anders if and only if they are (X, q)-anders.

Remark 2.5. We note that recently Naor, in Theorem 1.10 and Theorem 4.15 in [Nao14],

has independently established similar results. Our approach is group theoretic, and dif-

ferent from his. In our proof, we introduce the “Gross trick”, see Section 6.

As byproducts to above Theorems A and B, and aforementioned works of Ozawa and

Pisier; and Lafforgue and Mendel–Naor, we have the following corollaries.

Corollary C. Any expanders are automatically (X, p)-anders for an X sphere equivalent

to uniformly curved Banach space and for p ∈ (1,∞). If, moreover, X ∈ [ℓ2]S, then the

assertion above holds even for p = 1.

In particular, for expanders {Γn}n, we have for such X of infinite dimension that

cX(Γn) ≍X diam(Γn).

Corollary D. The expanders constructed in Theorem 1.20 are (Y, 2)-anders for any Y

sphere equivalent to a Banach space with nontrivial type.

In particular, they do not admit coarse embedding into any such Y .

Note that, for instance, noncommutative L1 spaces are examples of such Y with trivial

type (though all expanders do not admit coarse embeddings to them by Theorem 2.4).

In the view of the results above, the following questions might be of importance.

Problem 2.6. (1) Does the class of Banach spaces sphere equivalent to uniformly curved

Banach spaces contain all superreflexive Banach spaces? Does it contain all Banach

spaces of nontrivial type/nontrivial cotype?

(2) Does the class of Banach spaces sphere equivalent to Banach spaces of nontrivial type

coincide with the class of all Banach spaces of nontrivial cotype?

To the best of my knowledge, all of the problems above may be open.

Remark 2.7. On (2), one inclusion is verified from Corollary D and Subsection 1.7 (also,

in [BL00], the authors of the book announced a result that the class of Banach spaces

with trivial cotype is closed under the sphere equivalence). Hence, the true question in

(2) is whether the sphere equivalence class above contain all Banach spaces of nontrivial

cotype.
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Remark 2.8. There is also a notion of “ball equivalence” (namely, the unit balls are uni-

formly homeomorphic). In [BL00, Chapter 9], it is shown that if X and Y are ball

equivalent, then X ⊕ R ∼S Y ⊕ R (the other direction: “X ∼S Y implies that X and Y

are ball equivalent” is easy). Therefore, if we consider Banach spectral gap, then there is

no serious difference between the sphere equivalence and the ball equivalence.

3. Representation theoretic constants for Cayley graphs

We first give the proof of Theorem A for Cayley graph of (finite) groups, and explain

where group theory can contribute to this problem. In this section, let G be a finite group,

S ̸∋ e be a symmetric (finite) generating set of G. Recall the definition of Cayley graphs.

The Cayley graph of (G,S), written as Cay(G,S), is constructed as

• the vertex set V = G;

• and the edge set E = {(g, sg) : g ∈ G, s ∈ S}.

Example 3.1. Cay(Z/nZ, {±1}), n ≥ 3, is the cycle of lenth n. Although we do not treat in

this report, Cayley graphs are also defined forG infinite. In that case, Cay(Z2, {±(1, 0),±(0, 1)})
is the Z2-lattice in R2. For a free group F2 with 2 free generators a, b, Cay(F2, {a±1, b±1})
is the 4-regular tree.

Remark 3.2. Recall that a group G has two natural action on itself: the left multiplication

and the right one. We have employed the left multiplication to connect edges in Cay(G,S),

and the right one is left. In fact, this right multiplication becomes a graph automorphsim

(in other words, for every g ∈ G, (v, w) ∈ E iff (vg, wg) ∈ E). Since this right action

of G on itself is transitive, Cay(G,S) is a vertex-transitive graph (it means that the

automorphism group of the graph acts transitively on the vertex set). Hence, (finite)

Cayley graphs are special among all (finite) graphs.

Also recall that in our notaion, we allow graphs to have self-loops and multiple edges.

However, if we consider only Cayley graphs, then they do not show up.

3.1. isometric linear representations and displacement constant.

Definition 3.3. We take (G,S) and (X, p).

