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Abstract

In this talk we will go over stochastic metric decompositions. These are random partition-
ing of a metric space into pieces of bounded diameter, such that for each point, a certain ball
centered at it has a good chance of being contained in a single cluster. These decompositions
play a role in metric embedding, metric Ramsey theory, higher-order Cheeger inequalities for
graphs, metric and Lipschitz extension problems and approximation algorithms. We will then
see an example of such decompositions for doubling metric spaces.

The second part of the talk will be devoted to embedding finite metrics into normed spaces
using these decompositions. We will begin with a basic result due to Rao, and time permitting,
the Measure Descent approach.

1 Preliminaries

Let (X, d) be a metric space. Forz € X andr > 0, denote by By (z,7) = {z € X : d(x,z) <
r} the closed ball of radius r centered at x (we omit the subscript when clear from context).
By B°(z,r) = {z € X : d(z,z) < r} we mean the open ball. The diameter of X is denoted

sup, e x d(,y)
infw,yEX d(m,y) ’

as diam(X) = sup, ,cx d(7,y), and its aspect ratio (X)) =
Distortion. If (X, dx) and (Y, dy) are metric spaces, a mapping f : X — Y has distortion
at most K if there exists C' > 0 such that for any z,y € X,

% Jdx(w,y) < dy (f(2), f(y)) < Cdx(x,y) .

The infimum K is called the distortion of f. We denote by cy (X) the smallest distortion of a
mapping from X to Y. In the special case where Y = ¢, we denote the smallest distortion by
cp(X).

*Ben-Gurion University of the Negev, Israel. Email: neimano@cs.bgu.ac.il. Partially funded by the Lynne
and William Frankel Center for Computer Sciences.



Stochastic Decompositions. A partition P of X is a pairwise disjoint collection of clus-
ters that covers X. We say that the partition is A-bounded if for any cluster C' € P, diam(C') <
A. For x € X, let P(x) denote the unique cluster containing = in P. Denote by P the col-
lection of all partitions of X. For a distribution Pr over P, recall that supp(Pr) = {P €
P : Pr[P] > 0}.

Definition 1 (Padded-Decomposition). A stochastic decomposition of a metric space (X, d)
is a distribution Pr over P. Given A > 0, the decomposition is called A-bounded if for all
P € supp(Pr), P is A-bounded. For a function e : X — [0, 1], a A-bounded decomposition
is called e-padded if the following condition holds:

o Forallx € X, Pr[B(x,e(x) - A) C P(x)] > 1/2.

Definition 2 (Modulus of Decomposability). A metric space (X, d) is called a-decomposable
if for every A > 0 there exists a A-bounded stochastic decomposition of X with padding
parameter €(x) = 1/, for all x € X. The modulus of decomposability of X is defined as

ax = inf{a : X is a-decomposable} .

Let X be a family of metric spaces. If every member of the family has modulus of decom-
posability at most 3, then we say that the family X is S-decomposable.

In general, every finite metric space has ax < O(log|X|) [Bar96], which is quantitatively
the best possible, as exhibited by the family of expander graphs. However, there are many
families of metric space which are decomposable (that is, O(1)-decomposable), as described
in the next section.

2 Examples of Decomposable Metric Spaces

There are several families of metric spaces which are known to be decomposable, for instance,
metrics arising from shortest path on planar graphs, or bounded tree-width graphs, and in gen-
eral all graphs excluding some fixed minor. Another example is the family of metrics with
bounded Negata-Assouad dimension, which contains doubling metric spaces, subsets of com-
pact Riemannian surfaces, Gromov hyperbolic spaces of bounded local geometry, Euclidean
buildings, symmetric spaces, and homogeneous Hadamard manifolds. Here for the sake of
simplicity, we show the decomposability of the family of doubling metric spaces. The best
quantitative result, which is shown here, is due to [GKLO03].

2.1 Doubling Metrics

Let A be a positive integer. A metric space (X, d) has doubling constant X if for all x € X
and r > 0, the ball B(z, 2r) can be covered by A balls of radius r. The doubling dimension of
(X, d) is defined as logy A.

