POINCARE TYPE INEQUALITIES AND NON-EMBEDDABILITIES:

GROSS TRICK AND SPHERE EQUIVALENCE
MASATO MIMURA

ABSTRACT. This report describes a rough sketch of proofs and explains the motivation of
main results in the paper “Sphere equivalence, Banach expanders, and extrapolation” (in
Int. Math. Res. Notices) [Mim14] by the author. Specially, we indicate some potentially
use of group theory, which we call “the Gross trick”, to study metric embeddings of
general graphs.

1. MOTIVATIONS

First we give our notation. Unless stating, we always assume the following:

I' = (V,E) is a finite connected undirected graph, possibly with multiple edges
and self-loops (here E is the set of oriented edges). T' is a metric space with the
path metric dr (namely, dr(v,w) is the shortest length of a path connecting v and
w, and set dr(v,v) = 0), and diam(I") means the diameter (the length of largest
distance).

For v € V, deg(v), the degree of v, is the number of edges which starts at v. Note
that a self-loop contributes twice to the degree of the vertex. A(I") is the maximal
degree max,cy deg(v) of I

o {I', = (V,, E,)}n is a sequence of finite graphs.

(X, p) is a pair of a Banach space X and an exponent p. We always assume that
p € [1,00) (in particular, p is always assumed to be finite.)

e Y is also used for a Banach space. ¢ is also used for an exponent in [1,00).

For r € [1,00] and k > 1, ¢* stands for the real £,-space of dimension k. £, means
the real /,-space over an infinite countable set.

e In this report, X(p) means £,(N, X).
e For X, S(X) is the unit sphere of X.

In a metric space L and A, B C L, dist(A, B) means the distance, namely,
inf{d(a,b) : a € A,b € B}.

a 3 b for two nonnegative functions from the same parameter set 7 means that
there exists C' > 0 independent of t € T such that for any ¢ € T, a(t) < Cb(t).
a =< b means both a X band a Z b hold. a 3, b if parameter set 7 has variable ¢
and C' = C,; may depend on q.

We write a 3 b if a 3 b holds but a = b fails to be true.

1.1. Classical spectral gaps. Here assume that I" is k-regular (that means, deg(v) = k
for all v € V). Then the (nonnormalized) Laplacian L(I") := kI, — A(I"), A(I") being the
adjacency matrix (the matrix (@, )0 Where a,,, is the number of edges connecting v
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2 MASATO MIMURA

and w, counting self-loop twice), is a positive operator and has eigenvalues 0 = \o(I") <
M) < X(T) < --- < A1), This Ay(T') is the classical spectral gap of I'. This has a
Rayleigh quotient formula:

1 lnf ZUEV Z vw)EE |f( ) - f(U)|2
2f:VoR >_vev |f () =m(f)[?

Here m(f) := > oy f(v)/|V| and f runs over all nonconstant maps.

M(l) =

- (%)

1.2. Banach spectral gaps. The point in (x) is that R has a metric and a mean struc-
tures.

Definition 1.1. For (X, p), define the the (X, p)-spectral gap of T by

VS S SIS o 1100 R )
MEXD) =g T T e —m )

Here m(f) := >,y f(v)/|V| and f runs over all nonconstant maps.

Ezample 1.2. M\ (T") = M (I} R, 2) = A (I'; 45, 2) (the latter equality is by Lemma 1.3). It
is known that A;(I';R, 1) is proportional to h(I'), the (edge-)isoperimetric constant (also
known as (nonnormalized) Cheeger constant) of T', see [Chu97, Theorem 2.5]. Here A(T)
is defined as inf{|E(A, V\ A)|/|A| : 0 < |A| < |V|/2}, where E(A,V\A) :={e = (v,w) €
E:veAweV\ A}

We note that Mendel and Naor [MN12] have explicitly introduced the notion of nonlin-

ear spectral gaps (for the more general case where X is a metric space) and studied that
in detail.

1.3. Poincaré-type inequality. (xx) is equivalent to saying the following:

ViV = XY lIf ) =m(H)” < FXp Z Yo @)= f@)P - (xx )

veV veV e=(v,w)EE
This bounds the “p-variance” from below by the “p-energy” in a rough sense.
Lemma 1.3. (1) If Y is a subspace of X, then \i(I'; Y, p) > M ([; X, p).

(2) M(T; X, p) = Mi(T; X, p).
In particular, A\ (I'; R, p) = A (I'; £, p).

Proof. (1) is trivial. For (2), > is from (1). To get <, integrate (* % *) over N. O
1.4. Banach expanders.

Definition 1.4. A sequence {I', },en is called (X, p)-anders if the following three condi-
tions are satisfied:

(1) sup, A(T') < o0

() lim,,_,o diam(I',,) = oo;
(731) There exists € > 0 such that inf, A\{(T',; X, p) > e.

(Classical) expanders equal (R,2)-anders, which also equal (R, p)-anders for all p by
Matousek’s extrapolation (Theorem 1.16). By Lemma 1.3, they are also equal to (¢,, p)-
anders.
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1.5. Who cares? 1: coarse embeddings.

Definition 1.5. Let (A,dy) be a metric space. We say f: A — X is a coarse embedding
if there exist a nondecreasing p_py : Rsg — R with limy o p— () = +00 such that for
any v, w € A,

p—(da(v, w)) < |[f(v) = fw)llx < py(da(v,w)).
This (p_, py+) is called a control pair.