(1) Define πG;X,p = πX,p as the left-regular representation of G on ℓp(G, X̃(p)), namely, for

g ∈ G and ξ ∈ ℓp(G, X̃(p)), πX,p(g)ξ(v) := ξ(g−1v). Then ℓp(G, X̃(p)) decomposes as

G-representation spaces: ℓp(G, X̃(p)) = ℓp(G, X̃(p))
πX,p(G)⊕ ℓp,0(G, X̃(p)). Here the first

space is the space of πX,p(G)-invariant vectors (which consists of “constant functions”

form G to X̃(p)); and the second space is the space of “zero-sum” functions, namely,

ℓp,0(G, X̃(p)) := {ξ ∈ ℓp(G, X̃(p)) :
∑
v∈G

ξ(v) = 0}.

We omit writting G in πG;X,p if G is fixed. We use the same symbol πX,p for the

restricted representation on ℓp,0(G, X̃(p)).

(2) (p-displacement constant) The p-displacement constant of (G,S) on X, written as

κX,p(G,S), is defined as

κX,p(G,S) := inf
0 ̸=ξ∈ℓp,0(G,X̃(p))

sup
s∈S

∥πX,p(s)ξ − ξ∥
∥ξ∥

.
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Remark 3.4. We will use in the proof of Proposition 5.1 the following norm inequality:

for ξ ∈ ℓp,0(G, X̃(p)), we have

dist(ξ, ℓp(G, X̃(p))
πX,p(G)) ≥ 1

2
∥ξ∥.

Indeed, set η = η1+η0 for any η ∈ ℓp(G, X̃(p)) according to the decomposition ℓp(G, X̃(p)) =

ℓp(G, X̃(p))
πX,p(G) ⊕ ℓp,0(G, X̃(p)). Then the map η 7→ η1 is given by taking the mean of η.

Because the p-mean of the norm is at least the norm of the mean, we have that ∥η∥ ≥ ∥η1∥.
Hence for any ζ ∈ ℓp(G, X̃(p))

πX,p(G), we have that ∥ξ−ζ∥ ≥ ∥ζ∥ (set η := ξ−ζ). Therefore

2 · inf
ζ∈ℓp(G,X̃(p))

πX,p(G)
∥ξ − ζ∥ ≥ inf

ζ∈ℓp(G,X̃(p))
πX,p(G)

(∥ξ − ζ∥+ ∥ζ∥) ≥ ∥ξ∥,

and we are done.

3.2. Fundamental lemma for Banach spectral gaps of Cayley graphs. The fol-

lowing lemma plays a fundamental rôle, which relates p-displacement constant on X to

(X, p)-spectral gap for a Cayley graph.

Lemma 3.5. For a Cayley graph Γ = Cay(G,S) and a pair (X, p), we have that

κX,p(G,S)p ≤ λ1(Γ;X, p) ≤ |S|
2
κX,p(G,S)p.

Proof. First note that by Lemma 1.3, λ1(Γ;X, p) = λ1(Γ; X̃(p), p). Take a nonconstant

map f : V → X̃(p) and by replacing f with f −m(f) we may assume m(f) = 0. Then we

may regard f as a nonzero vector ξ ∈ ℓp,0(G, X̃(p)). Therefore

λ1(Γ;X, p) =
1

2
inf

0̸=ξ∈ℓp,0(G,X̃(p))

∑
v∈G

∑
s−1∈S ∥πX,p(s)ξ(v)− ξ(v)∥p

X̃(p)

∥ξ∥p

=
1

2
inf

0̸=ξ∈ℓp,0(G,X̃(p))

∑
s∈S

(
∥πX,p(s)ξ − ξ∥

∥ξ∥

)p

.

This ends our proof (note that ∥πX,p(s)ξ − ξ∥ = ∥πX,p(s
−1)ξ − ξ∥ because πX,p(s) is an

isometric operator). □

Remark 3.6. If we consider {(Gn, Sn)} where supn |Sn| < ∞, then Lemma 3.5 gives

the optimal order estimate between κX,p(Gn, Sn) and λ1(Cay(Gn, Sn);X, p). However

if supn |Sn| = ∞, then Lemma 3.5 may not give the precise order.

Nevertheless, if Sn’s have “high symmetry”, then we have more accurate inequalities.

For more precise meaning, we refer the reader to [Mim14, Theorem 3.4], which is based

on the work of Pak and Żuk [PZ02].

4. Key propositions on sphere equivalence

4.1. upper moduli and Sym(F ) equivariant homeomorphisms.