Comment: The doubling constant may be defined in terms of diameters of sets, rather than
radii of balls, but this which affects the dimension by a factor of 2 at most.

Definition 3. (Nets) For r > 0, an r-net of a metric (X,d) is a set N C X satisfying the
following properties:



1. Packing: For every u,v € N, d(u,v) > r.
2. Covering: For every x € X there exists u € N such that d(z,u) < r.

Proposition 1. Let (X, d) be a metric with doubling constant \, and N be an r-net of X. If
S C X is a set of diameter t, then

|NOS| < )\ﬂog4t/ﬂ '

Proof. Note that S is contained in a ball of radius 2¢, and that this ball can be covered by \*
balls of radius 2t/2*. Letting k = [log 4t/r] we get that these small balls have radius at most
r/2 and thus cannot contain more than a single point of N. O

Theorem 1. Let (X, d) be a metric space with doubling constant ), then ax < O(log \).

Proof. Fix any A > 0, and take N to be a A/4-net of X. We now describe the random
partition P. Let o be a random permutation of N, and choose r € [A/4, A/2] uniformly at
random. For each u € N define a cluster

Cy={reX : dlz,u) <rando(u) < o(v) forallv € N withd(z,v) <r}.

In words, every net point in order of o collects to its cluster all the unassigned points within
distance 7 from it. Then P = {Cy }uen \ {0}. Note that this is indeed a A-bounded partition,
due to the covering property of nets.

Fix some z € X and let t = A/(1001n ), we need to show that the event { B(x,t) ¢
P(z)} happens with probability at most 1/2. Observe that if v € N has d(x,u) > A, then
C,NB(x,t) = 0 for any choice of r (because r < A/2and ¢t < A/2). Let S = B(xz,A)NN,
and note that by Proposition 1, m := |S| < A5. Arrange the points s1, 2, ..., 5, € S in order
of increasing distance from x. For j € [m], let I; be the interval [d(z, s;) — t,d(x,s;) + t].
We say that the point s; cuts B(z,t) if s; is the minimal element (of the permutation o) for
which » > d(x,s;) — t, and also r € I;. Observe that if B(z,t) ¢ P(x) then there must be
some s; which cuts B(x,t).

Pr(B(xz,t) ¢ P(x)] < > Pr[s;cuts B(z,1)]

=1

IN

ZPI‘[T’ S Ij /\Vi<j0'(8j) < O'(Si)]
j=1

= ZPr[r € 1] - Pr[Vicjo(s;) < o(s;) | r € 1]

7j=1
U |
< Y
AM
t
< 8A-(1—|—lnm).

The third inequality follows from the independent choices of 7 and 0. Plugging in the estimates
fort = A/(1001n \) and m < A%, gives a bound of 1/2 on the probability, as required. ]



3 Embedding Decomposable Metrics into Normed Spaces

In this section we describe an embedding of finite decomposable metrics into £, space (for any
p € [1,00)). This is a simplified version of a result of [Ra099], in which the aspect ratio ® is
replaced by n.

Theorem 2. Let (X, d) be a finite metric space with modulus of decomposability o and aspect
ratio ®, then c,(X) = O(o - log!/? ®).

Proof. Let c be a universal constant to be determined later. Assume w.l.0.g that the minimal
distance between two distinct points in X is 1 (by appropriate scaling), and thus diam(X) =
®. Foreachi € I ={0,1,...,[log®]|} and j € J = [clogn] (where n = |X]|), let P;; be
a 2'-bounded 1/a-padded partition sampled from the distribution guaranteed to exist by the
decomposability of (X, d). Foreachi € I, j € J, and each C' € P;; let 7(C) € {0,1} be a
Bernoulli random variable chosen independently and uniformly. Define a random embedding
fij X —>R by
fii(@) = 7(Pyj()) - d(x, X \ Py(2)) ,