For {I',},, with lim,_, diam(I',) = oo, define a coarse disjoint union [],T', to be an
(infinite) metric space (][, I'n, d) whose point set is | |, V,, and whose metric satisfies:
e For every n, d |y, xv,= d,, where d,, denotes the original metric on I',,.
e For n # m, dist(V,,, V) > diam(I',,) + diam(I',,).

Theorem 1.6 (Matousek, Gromov, Higson, et al.). Let {I',},, be (X, p)-anders for some
p. Then [, Iy, does not admit coarse embeddings into X .

Proof. Take € > 0 in Definition 1.4 and K := ¢~'. Suppose, in contrary, that f: [[ I, —
X be a coarse embedding with control pair (p_, py). Set f,, := f|y,. For considering each
fn, we may assume m(f,) = 0. Then by (% * *),

ﬁ%zmnmwsﬂ;ﬁij S alw) = L)

vEVR vEVn e=(v,w)EE,

< KA(T,)ps (1),

Therefore, by letting M = (2K sup,, A(I',))"/?p, (1) (independent on n), we have that at
least half of v € V,, satisfies || f,(v)|| < M. Because diam(I',)) — oo, this contradicts that
limy s 4 oo p—(t) = +00. O

Remark 1.7. Recently Arzhantseva and Tessera [AT14] prove the following:

Theorem 1.8 ([AT14]). There exists {I',}, such that

(1) sup,, A(I',) < ooy

(it) 11, T'n does not admit coarse embeddings into ls;

(ii7) but [[,, Iy does not admit weak embeddings of any expanders into itself.
Here a sequence { A, }m of finite graphs is said to admit a weak embedding into a metric
space Z if there exist K > 0 and K-Lipschitz maps f,,: \,, = Z such that
limy, 00 SUPyev (Am) |fn_zl(fm(v))|/‘Am‘ = 0.

This shows that expanders are not the only obstruction to admitting coarse embeddings

into ¢5. Their proof of (i7) employs some sorts of relative Poincaré-type inequalities.

1.6. Who cares? 2: distortions.

Definition 1.9. The distortion of I into X, denoted by cx(I') is defined by

df: V — X, 3r > 0 such that Yv,w € V, }

cx(I') ;= inf {C’ >0: rd(v,w) < ||f(v) = fw)]| < Crd(v,w)

We have 1 < ¢, vi(I') < diam(I'). The latter estimate is obtained by the trivial embed-
2
ding: I' 3 v +— 0, € £5(V). Hence, by the Dvoretzy theorem, for infinite dimensional X,

we have
1 < ex(T) Zx diam(D).
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Theorem 1.10 (Generalized Grigorchuk—Nowak inequality, see [GN12] and Theorem 2.3
of [Mim14] ). For any e € (0,1),

(1= e)Y/Pr (T) | M (T; X, p)\ P
cx(T) > 5 diam(T") (W) :

Here r.(T") is defined as inf{diam(A)/diam(T") : |A| > €|V|}.

Theorem 1.11 (Special case of a generalized Jolissaint—Valette inequality, see [JV14] and
Theorem 2.3 of [Mim14]). Let I' be a vertex-transitive graph (this means that the graph
automorphism group acts V' transitively). Then

A\ (T: X 1/p
cx(T) > 2@~ Y/rdiam(I) (M>

A(T)
Note that, as we will recall in Section 3, all Cayley graphs are vertex-transitive.

Corollary 1.12. For infinite dimensional X, assume {I',,},, be (X, p)-anders for some p.
Then cx(T',) <x diam(T,).

Proof. Note that {I',}, is in particular a family of expanders (see (3) of Corollary 1.17)
and is of (uniformly) exponential growth. If you do not know this fact, then this is de-
duced from the Matousek extrapolation (Theorem 1.16) and Example 1.2 on isoperimetric
constants.

Hence the conclusion follows from Theorem 1.10 and the discussion above. 0

Lemma 1.13 (Austin’s lemma [Ausll], see also in Lemma 2.7 in [Mim14]). Let {I',},
satisfy diam(T',) oo (possibly with sup, A(I',) = o). Let p: Ry 7 Ry be a map
with limy_, 4 o p(t) = 400 which satisfies that p(t)/t is nonincreasing for t large enough.
Assume that for n large enough ﬁ%&%})) < cx(I'y) hold. Then for any C >0, (p, Ct) is
not a control pair of [[, 'y into X.

Proof. Assume, in the contrary, that there exists a coarse embedding f: ], I, — X such
that

pld(v,w)) < ||f(v) = fw)|[Cd(v,w), v,we[]T,

holds. Set f, :== f |r,: Vi, = X. We may assume, by rescaling, that f is a 1-Lipschitz
map and that each f, is biLipschitz. Then we have the following order inequalities.

diam(T’,) _ d(v, w)
STy 2 ) Sl < a2
d(v,w) diam(T,)
B pld(o,w) ~ p(diam(T,)

This is a contradiction. O

Lemma 1.13, together with Corollary 1.12, gives an alternative proof of Theorem 1.6.
Indeed, suppose, in contrary, that there exists a coarse embedding f of (X, p)-anders
into X. By rescaling, we may assume that the control pair for f is (p,t) for some p
(note that because [ [, I';, is uniformly discrete, p; may be taken as linear function). By
replacing p with a smaller proper function if necessary, we may also assume that p(t)/t is
nonincreasing for ¢ large enough. Then Lemma 1.13 and Corollary 1.12 give the desired
contradiction.
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1.7. Motivating problem. A naive question on (X, p)-anders might be: “Are any ex-
panders are automatically (X, p)-anders for all (X, p)?” The answer is no. Indeed, by the
Fréchet embedding:
Vi3 v (dv,w))wey,
I',, embeds isometrically into ELZ"‘. Thus if X has trivial cotype, then there exists a
biLipschitz embedding of any [, I',, into X. Here X is said to have trivial cotype if X
contains uniformly isomorphic (in particular uniformly biLipschitz) copies of {¢Z },..
The following question is a big open problem in this field:

Problem 1.14. Are any expanders are automatically (X, p)-anders for all X of nontrivial
cotype and for all p?