Definition 4.1. Let X ∼S Y , and ϕ : S(X) → S(Y ) be a uniformly continuous map.

(i) Define Mϕ to be the class of all functions δ : [0, 2] → R≥0 which satisfy the following

three conditions:

• δ is nondecreasing;

• limϵ→+0 δ(ϵ) = 0;
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• and, for any x1, x2 ∈ S(X) with ∥x1 − x2∥X ≤ ϵ, we have ∥ϕ(x1)− ϕ(x2)∥Y ≤
δ(ϵ).

We call an element δ in Mϕ an upper modulus of continuity of ϕ.

(ii) Define ϕ : X → Y to be the extension of ϕ by homogeneity, namely, ϕ(x) :=

∥x∥Xϕ(x/∥x∥X) for 0 ̸= x ∈ X and ϕ(0) := 0. We call ϕ the natural extension

of ϕ.

Note that ϕ is uniformly continuous if we restrict it on a bounded set of X; but that

itself is in general not.

Example 4.2. In Example 2.2, we have seen the definition of the Mazur mapMp,2 : S(ℓp) →
S(ℓ2). This map (and also the inverse map) is known to be uniformly continuous, more

precisely,

• If p ≥ 2, then the function δ : [0, 2] → R≥0; δ(ϵ) := (p/2)δ is in MMp,2 (Mp,2 is

Lipschitz).

• If p < 2, then the function δ : [0, 2] → R≥0; δ(ϵ) := 4δp/2 is in MMp,2 (Mp,2 is

p/2-Hölder).

Surprislingly, these estimations of Hölder exponents remain to be optimal even when we

consider the “noncommutative Mazur map” from noncommutative Lp spaces associated

with any von Neumann algebra. This assertion has been recently showed by Ricard

[Ric14].

Definition 4.3. Let F be an at most countable set. For a map ϕ : S(ℓp(F,X)) →
S(ℓq(F, Y )), we say that ϕ is Sym(F )-equivariant if for any σ ∈ Sym(F ), ϕ◦σX,p = σY,q◦ϕ
holds true. Here a Banach space Z and r ∈ [1,∞), the symbol σZ,r denotes the isometry

σZ,r on ℓr(F,Z) induced by σ, namely, (σZ,rξ)(a) := ξ(σ−1(a)) for ξ ∈ ℓr(F,Z) and a ∈ F .

Here by Sym(F ) we mean the group of all permutations on F , including ones of infinite

supports.

For instance, if we consider the Mazur map Mp,2 as a map from ℓp(N,R) to ℓ2(N,R),
then Mp,2 is Sym(N)-equivariant. This is because Mp,2 is coordinatewise.

4.2. Key proposition for Theorem A.

Proposition 4.4. Assune that ϕ : S(X) → S(Y ) is a uniformly continuous map for two

Banach spaces X and Y . Then for any p ∈ [1,∞), the map

Φ = Φp : S(X̃(p)) → S(Ỹ(p)); (xi)i 7→ (ϕ(xi))i

is again a uniformly continuous map that is Sym(N)-equivariant. Here ϕ is the natural

extension of ϕ and we see X̃(p) and Ỹ(p), respectively, as ℓp(N, X) and ℓp(N, Y ).

Furthermore, if ϕ is α-Hölder, then so is Φp. More precisely. if δ(t) := Ctα ∈ Mϕ for

some C > 0 and some α ∈ (0, 1], then δ′(t) := (2C + 2)tα belongs to MΦp.

Proof. By construction, this Φp is coordinatewise and hence in particular Sym(N)-equivariant.
Our proof of the uniform continuity of Φp consists of two cases. Here we only prove the

case where Ctα ∈ Mϕ (for general case, we may need to replace δ with larger upper

modulus).

Case 1 : for p = 1. Let (xi)i and (yi)i be in S(X̃(1)).
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First we consider the case where for all i ∈ N ∥xi∥X = ∥yi∥X . Set ri := ∥xi∥X and

ϵiri = ∥xi − yi∥X . Observe that δ is concave in [0, 2]. By the Jensen inequality, we have

the following:

∥Φ((xi)i)− Φ((yi)i)∥Ỹ(1)
≤

∑
i

riδ(ϵi) ≤ δ(
∑
i

riϵi) = δ(∥(xi)i − (yi)i∥X̃(1)
).