andlet f : X — RV by f = |J|1/P Dicrjes fis-

Expansion. First we bound the expansion of the map f. Fix any 2,y € X, and any i € I,
J € J. Next we show that |f;;(x) — fi;(y)| < d(x,y). If it is the case that Pj;(z) = P;;(y)
then by the triangle inequality

fij(@) = fij(y) = 7(Fyj(2)) - (d(z, X\ Pyj(z)) = d(y, X \ Pyj(2))) < d(z,y) .
Otherwise, if y ¢ Pj;(x), then

fij(@) = fij(y) < fij(z) < d(@, X\ Pj(z)) < d(z,y),
and the bound on the absolute value follows by symmetry. Finally, we obtain that

1| |J]

1 () = FW)lly = |ZZ\fu = [ii(y)IP < O(d(z,y)" - log @) .

i=1 j=1

Contraction. Now we bound the expected contraction of the embedding. Fix any x,y € X,
and let i € I be the unique value such that 2¢ < d(z,y) < 2L, Since P;; is 2'-bounded, it
must be that Pj;(z) # P;;(y), and as 7 is chosen independently, there is probability of 1/4
for the event C; = {7(Pi;(z)) = 1 A 7(F;;(y)) = 0}. Also, by the definition of padded
decomposition, we have that the event D; = {B(x,2'/a) C P,;(x)} happens independently
with probability at least 1/2. Define £; = C; N D;. Thus with probability at least 1/8 we have
that event £; holds and so

|fij (@) = fis ()| = fij(@) = d(@, X\ Py(2)) 2 2'/a > d(z,y)/(2a) .

Note that events {&; } je.; are mutually independent. Let Z; be an indicator random variable
for event &;, and set Z = ;. ; Z;. We have that E[Z] > |J|/8, and by standard Chernoff
bound

Pr[Z < |J]/16] < e 1/128 < 1/p?

4



when c is sufficiently large. If indeed Z > |J|/16 it follows that

b 1 . s (A y)\”
1 () = ()l zﬂ;vm(m)—f”(m z( o ) :

By applying a union bound over the (g) pairs, we obtain that with probability at least 1/2 we

have an embedding with distortion O(« - log"/? ®).
O

4 Measured Descent

In this section we enhance the embedding so that the dependence on the aspect ratio is replaced
by a dependence on n, and also improve the dependence on the decomposability parameter c.
This result was obtained by [KLMNO4].

Theorem 3. For any 1 < p < oo, any finite metric space (X, d) with n points has c,(X) =
O(o&_l/l2 -log'/P n).

The distortion guarantee is tight for every possible value of a'x, as shown by [JLMO09].
We will need the following lemma, whose proof is similar to that of Theorem 1, which is
based on the random partitions of [FRT04, CKRO1].

Lemma 2. For any A > 0, any finite metric space (X,d) admits a A-bounded e-padded
stochastic decomposition, where for each x € X :

1

- B(z.A :
16 + 161n <7|g(&/;')|)

e(x)

Proof. Fix any A > 0, and set € : X — [0, 1] as defined in the lemma. We now describe
the random partition P. Let o be a random permutation of X, and choose r € [A/4,A/2]
uniformly at random. For each u© € X define a cluster

Cy={re€X : d(z,u) <rando(u) < o(v) forall v € X with d(z,v) <r}.

In words, every point in order of o collects to its cluster all the unassigned points within
distance r from it. Then P = {Cy }uex \ {0}.

Fix some z € X and let ¢ = ¢(x) - A, we need to show that the event {B(z,t) ¢ P(x)}
happens with probability at most 1/2. Let a = |B(z,A/8)| and m = |B(x,A)|. Arrange
the points s1, 9, ..., 8, € B(z,A) in order of increasing distance from x. For j € [m], let
I; be the interval [d(z, s;) — t,d(z, s;) + t]. We say that the point s; cuts B(z,t) if s; is the
minimal element (of the permutation o) for which ~ > d(x, sj) — t, and also r € I;. Note that
if d(sj,z) < A/8 then s; cannot cut B(z,t), because d(x,s;) +t < A/8+t < A/4 <, s0
r cannot fall in the interval I;. Also observe that if u ¢ B(z, A) then C,, N B(x,t) = 0 (for
any choice of ).