In this report, we study the following two questions:

Problem 1.15. For arbitrarily taken T,
(a) estimate A\ (I';Y,p) from A\ (T; X, p);
(b) estimate A\ (I'; X, q) from A\ (I'; X, p).
In both cases, estimates may depend on A(I'), but not on |I'| itself.

1.8. previously known results.
(b): Matousek extrapolation

Theorem 1.16 ([Mat97]). (1) For p € [1,2), A\ (TR, 2)p/2 Zamp MR D) Zam)p
(2) FO’Fp € [27 OO); )\I(FaRap) =A(D),p >\1<F7R7 2)p/2.

Corollary 1.17. (1) For anyp, {I'y}. are expanders if and only if they are (R, p)-anders.
(2) Ezxpanders do not admit coarse embeddings into £, for any p.
(3) For any (X,p), (X,p)-anders are (classical) expanders.

Proof. (1) immediately follows. (2) is from Theorem 1.6. (3) follows from X D R. O

(a): Pisier [Pis10]
The following definition is in [Pis10], which uses some idea of V. Lafforgue: X is said

to be uniformly curved if lim., o Dx (€)= 0 holds. Here Dx(€) denote the infimum over
those D € (0, 00) such that for every n € N, every matrix T = (¢;;);; € M,,(R) with

[Tey—ey <€ and  [Jabs(T)[|lgg—ep <1,
where abs(T") = (|t;;]);; is the entrywise absolute value of T', satisfies that
T @ Ix|es(n,x)—ts(n,x) < D.

Theorem 1.18 ([Pisl0]). Ezpanders are automatically (X,2)-anders for any uniformly
curved Banach space X.

Expamles of uniformly curved Banach spaces are ¢,, L,, noncommutative L, spaces,
for p € (1,0), and more generally are given by complex interpolation theorey.

Remark 1.19. Pisier also showed in [Pis10] that uniformly curved Banah spaces are super-
reflexive, which is equivalent to admitting equivalent and uniformly convex norms. Recall
that X is said to be uniformly convez if for any € € (0, 2],

sup{fl +yll/2 : 2.y € S(X), |z =yl > e} < 1.
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We also mention that the existence of “special expanders”, which have the expander
property for a wider class of Banach spaces, is known independently by V. Lafforgue
[Laf08] and Mendel-Naor [MN12]:

Theorem 1.20 ([Laf08], [MN12]). There exist (explicitly constructed) expanders {I',},
which are (X, 2)-anders for any X of nontrivial type.

Here recall that X has trivial type if and only if X contains uniformly isomorphic copies
of {{1},.

2. MAIN RESULTS

2.1. Sphere equivalence and Ozawa’s result. In [Mim14], the author call the follow-
ing equivalence the sphere equivalence. This has been intensively studied for several years,
and we refer the reader to Chapter 9 of [BL0O0].

Definition 2.1. X and Y are said to be sphere equivalent, written as X ~g Y, if there
exists a uniform homeomorphism (, namely, a biuniformly continuous map) between S(X)
and S(Y). We write [Y]g for the sphere equivalence class of Y.

If X and Y are isomorphic (in other words, if Y has an equivalent norm to that of X),
then clearly X ~g Y. There, however, exist many nonisomorphic Banach spaces which
are sphere equivalent.

Example 2.2. The sphere equivalence class of Hilbert spaces for instance contains the
following:

o /, L, for any p: a uniform homeomophism is given by the Mazur map. For ¢,
the Mazur map is

Myo: S(ly) = S(la);  (ai)i (sign(ai)|ai|”/2)i.

e Noncommutative L, spaces associated with arbitrary von Neumann algebras [Ray02].
e Any Banach space of nontrivial cotype with unconditional basis [0S94].

Note that this sphere equivalence may go beyond superreflexivity; and moreover having
nontrivial type. Indeed, the results mentioned above on (noncommutative) L, spaces hold
even for p = 1.

Ezample 2.3. Another example is given by complex interpolations (for a comprehensive
treatise of complex interpolation, see a book [BL76]). Theorem 9.12 in [BLOO0] states that
for a complex interpolation pair (X, X7), if either X, or X; is uniformly convex, then
any 0 < # < 0 <1, Xy ~g Xg. This result will be used for the proof of our main results.

On (a) of Problem 1.15, Ozawa [Oza04] made the first contribution.

Theorem 2.4 ([Oza04)). If X ~g ly, then expanders do not admit coarse embeddings
into X. In fact, any expanders satisfy a weak form of (X, 1)-ander condition for such X.

2.2. Main results. Here we exhibit main results in this report, extracted from [Mim14].

Theorem A (For more precise statement, see Theorem 4.1 in [Mim14]). Assume X ~g Y.
Then for any p € [1,00), and a sequence {I'y},, {Tn}n are (X,p)-anders if and only if
they are (Y, p)-anders.