Secondly we deal with the general case. For (xi)i, (yi)i ∈ X̃(1), define zi :=
∥xi∥X
∥yi∥X

yi (zi :=

xi if yi = 0). Suppose ∥(xi)i − (yi)i∥X̃(1)
≤ ϵ. Because for any i, ∥xi − yi∥X ≥ ∥zi − yi∥X ,

we have that ∥(zi)i − (yi)i∥X̃(1)
≤ ϵ. Hence we obtain that ∥(xi)i − (zi)i∥X̃(1)

≤ 2ϵ.

Therefore in the first argument, we have that ∥Φ((xi)i) − Φ((zi)i)∥Ỹ(1)
≤ δ(2ϵ). Since

∥Φ((yi)i)−Φ((zi)i)∥Ỹ(1)
≤ ϵ by homogeneity, we conclude that δ′(t) := δ(2t)+t = 2αCtα+t

belongs to MΦ1 .

Case 2 : for general p > 1. First observe that t ∈ [0, 21/p], we have that δ(t)p ≤ Cp−1δ(tp).

Then the remaining argument goes along a similar line to one in Case 1. Thus we can

show that δ′(t) := (Cp−1δ((2t)p))
1/p

+ t = 2αCtα + t belongs to MΦp .

In each case, finally observe that for t ∈ [0, 2], (2C + 2)tα ≥ 2αCtα + t. □

Lemma 9.9 in [BL00] showed the first assertion above. However, the estimation of

upper moduli is worse than in this proposition, and did not verify the latter assertions.

4.3. Generalized Mazur map: key proposition for Theorem B.

Theorem 4.5. For any uniformly convex Banach space X and p, q ∈ (1,∞), we have that

X̃(p) ∼S X̃(q). Furthermore, we may have a uniform homeomorphism ϕ : S(ℓp(N, X)) →
S(ℓq(N, X)) which is Sym(N)-equivariant.

Proof. Choose 1 < p0 < min{p, q} and ∞ > p1 > max{p, q}. Then [BL76, Theorem 5.1.2]

applies to the case where Ω = N and A0 = A1 = X. This tells us that both of X̃(p) and

X̃(q) are, respectively, isometrically isomorphic to some intermediate points of a complex

interpolation pair (X̃(p0), X̃(p1)). Because X̃(p0) and X̃(p1) are uniformly convex, the result

mentioned in Example 2.3 applies.

The last assertion follows from the proof of [BL00, Theorem 9.12]. Indeed, the definition

of fx for x ∈ ℓp(N, X), as the minimizer of a certain norm, in Proposition I.3 in [BL00] is

Sym(N)-equivariant in the current setting. □

This map may be regareded as a generalized Mazur map because it coincide with the

usual Mazur map if we consider the complex interpolation pair (ℓp0 , ℓp1) in the proof (for

X = R). However, note that we are only able to define it for p, q > 1, as long as we

employ the complex interpolation.

5. Proof of Theorem A for Cayley graphs

This part is based on a work of Bader–Furman–Gelander–Monod [BFGM07]. See Sec-

tion 4.a in [BFGM07] for the original idea of them. We will show the following proposition

concerning the p-displacement constants.
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Proposition 5.1. Let X ∼S Y and ϕ : S(X) → S(Y ) be a uniform homeomorphism. Let

G be a finite group, S ̸∋ e be a symmetric (finite) subset. Then for any p ∈ [1,∞), we

have the following inequality:

κX,p(G,S) ≥ δ−1
1

(
1

2
δ−1
2

(
1

2

)
κY,p(G,S)

)
.

Here δ1 ∈ MΦp and δ2 ∈ MΦ−1
p
.

Proof. By Proposition 4.4, Φp : X̃(p) → Ỹ(p) is a uniform homeomorphism that is Sym(N)-
equivariant. By coordinate transformation, we may regard Φp as

Φp : S(ℓp(G, X̃(p))) → S(ℓp(G, Ỹ(p)))

(note that ℓp(G, X̃(p)) ≃ X̃(p)), which is Sym(G)-equivariant. We thus have that Φp◦πX,p =

πY,p ◦ Φp. Note that we consider πX,p and πY,p as G-representations, respectively, on

ℓp(G, X̃p) and ℓp(G, Ỹp), not on ℓp,0.