Pr[B(z,t) € P(z)] < Pr[s; cuts B(z,t)]

NE

.

NI EE

Pr[s; cuts B(z,t)]
1

< Prr € I;] - Pr[Vicjo(s;) < o(s;) | r € 1]
i
2t
< 2
Jj=a+1 A/4 j
< X+ (m/a).

A
|B(z,A)|
[B(z,A/8)]

as required. O

Plugging in the estimate for ¢ = . (1+1 ( )) , gives a bound of 1/2 on the probability,

We will use the following definition of local growth-rate. Intuitively, the embedding will
have more coordinates in scales for which there is a significant local growth change, and few
(even none) when there is little change in the local cardinality of balls. Fix any » > 0, and
define the local growth-rate of x at scale r as

|B(x, 2r)]|

GR(z,r) = 1B(z,7/512)] -

Proof of Theorem 3. For any integer k € Z let P, be a 2¥-bounded random partition sampled
from Lemma 2. Denote by ¢ the padding function of Py. For each k and each C' € P
let 7(C') be a {0,1} Bernoulli uniform random variable chosen independently. For each
r € X and integer ¢t > 0 let k(2,t) = max{k € Z : |B(z,2¥)| < 2!'}. Let I =
{-5,-4,-3,-2,-1,0,1,2,3,4,5}. Foreacht € T := {0, 1, ..., [logn]} and i € I define
a set

Wi= {2 €X : (P ilw)) = 0}

The embedding f : X — RUI'Tl s defined as f(z) = (d(z, W}) : i € I,t € T). By the
triangle inequality, every coordinate of f is non-expansive, so for any x,y € X

1f(z) = Fly < 1] -T]- d(z, y)? = O(logn) - d(z, y)"
It remains to show a bound on the contraction. Fix any z,y € X, and let R = d(z,y). Itis not

hard to verify that
B(x,2R B(y,2R
- {I (z, )\’I (v, )\}22.
|B(z, R/4)|" |B(y, R/4)|
To see this, note that B(x, R/4) N B(y, R/4) = (), while both balls are contained in B(x,2R)
and also in B(y,2R). Assume w.l.o.g that % > 2. Let t;,,th; be two integers such

that 2te=1 < |B(z, R/512)| < 2% and 2 < |B(z,2R)| < 2Tl Observe that t;; —

)
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ti, > log GR(z, R) — 2, and due to (1) and our assumption on z, log GR(z, R) > 1, so
that t5; — t;, > 0. Fix any integer ¢ € [¢;,, ], and let k = k(z,t). Using the maximality
of k in the definition of k(t,x) we obtain that |B(z,281)| > 2¢, so that 28 > R/1024
(otherwise |B(z,2¥+1)| < |B(z, R/512)| < 2'). We also have that 28 < 2R (otherwise
|B(z,2%)| > |B(x,2R)| > 2%). Let u € I be such that

R/32 < 2" < R/16.

(It can be checked that such u € I exists.)
For any z € B(x, R/2048), we claim that

k—1<k(tz2) <k+2. ()

To see this, note that d(x, z) < R/2048 < 2*~1, and since | B(x,2F*1)| > 2¢ we conclude

that 28 < |B(z, 2" + d(z,2))| < |B(2,2%"2)|, or in other words that k(t,2) < k + 2.