More precisely, for a uniform homeomorphism ¢: S(X) — S(Y'), we may bound A (T'; X, p)
from below in terms of
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L4 )\1 (Fa Kp);
e the modulus of continuity of ¢;
e and some constants depending on p, A(T'), and the modulus of continuity of ¢~

For instance, if ¢ is a-Holder continuous for some « € (0,1], then we have
M(D; X, p) Zpamya AT Y, p)e.
Here M is a constant only depend on the modulus of continuity of ¢—1.

Note that on the estimation above, the order of the estimate (for instance, the Holder
exponent if we have an estimate of such type) depends only on the modulus of continuity
of ¢. The modulus of continuity of the inverse map ¢~! appears only on postive scalar
constant in our estimate.

Theorem B (Generalization of Matousek’s extrapolation). Let (oo >)p,q > 1. Then
for any X sphere equivalent to a uniformly convex Banach space, and a sequence {T'y,}n,
{T,}n are (X, p)-anders if and only if they are (X, q)-anders.

Remark 2.5. We note that recently Naor, in Theorem 1.10 and Theorem 4.15 in [Naol4],
has independently established similar results. Our approach is group theoretic, and dif-
ferent from his. In our proof, we introduce the “Gross trick”, see Section 6.

As byproducts to above Theorems A and B, and aforementioned works of Ozawa and
Pisier; and Lafforgue and Mendel-Naor, we have the following corollaries.

Corollary C. Any expanders are automatically (X, p)-anders for an X sphere equivalent
to uniformly curved Banach space and for p € (1,00). If, moreover, X € [l5]g, then the
assertion above holds even for p = 1.

In particular, for expanders {I',},, we have for such X of infinite dimension that

Cx(Fn) =x dlam(Fn)

Corollary D. The expanders constructed in Theorem 1.20 are (Y,2)-anders for any Y
sphere equivalent to a Banach space with nontrivial type.
In particular, they do not admit coarse embedding into any such Y .

Note that, for instance, noncommutative L, spaces are examples of such Y with trivial
type (though all expanders do not admit coarse embeddings to them by Theorem 2.4).
In the view of the results above, the following questions might be of importance.

Problem 2.6. (1) Does the class of Banach spaces sphere equivalent to uniformly curved
Banach spaces contain all superreflezive Banach spaces? Does it contain all Banach
spaces of nontrivial type/nontrivial cotype?

(2) Does the class of Banach spaces sphere equivalent to Banach spaces of nontrivial type
coincide with the class of all Banach spaces of nontrivial cotype?

To the best of my knowledge, all of the problems above may be open.

Remark 2.7. On (2), one inclusion is verified from Corollary D and Subsection 1.7 (also,
in [BLOO], the authors of the book announced a result that the class of Banach spaces
with trivial cotype is closed under the sphere equivalence). Hence, the true question in
(2) is whether the sphere equivalence class above contain all Banach spaces of nontrivial
cotype.
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Remark 2.8. There is also a notion of “ball equivalence” (namely, the unit balls are uni-
formly homeomorphic). In [BL00, Chapter 9], it is shown that if X and Y are ball
equivalent, then X @ R ~g Y @& R (the other direction: “X ~g Y implies that X and Y
are ball equivalent” is easy). Therefore, if we consider Banach spectral gap, then there is
no serious difference between the sphere equivalence and the ball equivalence.

3. REPRESENTATION THEORETIC CONSTANTS FOR CAYLEY GRAPHS

We first give the proof of Theorem A for Cayley graph of (finite) groups, and explain
where group theory can contribute to this problem. In this section, let GG be a finite group,
S # e be a symmetric (finite) generating set of G. Recall the definition of Cayley graphs.
The Cayley graph of (G, S), written as Cay(G, S), is constructed as

e the vertex set V = G;
e and the edge set £ ={(g,s9) : g € G,s € S}.

Ezample 3.1. Cay(Z/nZ,{£1}), n > 3, is the cycle of lenth n. Although we do not treat in

this report, Cayley graphs are also defined for G infinite. In that case, Cay(Z?, {£(1,0),4(0,1)})
is the Z*-lattice in R?. For a free group F, with 2 free generators a, b, Cay(Fy, {a*!, b*1})

is the 4-regular tree.

Remark 3.2. Recall that a group G has two natural action on itself: the left multiplication
and the right one. We have employed the left multiplication to connect edges in Cay (G, S),
and the right one is left. In fact, this right multiplication becomes a graph automorphsim
(in other words, for every g € G, (v,w) € E iff (vg,wg) € F). Since this right action
of G on itself is transitive, Cay(G,S) is a vertez-transitive graph (it means that the
automorphism group of the graph acts transitively on the vertex set). Hence, (finite)
Cayley graphs are special among all (finite) graphs.

Also recall that in our notaion, we allow graphs to have self-loops and multiple edges.
However, if we consider only Cayley graphs, then they do not show up.

3.1. isometric linear representations and displacement constant.

Definition 3.3. We take (G, S) and (X, p).