Choose any ξ ∈ S(ℓp,0(G, X̃(p))) ⊆ S(ℓp(G, X̃(p))) and set η := Φp(ξ) ∈ S(ℓp(G, Ỹ(p))).

We warn that η does not belong to S(ℓp,0(G, Ỹ(p))) in general. We however overcome

this difficulty in the following argument. Recall that ℓp(G, X̃(p)) is decomposed as the

direct sum of ℓp(G, X̃(p))
πX,p(Γ) and ℓp,0(G, X̃(p)). Note that the former subspace is sent to

ℓp(G, Ỹ(p))
πY,p(G) by Φp (again because Φp is Sym(G)-equivariant). Recall the inequality

in Remark 3.4 and get that dist(ξ, ℓp(G, X̃(p))
πX,p(G)) ≥ 1

2
.

In particular, from this we have that dist(ξ, S(ℓp(G, X̃(p))
πX,p(Γ))) ≥ 1

2
. Therefore, by

the uniform continuity of Φ−1
p , we have that dist(η, S(ℓp(G, Ỹ(p))

πY,p(Γ))) ≥ δ−1
2

(
1
2

)
.

Decompose η as η = η1 + η0 where η1 ∈ ℓp(G, Ỹ(p))
πY,p(G) and η0 ∈ ℓp,0(G, Ỹ(p)). We

claim that

∥η0∥ ≥ 1

2
δ−1
2

(
1

2

)
.

Indeed, let η′1 := η′1/∥η′1∥ (if η1 = 0, then set η′1 as any vector in S(ℓp(G, Ỹ(p))
πY,p(G))). Then

by the inequality in the paragraph above, we have that ∥η−η′1∥ ≥ δ−1
2

(
1
2

)
. Because ∥η1∥ ≥

1−∥η0∥, we also have that ∥η1−η′1∥ ≤ ∥η0∥ and that ∥η−η′1∥ ≤ ∥η−η1∥+∥η1−η′1∥ ≤ 2∥η0∥.
By combining these inequalities, we prove the claim.

By the definition of κY,p(G,S), we have that

sup
s∈S

∥πY,p(s)η − η∥ = sup
s∈S

∥πY,p(s)η0 − η0∥ ≥ ∥η0∥κY,p(G,S) ≥ 1

2
δ−1
2

(
1

2

)
κY,p(G,S).

Finally, because Φp ◦ πX,p = πY,p ◦ Φp, we conclude by the uniform continuity of Φp that

sup
s∈S

∥πX,p(s)ξ − ξ∥ ≥ δ−1
1

(
1

2
δ−1
2

(
1

2

)
κY,p(G,S)

)
.

By taking the infimum over ξ ∈ S(ℓp,0(G, X̃(p))), we obtain the desired assertion. □
By combining the proposition above, Proposition 4.4, and Lemma 3.5, we obtain the

conclusion in Theorem A for Γ a Cayley graph.

6. The Gross trick

In this section, we give the proof of Theorem A for Γ arbitrary finite graph. To do this,

our idea is to consider Schreier coset graphs and to reduce all cases to these ones. The

Gross theorem, which we will mention later, enables us to perform the latter procedure.

The author call this trick the Gross trick.
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6.1. Schreier coset graph. In the proof of Lemma 3.5 and Proposition 5.1, it may be

noticed that we have never employed the right regular representation. This means, we

only need group multiplication only on one side, which was used to connect the edges.

From this observation, we encounter with the conception of Schreier coset grpahs.

Definition 6.1. Let G be a finitely generated group, S be a symmetric finite generating

set, and H be a subgroup of G of finite index. By Sch(G,H, S) we mean the Schreier

coset graph, that is

• the vertex set is the left cosets: V = G/H;

• the edge set E := {(gH, sgH) : gH ∈ G/H, s ∈ S}.

Remark 6.2. One remark is that we may take G as a finite group in the definition.

The other remark is that, unlike Cayley grpahs, Schreier coset graphs in general have

no symmetry at all (note that only possible muliplication on G/H is from the left, but

this is used for connecting edges). Moreover, in general Sch(G,H, S) may have self-loops

and multiple edges.