Similarly, 2¢ > |B(z,2%)| > |B(z,2F — d(z, 2))| > |B(z,2871)|, so that k(t, 2) > k — 1.
Let I’ = {—1,0,1,2}, and note that for i € I, by the assertion of Lemma 2,

1

T e ) ”
RRTICRE (;g;;:ifi;;))
>
(

16 {1+ 1In (|B|Bz(%?5R1)2l)|>)

16 (1 +lnGR(m,R))

Let § = 2048(1+1anR(:c,R))‘ Consider the set W' = {z : 7(Py2)+u(2)) = 0}. Let
Evig be the event that d(y, W) > 0R/2, and Espqy be the event that d(y, W) < 0R/2.
Observe that these events are independent of the value of 7(Py,;(z)) forany ¢ € I’, because
Ppyuyi is 28T bounded and 2¥++% < R/4, thus for any z € B(y,dR/2), we have that
d(z,z) > 3R/4 > diam(Pyqy44(x)) (note that &y and Egpqy are indeed independent of
values T gives to points outside B(y, dR/2)).

If it is the case that £, holds, then there is probability 1/2 that 7( Py, (z)) = 0 (indepen-
dently as we noted above), in such a case d(z, W) = 0, and we obtain that

|d(z, Wg') — d(y, W) = 6R/2..

The other case is that £,,,,,;; holds. Let £ be the event that for each i € I’, B(x, €j4y1i(x)2F 417 C
Piyyti(z) and 7(Pgyyu4i(x)) = 1. These events are clearly mutually independent, and since
oktuti o R /4 and Py is 2k+uti hounded, they are also independent of &y, 41;. The prob-
ability of £ is at least 2~8. Consider any z € B(x,JR). If £ indeed holds, then for each i € I":
since 2Ftut? > 2k+u—l > R /64 and due to (3) we conclude that €y, ()28 > R

so that z € Pjyyyi(z). From (2) we recall that k(¢,z) € k + I’, and as for any ¢ € I,
T(Prtu+i(x)) = 1 (assuming event &), it follows that z ¢ W}*. We conclude that d(x, W) >

O0R, and as &,y holds:

|d(z, W) — d(y, W')| = 6R/2 .
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We conclude that for each of the (at least) min{1,log GR(z, R) — 1} > log GR(z, R)/2
coordinates ¢ € [ty,, tn;], with constant probability the contribution from a coordinate corre-
sponding to ¢ (and the appropriate value of u) is at least 0 R/2, and thus

Bl @)~ FI =0 (1o gy ) - OECRE R

log GR(

Next, we devise another embedding g : X — R using the same procedure, while sampling
from the 1/ax-padded distribution (guaranteed to exists as (X, d) is ax-decomposable). The
same proof holds (defining § = 1/(128«)), and we obtain that

Ellf (=) - W) = 9 (i) log GR(x, ) .

Finally, observe that choosing at random between f and g, we obtain in expectation the
summation of these estimates (divided by 2), which is at least Q(d(z,y)?/ o/)’(_l). This con-
cludes the proof. O

Remark: In order to achieve an actual bound, not only on the expectation, one can use
standard sampling and Chernoff bound as in the proof of Theorem 2, and obtain an embedding
into RP with D = O(log?n).
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Quantitative compression and random walks IHP - 2014/11/3 (version of 2014/11/4)

Compression and Random Walks

following Austin, Naor & Peres
written! by Antoine Gournay

The aim of this note is to present the results from Austin, Naor & Peres [4] and Naor &
Peres [18]. Namely, we want to show a quantitative upper bound on the compression function
of an infinite (finitely generated) group into a Banach space. There are two cases: a bound
for any embedding in the case of amenable groups and a bound for equivariant embeddings.
These bound are expressed in terms of a property of random walks (the speed, z.e. the
growth of the expected distance to the identity) and a property of the Banach space (Markov
type p in the case of amenable groups and modulus of smoothness of power type p in the
equivariant case).

Throughout the text, we will restrict to finitely generated groups.

1 Basic definitions and main results

1.1 Random walks

Let us start with random walk on graphs. The simple random walk on a graph G is a
sequence? {W, } ; of random variables taking value in G defined as follows: Wj is the Dirac
mass at the identity element® and

PWp1=y|W,=12)= if there are k edges from z to v,

k
deg(z)

where the degree of z is the number of edges* incident at z. Hence, one can compute
inductively the law of the W,. The important point about formulating this inductively is
that these random variables are dependant.