(1) Define mg,x, = Tx,p as the left-regular representation of G on £,(G, X (»)), namely, for
g € G and € € £,(G, X)), pr(g)g( ) = §(g*1v) Then £,(G, X)) decomposes as
G-representation spaces: £,(G, X)) = £,(G, X)) ™D @ £,0(G, X(p)) Here the first
space is the space of 7y ,(G)-invariant vectors (which consists of “constant functions”
form G to X(p)) and the second space is the space of “zero-sum” functions, namely,

lpo(G, X)) = {E € 0,(G, X)) + Y _E(v)
veG
We omit writting G in 7g.x, if G is fixed. We use the same symbol mx , for the
restricted representation on £, (G, X))

(2) (p-displacement constant) The p-displacement constant of (G,S) on X, written as
kxp(G,S), is defined as

H'va(G7 S) = lnf _ Sup HT(X»I’(‘S)é- - f“ ‘
0££€Lp,0(G, X () sES €l
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Remark 3.4. We will use in the proof of Proposition 5.1 the following norm inequality:
for £ € £,0(G, X)), we have

dist (&, 4,(G, X)) ™ @) > —||€||

Indeed, set n = m+no for any n € £,(G, X(p)) according to the decomposition ¢, (G, X(p)) =
0,(G, X(p))ﬂx,p(G) & L 0(G, X(p)). Then the map 1 + 7, is given by taking the mean of 7.
Because the p-mean of the norm is at least the norm of the mean, we have that ||n|| > ||n]|.
Hence for any ¢ € £,(G, X(,))™#(@ we have that ||¢—C|| > ||¢|| (set n := £—C). Therefore

2 inf 1€ =<l > inf o, €=l [I¢l) = liEll;

CElp (G, X )X # (D CEL (G, X ()X

and we are done.

3.2. Fundamental lemma for Banach spectral gaps of Cayley graphs. The fol-
lowing lemma plays a fundamental role, which relates p-displacement constant on X to
(X, p)-spectral gap for a Cayley graph.

Lemma 3.5. For a Cayley graph I = Cay(G, S) and a pair (X, p), we have that
S
KX,p<G7 S)p < )\l(Fvap) < |2_|/€X,p<G7S>p'

Proof. First note that by Lemma 1.3, \(I'; X,p) = )\I(I‘;f((p),p). Take a nonconstant
map f: V — X, and by replacing f with f —m(f) we may assume m(f) = 0. Then we
may regard f as a nonzero vector £ € £,o(G, X(p)). Therefore

Sea Tores Imxal9)E(0) — €I

1
M Xop) =5 inf
2 0£6€6,0(G. X)) €11
1 _ p
_ 1 it S0 (||7TX7p(S)§ 5||>
2 O7£§€£IJ,O(G7X(p)) ses ||§||
This ends our proof (note that ||7x,(s)€ — €| = ||mxp(s71)E — || because mx ,(s) is an
isometric operator). O

Remark 3.6. If we consider {(Gn,S,)} where sup, |S,| < oo, then Lemma 3.5 gives
the optimal order estimate between kx,(G,,S,) and A\ (Cay(G,,S,); X,p). However
if sup,, |:S,| = 0o, then Lemma 3.5 may not give the precise order.

Nevertheless, if S,,’s have “high symmetry”, then we have more accurate inequalities.
For more precise meaning, we refer the reader to [Mim14, Theorem 3.4], which is based
on the work of Pak and Zuk [PZ02].

4. KEY PROPOSITIONS ON SPHERE EQUIVALENCE

4.1. upper moduli and Sym(F') equivariant homeomorphisms.

Definition 4.1. Let X ~¢ Y, and ¢: S(X) — S(Y) be a uniformly continuous map.
(7) Define M to be the class of all functions d: [0, 2] — Rx( which satisfy the following
three conditions:
e ) is nondecreasing;
e lim.,,od(e) = 0;
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e and, for any x;,z9 € S(X) with |21 — 22| x <€, we have ||¢(z1) — d(x2)|y <
d(€).
We call an element 9 in My an upper modulus of continuity of ¢.
(ii) Define ¢: X — Y to be the extension of ¢ by homogeneity, namely, ¢(x) :=
|z||x(x/||z|x) for 0 # 2 € X and ¢(0) := 0. We call ¢ the natural estension

of ¢.

Note that ¢ is uniformly continuous if we restrict it on a bounded set of X; but that
itself is in general not.

Example 4.2. In Example 2.2, we have seen the definition of the Mazur map M, »: S(¢,) —
S(ls). This map (and also the inverse map) is known to be uniformly continuous, more
precisely,

o If p > 2, then the function d: [0,2] — Ryq; d(¢) := (p/2)0 is in My, (Mye is
Lipschitz).

e If p < 2, then the function §: [0,2] = Rsg; d(€) := 467/ is in My, (Mo is
p/2-Holder).

Surprislingly, these estimations of Holder exponents remain to be optimal even when we
consider the “noncommutative Mazur map” from noncommutative L, spaces associated

with any von Neumann algebra. This assertion has been recently showed by Ricard
[Ric14].

Definition 4.3. Let I’ be an at most countable set. For a map ¢: S({,(F, X)) —
S(L,(F,Y)), we say that ¢ is Sym(F')-equivariant if for any o € Sym(F'), poox, = oy 400
holds true. Here a Banach space Z and r € [1,00), the symbol oz, denotes the isometry
oz, on £,.(F, Z) induced by o, namely, (0z,£)(a) :=&(o7 (a)) for £ € (.(F,Z)and a € F.
Here by Sym(F') we mean the group of all permutations on F', including ones of infinite
Supports.

For instance, if we consider the Mazur map M, as a map from ¢,(N,R) to ¢5(N,R),
then M, - is Sym(N)-equivariant. This is because M, 5 is coordinatewise.