Once we employ the concept of Schreier coset graphs, we have a similar definition of

p-displacement constants for the triple (G,H, S) in terms of the quasi-regular represen-

tation of G on ℓp,0(G/H, X̃(p)). Furthermore, we have exactly the same inequalities as

ones in Lemma 3.5 and Proposition 5.1 for Schreier coset graphs. In this report, we

omit the precise forms. Instead, we refer the reader to Definition 3.1, Lemma 3.3, and

Proposition 4.2 in [Mim14].

Thus we ends the proof of Theorem A for the case where Γ is a Shreier coset graph.

6.2. the Gross trick. Now we explain the main trick on the proof. This employs the

following result of Gross.

Theorem 6.3 ([Gro77]). Any finite connected and regular graph (possibly with multiple

edges and self-loops) with even degree can be realized as a Schreier coset graph.

Remark 6.4. The proof of Gross’s theorem is based on the “2-factorization” of such a

graph (Petersen). This means, for such a graph, we can decompose the (undirected) edge

set as the disjoint union of 2-regular graphs (cycles). From these cycles, we can endow

Γ with the structure of a Schreier coset graph. Hence this realization is not just the

existence, but not sufficiently concrete or handlable in general setting.

Also, by passing to apropriate limits, the Gross theorem can be extended to infinite

regular conncected graphs of even degree.

This theorem of Gross roughly asserts that Schreier coset graphs are “more or less

universal” among graphs of uniformly bounded degree (compare with speciality of Cayley

graphs!). More precise meaing of “universal” will be explained in the usage of “Gross

trick”, as below.

The following argument is the Gross trick : Let Γ = (V,E) be a finite connected graph.

Then we take the even regularization of Γ in the following sense: we let V unchanged.

We first double each edge in E. Note that then for any v, w ∈ V , deg(v)− deg(w) ∈ 2Z
and that the maximum degree is 2∆(Γ). Finally, we let a vertex v whose degree is

2∆(Γ) unchanged, and for all the other vertices add, respectively, appropriate numbers

of self-loops to have the resulting degree = 2∆(Γ) for each vertex. We write the resulting

graph as Γ′ = (V,E ′). Then by the Gross theorem, Γ′ can be realized as a Schreier
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coset graph and thus the argument in Subsection 6.1 applies to Γ′. Finally observe that

λ1(Γ
′;Z, p) = 2λ1(Γ;Z, p) for any Banach space Z because self-loops do not affect the

spectral gap.

This completes our proof of Theorem A for general graphs Γ.

7. Proofs of Theorem B and Corollary C

Proof of Theorem B. Let X ∼S Y , where Y is uniformly convex and let p, q ∈ (1,∞).

By Theorem 4.5, there exists an Sym(N)-equivariant uniform homeomorphism Φ :=

Φp,q : S(Ỹ(p)) → S(Ỹ(q)). First we start from the case where Γ is of the form Sch(G,H, S).

Then we regard Φ as an Sym(G/H)-equivariant uniform homeomorphism

Φ: S(ℓp(G/H, Ỹ(p))) → S(ℓq(G/H, Ỹ(q))).

We thus may apply a similar argument to Proposition 5.1 to the pair ((Y, p); (Y, q)).

Because Proposition 5.1 works for the pairs ((X, p); (Y, p)) and ((Y, q); (X, q)), we are

done.

For general cases, apply the Gross trick. □

Proof of Corollary C. The first assertion holds true by Theorem A, Theorem B, and the

fact of that uniformly curved Banach spaces are isomorphic (and in particular sphere

equivalent) to some uniformly convex Banach spaces, see Remark 1.19. The second asser-

tion holds true for the following reason: if X ∈ [ℓ2]S, then by Theorem A and Lemma 1.3,

the (X, p)-ander property is equivalent to the (R, p)-ander property. The original Ma-

toušek extrapolation enables us to extend our results even for p = 1. □

8. Application: embeddings of Hamming graphs into noncommutative Lp

spaces

As an application of our main results, we consider embeddings of Hamming graphs into

noncommutative Lp spaces associated with arbitrary von Neumann algebras. For d ≥ 1

and k ≥ 2, the Hamming graph H(d, k) is defined as the following:

• the vertex set V is the set of the ordered d-tuples of T , |T | = k;

• the edge set E consists of all pairs which diffres in precisely one coordinate.

In other words, H(d, k) is the product of d copies of the complete graph Kk on k vertices.

It is easy to see that H(d, k) is d(k − 1)-regular and diam(H(d, k)) = d. As a byproduct

of Theorem A, we have the following:

Theorem 8.1. Let M be a von Neumann algebra. By Lp(M), we denote the noncom-

mutative Lp space associated with M.