4.2. Key proposition for Theorem A.

Proposition 4.4. Assune that ¢: S(X) — S(Y) is a uniformly continuous map for two
Banach spaces X and'Y. Then for any p € [1,00), the map

P =, S(X(p)) - S(Y(p))S (@:)i = ()
is again a uniformly continuous map that is Sym(N)-equivariant. Here ¢ is the natural
extension of ¢ and we see Xy and Yy, respectively, as (,(N, X) and {,(N,Y).
Furthermore, if ¢ is a-Hélder, then so is ®,. More precisely. if §(t) := Ct* € M, for
some C' > 0 and some a € (0, 1], then 0'(t) := (2C + 2)t* belongs to Mg, .

Proof. By construction, this ®, is coordinatewise and hence in particular Sym(N)-equivariant.
Our proof of the uniform continuity of ®, consists of two cases. Here we only prove the
case where Ct* € M, (for general case, we may need to replace § with larger upper
modulus).

Case 1: forp=1. Let (z;); and (y;); be in S(X)).
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First we consider the case where for all i € N ||z;]|x = ||lvillx. Set r; := ||z;||x and
eri = ||z; — yillx. Observe that ¢ is concave in [0, 2]. By the Jensen inequality, we have
the following:

(@) = @), < D radle) < 83 rie) = (1) = Wil )

— ll=llx

Secondly we deal with the general case. For (x;);, (vi); € X(l), define z; := oY (2 :=

x; if y; = 0). Suppose ||(z;); — (yi)i||)~((l) < e. Because for any i, ||z; — vil|lx > ||z — villx,
we have that ||(z;); — (yi)i||)~((1> < €. Hence we obtain that |(z;); — (zi)iHX(l) < 2e.
Therefore in the first argument, we have that || ®((z;);) — @((zi)i)Hf,(l) < §(2¢). Since

]|<I>((yz)l)—<1>((zz)z)||y(1) < € by homogeneity, we conclude that §'(t) := §(2t)+t = 2°Ct*+t
belongs to Mg, .

Case 2 : for general p > 1. First observe that ¢ € [0, 2'/7], we have that 6(¢)? < CP~1§(¢P).
Then the remaining argument goes along a similar line to one in Case 1. Thus we can
show that 0'(t) := (Cp_lé((2t)p))1/p +t = 2*Ct* 4t belongs to Mg, .

In each case, finally observe that for ¢ € [0,2], (2C' + 2)t* > 2*Ct* + t. O

Lemma 9.9 in [BLOO] showed the first assertion above. However, the estimation of
upper moduli is worse than in this proposition, and did not verify the latter assertions.

4.3. Generalized Mazur map: key proposition for Theorem B.

Theorem 4.5. For any uniformly conver Banach space X and p,q € (1,00), we have that
Xy ~s X(q). Furthermore, we may have a uniform homeomorphism ¢: S({,(N, X)) —
S(ly(N, X)) which is Sym(N)-equivariant.

Proof. Choose 1 < py < min{p, ¢} and oo > p; > max{p, ¢}. Then [BL76, Theorem 5.1.2]
applies to the case where Q = N and Ay = A; = X. This tells us that both of X (p) and
X (q) are, respectively, isometrically isomorphic to some intermediate points of a complex
interpolation pair (X ), X)) Because X, and X(,,) are uniformly convex, the result
mentioned in Example 2.3 applies.

The last assertion follows from the proof of [BL0OO, Theorem 9.12]. Indeed, the definition
of f, for z € £,(N, X)), as the minimizer of a certain norm, in Proposition 1.3 in [BLO00] is
Sym(N)-equivariant in the current setting. O

This map may be regareded as a generalized Mazur map because it coincide with the
usual Mazur map if we consider the complex interpolation pair (¢, £,,) in the proof (for
X = R). However, note that we are only able to define it for p,q > 1, as long as we
employ the complex interpolation.

5. PROOF OF THEOREM A FOR CAYLEY GRAPHS

This part is based on a work of Bader—Furman-Gelander-Monod [BFGMO07]. See Sec-
tion 4.a in [BFGMO7] for the original idea of them. We will show the following proposition
concerning the p-displacement constants.
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Proposition 5.1. Let X ~gY and ¢: S(X) — S(Y) be a uniform homeomorphism. Let
G be a finite group, S # e be a symmetric (finite) subset. Then for any p € [1,00), we
have the following inequality:

1 1
kxp(G,S) > 61 (5521 (5) Ky (G, S)) .
Here 6, € Mg, and 0 € Mq);l.

Proof. By Proposition 4.4, ®,,: X » — Y/(p) is a uniform homeomorphism that is Sym(N)-
equivariant. By coordinate transformation, we may regard ®, as

D, S(6,(G, X(p))) - S(&)(Ga?(p)))

(note that £,(G, X(»)) =~ X(p)), which is Sym(G)-equivariant. We thus have that ®,om , =
my,p o ®,. Note that we consider 7x, and my, as G-representations, respectively, on
(,(G, X,) and £,(G,Y,), not on £, .

Choose any & € S(£,0(G, X)) C S(6,(G, X)) and set 5 := ®,(€) € S(£,(G, Yy))-
We warn that 7 does not belong to S({p0(G,Y(p))) in general. We however overcome
this difficulty in the following argument. Recall that ép(G,f((p)) is decomposed as the
direct sum of £,(G, X(,))™»®) and £, (G, X(»)). Note that the former subspace is sent to
0,(G,Y())™»(@ by @, (again because ®, is Sym(G)-equivariant). Recall the inequality
in Remark 3.4 and get that dist(&, ¢,(G, X(p))”XvP(G)) > %

In particular, from this we have that dist(&, S(£,(G, X())™»™)) > 1. Therefore, by
the uniform continuity of ®;1, we have that dist(n, S(€,(G, Y(,))™=)) > 6, (3).

Decompose 1 as n = 1, + 19 where 1, € Ep(G,f/(p))”Y’P(G) and 1y € £,0(G, 37(1,)). We

claim that . .
> 5 =) .
Il = 555" (5)

Indeed, let 1} := n,/||n;|| (if 71 = 0, then set 1)} as any vector in S(£,(G, Y(,))™*(@)). Then
by the inequality in the paragraph above, we have that ||n—n}{|| > d;" (3). Because ||| >
L=[[noll, we also have that |[gy—mni[| < ||nol| and that [n—m || < ln—mnul+[[n—nill < 2][noll-
By combining these inequalities, we prove the claim.

By the definition of ky,(G,S), we have that

1._,/1
sup ||y, (s)n — 1l = sup |y, (s)i0 — moll = [Inollky, (G, S) = 5d5" (—) ryp(G, 5).
ses ses 2 2
Finally, because ®, o 7x , = 7y, o ®,, we conclude by the uniform continuity of ®, that

sup [y (506 = 1) 2 67 (505 (5) s (G.9)).

By taking the infimum over & € S(£,0(G, X)), we obtain the desired assertion. O

By combining the proposition above, Proposition 4.4, and Lemma 3.5, we obtain the
conclusion in Theorem A for I' a Cayley graph.

6. THE GROSS TRICK

In this section, we give the proof of Theorem A for I' arbitrary finite graph. To do this,
our idea is to consider Schreier coset graphs and to reduce all cases to these ones. The
Gross theorem, which we will mention later, enables us to perform the latter procedure.
The author call this trick the Gross trick.
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6.1. Schreier coset graph. In the proof of Lemma 3.5 and Proposition 5.1, it may be
noticed that we have never employed the right regular representation. This means, we
only need group multiplication only on one side, which was used to connect the edges.
From this observation, we encounter with the conception of Schreier coset grpahs.

Definition 6.1. Let GG be a finitely generated group, S be a symmetric finite generating
set, and H be a subgroup of G of finite index. By Sch(G, H,S) we mean the Schreier
coset graph, that is

e the vertex set is the left cosets: V = G/H;
e the edge set F :={(gH,sgH): gH € G/H,s € S}.

Remark 6.2. One remark is that we may take G as a finite group in the definition.

The other remark is that, unlike Cayley grpahs, Schreier coset graphs in general have
no symmetry at all (note that only possible muliplication on G/H is from the left, but
this is used for connecting edges). Moreover, in general Sch(G, H, S) may have self-loops
and multiple edges.

Once we employ the concept of Schreier coset graphs, we have a similar definition of
p-displacement constants for the triple (G, H,S) in terms of the quasi-regular represen-
tation of G on £,(G/H, X (). Furthermore, we have exactly the same inequalities as
ones in Lemma 3.5 and Proposition 5.1 for Schreier coset graphs. In this report, we
omit the precise forms. Instead, we refer the reader to Definition 3.1, Lemma 3.3, and
Proposition 4.2 in [Mim14].

Thus we ends the proof of Theorem A for the case where I' is a Shreier coset graph.

6.2. the Gross trick. Now we explain the main trick on the proof. This employs the
following result of Gross.

Theorem 6.3 ([Gro77]). Any finite connected and regular graph (possibly with multiple
edges and self-loops) with even degree can be realized as a Schreier coset graph.

Remark 6.4. The proof of Gross’s theorem is based on the “2-factorization” of such a
graph (Petersen). This means, for such a graph, we can decompose the (undirected) edge
set as the disjoint union of 2-regular graphs (cycles). From these cycles, we can endow
I' with the structure of a Schreier coset graph. Hence this realization is not just the
existence, but not sufficiently concrete or handlable in general setting.

Also, by passing to apropriate limits, the Gross theorem can be extended to infinite
regular conncected graphs of even degree.

This theorem of Gross roughly asserts that Schreier coset graphs are “more or less
universal” among graphs of uniformly bounded degree (compare with speciality of Cayley
graphs!). More precise meaing of “universal” will be explained in the usage of “Gross
trick”, as below.

The following argument is the Gross trick: Let I' = (V, E) be a finite connected graph.
Then we take the even regularization of I' in the following sense: we let V' unchanged.
We first double each edge in E. Note that then for any v, w € V, deg(v) — deg(w) € 2Z
and that the maximum degree is 2A(T"). Finally, we let a vertex v whose degree is
2A(T") unchanged, and for all the other vertices add, respectively, appropriate numbers
of self-loops to have the resulting degree = 2A(T") for each vertex. We write the resulting
graph as IV = (V) E’). Then by the Gross theorem, I'' can be realized as a Schreier
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coset graph and thus the argument in Subsection 6.1 applies to I'. Finally observe that
M Zp) = 20 (0 Z, p) for any Banach space Z because self-loops do not affect the
spectral gap.

This completes our proof of Theorem A for general graphs T.

7. PROOFS OF THEOREM B AND COROLLARY C

Proof of Theorem B. Let X ~g Y, where Y is uniformly convex and let p,q € (1
By Theorem 4.5, there exists an Sym(N)-equivariant uniform homeomorphism

)
D, 40 S(f/(p)) — S(f/(q)). First we start from the case where I' is of the form Sch(G, H, S
Then we regard ® as an Sym(G/H )-equivariant uniform homeomorphism

O: S(6,(G/H,Yp)) — S(L(G/H, Y ).