(1) For p ∈ [1, 2), then we have that λ1(H(d, k);Lp(M), p) ≍p k.

(2) For p ∈ [2,∞), then we have that λ1(H(d, k);Lp(M), 2) ≍p k.

Note that the multiplicative constants in these estimation do not depend on d, k, and

M; and only depend on p.

Proof. We only prove the case where k is a prime number. For other cases, we use a

similar technique to the Gross trick (namely, we add multiple edges and self-loops to have

better graph) in order to apply [Mim14, Theorem 3.4].
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Note that H(d, k) = Cay(Gd,k, Sd,k), where Gd,k = (Zk)
d and Sd,k consists of vectors

whose exactly one coordinate is non-zero. Then we can apply [Mim14, Theorem 3.4] (see

also Remark 3.6) with ν = 1 and we have that

λ1(H(d, k);X, q) =
d(k − 1)

2
κX,q(Gd,k, Sd,k)

q.

Recall that by the result of Ricard [Ric14] (see also Example 4.2) the noncommutative

Mazur map, which we also write Mp,2, is

• p/2-Hölder if p ∈ [1, 2];

• and Lipschitz if p > 2.

(Note that multiplicative constants do not depend on M in direct sumargument.) By

spectral calculus, it is not difficult to show that λ1(H(d, k);R, 2) = k, and so

κX,2(Gd,k, Sd,k) =

(
2k

d(k − 1)

)1/2

.

Therefore by Proposition 5.1, we have that

• λ1(H(d, k);Lp(M), p) ≿p k for p ∈ [1, 2];

• and λ1(H(d, k);Lp(M), 2) ≿p k for p > 2.

(For the former inequalities, see that ℓp(N, Lp(M)) is again a noncommutative Lp space.)

Finally, we will prove the converse order inequalities. For p ∈ [1, 2], consider the following

mapping

fp : H(d, k) → ℓp(d, ℓp(T,R)); (a1, . . . ad) 7→ (χ{a1}, . . . , χ{ad}).

Here T is the base set (|T | = k) of H(d, k), and χ stands for the characteristic function.

Then simple calculation shows that

1

2

∑
v∈Vd,k

∑
e=(v,w)∈Ed,k

∥fp(w)− fp(v)∥p∑
v∈Vd,k

∥fp(v)−m(fp)∥p
=

kp

(k − 1)p−1 + 1
≍p k

(note that k ≥ 2). Because ℓp(N, Lp(M)) contains ℓp, this shows that λ1(H(d, k);Lp(M), p) ≍p

k for p ∈ [1, 2]. For p > 2, because ℓ2 is an isometric subspace of Lp((0, 1)), we can approx-

imately embed H(d, k) into ℓ2(N, Lp(M)) by using f2 by approximating (finitely many)

elements in Lp((0, 1)) by step functions in ℓp. This gives that λ1(H(d, k);Lp(M), 2) ≾p k

and therefore λ1(H(d, k);Lp(M), 2) ≍p k. □

Corollary 8.2. In the setting of Theorem 8.1, the following hold true.

(i) (1) For p ∈ [1, 2), cLp(M)(H(d, k)) ≍p d
1−1/p.

(2) For p ∈ [2,∞), cLp(M)(H(d, k)) ≍p d
1/2.

(ii) For an infinite sequence {H(dn, kn)}n with limn→∞ dn = ∞, the following hold:

(1) For p ∈ [1, 2), the supremum of the exponents α ∈ [0, 1] such that there exists

C > 0 such that (tα, Ct) can be a control pair of
⨿

nH(dn, kn) into Lp(M) is

1/p.

(2) For p ∈ [2,∞), the supremum of the exponents α ∈ [0, 1] such that there exists

C > 0 such that (tα, Ct) can be a control pair of
⨿

nH(dn, kn) into Lp(M) is

1/2.

Proof. On (i), in both cases, inequalities from below follow from Theorem 1.11 and Theo-

rem 8.1. Inequalities from above can be deduced from the special embeddings of H(dn, kn)

indicated in the proof of theorem 8.1.
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On (ii), inequalities from above follow from the estimations on distoritons in (i) and

Lemma 1.13. Ones from below are again from the special embeddings above. □
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