).
5).

We thus may apply a similar argument to Proposition 5.1 to the pair ((Y,p);(Y,q)).
Because Proposition 5.1 works for the pairs ((X,p);(Y,p)) and ((Y,q); (X, q)), we are
done.

For general cases, apply the Gross trick. 0

Proof of Corollary C'. The first assertion holds true by Theorem A, Theorem B, and the
fact of that uniformly curved Banach spaces are isomorphic (and in particular sphere
equivalent) to some uniformly convex Banach spaces, see Remark 1.19. The second asser-
tion holds true for the following reason: if X € [(5]g, then by Theorem A and Lemma 1.3,
the (X, p)-ander property is equivalent to the (R, p)-ander property. The original Ma-
tousek extrapolation enables us to extend our results even for p = 1. 0

8. APPLICATION: EMBEDDINGS OF HAMMING GRAPHS INTO NONCOMMUTATIVE L,
SPACES

As an application of our main results, we consider embeddings of Hamming graphs into
noncommutative L, spaces associated with arbitrary von Neumann algebras. For d > 1
and k > 2, the Hamming graph H(d, k) is defined as the following:

e the vertex set V' is the set of the ordered d-tuples of T', |T'| = k;
e the edge set F consists of all pairs which diffres in precisely one coordinate.
In other words, H(d, k) is the product of d copies of the complete graph K on k vertices.

It is easy to see that H(d, k) is d(k — 1)-regular and diam(H (d, k)) = d. As a byproduct
of Theorem A, we have the following:

Theorem 8.1. Let M be a von Neumann algebra. By L,(M), we denote the noncom-
mutative L, space associated with M.

(1) Forp € [1,2), then we have that \(H(d, k); L,(M),p) <, k.

(2) Forp € [2,00), then we have that \(H(d, k); Ly(M),2) <, k.

Note that the multiplicative constants in these estimation do not depend on d, k, and
M; and only depend on p.

Proof. We only prove the case where k is a prime number. For other cases, we use a
similar technique to the Gross trick (namely, we add multiple edges and self-loops to have
better graph) in order to apply [Mim14, Theorem 3.4].
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Note that H(d, k) = Cay(Gap, Sax), where G = (Zy)? and Sy consists of vectors
whose exactly one coordinate is non-zero. Then we can apply [Mim14, Theorem 3.4] (see
also Remark 3.6) with v = 1 and we have that

M(H(d k); X, q) = wﬁX,q(Gd,k; Sar)?.
Recall that by the result of Ricard [Ricl4] (see also Example 4.2) the noncommutative
Mazur map, which we also write M, o, is
e p/2-Holder if p € [1,2];
e and Lipschitz if p > 2.
(Note that multiplicative constants do not depend on M in direct sumargument.) By
spectral calculus, it is not difficult to show that A;(H(d, k);R,2) = k, and so

2k \/?
KX,Q(Gd,hSd,k) = (m) -

Therefore by Proposition 5.1, we have that

o M(H(d, k); Lp(M),p) Zp k for p € [1,2];

o and \(H(d,k); L,(M),2) =, k for p > 2.
(For the former inequalities, see that ¢,(N, L,(M)) is again a noncommutative L, space.)
Finally, we will prove the converse order inequalities. For p € [1, 2], consider the following
mapping

for H(d, k) = £,(d, 6,(T,R));  (a1,..-aa) = (X{a1}s - - - s X{au})-

Here T is the base set (|T'| = k) of H(d, k), and x stands for the characteristic function.
Then simple calculation shows that

EZUEVd,k Ze:(v,w)EEdJc ||fp(w) - fp('U) ||p kP

2 Z’UEVd,k [ fp(v) —m(fp)[? (k=11 +1 o
(note that & > 2). Because (,(N, L,(M)) contains ¢, this shows that A\, (H(d, k); L,(M),p) =<,
k for p € [1,2]. For p > 2, because {5 is an isometric subspace of L,((0, 1)), we can approx-
imately embed H(d, k) into ¢5(N, L,(M)) by using f» by approximating (finitely many)
elements in L,((0,1)) by step functions in ¢,. This gives that \{(H(d, k); L,(M),2) 2, k
and therefore A\ (H(d, k); L,(M),2) =, k. O

k

Corollary 8.2. In the setting of Theorem 8.1, the following hold true.
(1) (1) Forp € [1,2), cr,omy)(H(d, k)) <, d'~'/P.
(2) Forp € [2,00), e, (H(d, k)) =<, d'/%.
(1i) For an infinite sequence {H(d, ky)}n with lim,_,. d, = 0o, the following hold:
(1) For p € [1,2), the supremum of the exponents a € [0,1] such that there exists
C > 0 such that (t*,Ct) can be a control pair of [], H(dy, ky) into L,(M) is
1/p.
(2) For p € [2,00), the supremum of the exponents « € [0, 1] such that there exists
C > 0 such that (t*,Ct) can be a control pair of [], H(dy, k) into L,(M) is
1/2.

Proof. On (i), in both cases, inequalities from below follow from Theorem 1.11 and Theo-
rem 8.1. Inequalities from above can be deduced from the special embeddings of H(d,,, k)
indicated in the proof of theorem 8.1.
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On (ii), inequalities from above follow from the estimations on distoritons in (i) and
Lemma 1.13. Ones from below are again from the special embeddings above. 0
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