We will almost exclusively look at random walks on I', a finitely generated group. To
do so one constructs its Cayley graph for a generating set S which is finite and symmetric
(s €S — s '€ S). The inductive procedure is then written as P(W,.; = n|W,, = v) =
1/|S| if there is a s € S such that n» = s and is = 0 otherwise. This data which allows to
deduce the (n + 1) variable from the n'® is called the kernel of the Markov process. Here,
K(n,v) = 1s(n~'v)/|S| where 15 is the characteristic function of S.

One could also describe the law of W,, as follows:

e (push-forward) Pick uniformly at random 7 elements in S and multiply them. More
formally, look at the map M, : S*® — T' given by M,(s1,S2,...,8,) = S1S2---8, € I".
Take the uniform measure u on S and the corresponding product measure x = u". The
law of W, is the push-forward by M, of the latter, i.e. for A C T', W,(4) = x(M,, (4)).

!Please email comments / corrections / improvements / references / insults / etc.. to first-
name.name@gmail.com

2In fact, a Markov process.

3Sometimes, the “initial data” W, is some probability distribution rather than a Dirac mass.

4Some people count loops as 2 edges and some as 1. It does not matter, as long as this factor is integrated
in the degree.
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e (Convolution) Given f, g : I' — R, one defines their convolution as fxg(vy) = X,cr fmag(n=ty)
(one needs to assume the sum is convergent for any ). Let P = +1g, then the law of

S|
W, is given by P x P % --- x P (where P appears n times).

Example 1.1. The simplest example is the random walk on the group Z with S = {£1}.
Since the walker either moves to the left or the right, one can easily see that the law will be,
up to cosmetic differences, a Binomial distribution with n trials and p = 1/2. More precisely,
if B,, is a random variable with n-trials Binomial law, then

P(Boni1 =k + W) if k is odd,
0 otherwise;

v | P(Bon =k +2%%) if kis even,
P(Wan = k) = { 0 otherwise.
Note that if one is only interested in “rough” properties of this walk, many of these properties

can be easily computed via the approximation of the binomial laz by the normal law: in
this case we get an approximation by N (0,7n/4) (the normal law with mean 0 and variance

n/4). )

P(W2n+1 — k) —

Short history

Polya’s theorem is usually seen as the one of the first result (for infinite groups!). It states
that a random walker walking for an infinite time in Z¢ will, with probability 1, visit the
origin infinitely many times if and only if d < 2. It will “go to infinity” with probability
1 if d > 3. This theorem relies on a good knowledge for the asymptotics of the function
f(n) :=P(Wa, = er) as n — oo (namely f(n) =< Kn~=%?),

These probability of return came up again in the work of Kesten [15]. He showed that
a group is not amenable [see definition below] if and only if lim f(n)'/?® < 1 (where, again,
f(n) = P(Ws,, = er); the limit exists [exercise]).

On the other hand, bounded harmonic functions on Cayley graphs and random walks are
closely related: Avez, Choquet & Deny, Derrienic, Kaimanovich & Vershik, ... This gives a
strong link with an ideal completion of the Cayley graph (the Poisson boundary) and some
properties of the random walk (speed and entropy). Namely, if the random walker does not
flee fast enough to infinity then there are no bounded harmonic functions except the constant
function.

Speed

The quantity related to random walks which is of interest here is the speed (also called drift).
This is a measure of the expected distance after n-steps to the starting point. A first thing
to check (exercise!) is

E(ds(Wnsm, er)) < E(d(Wo,er)) + E(ds(Wh, er)),
where ds is the distance in the Cayley graph.
Definition 1.2. Given a group I' and a generating set S, the [lower] speed exponent is
Brs =sup{c € [0,1] | 3K > 0 such that E(d(Wn, er) > Kn‘}

log E(d(Wn, ep)) *
= liminf .
n— 00 ]_og n
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The speed exponent is tricky to compute. Although it is relatively easy to check that
B = 1/2 for Abelian groups, it was not known until 2005 (an argument of Virag, see Lee &
Peres [16]) that 8 > 1/2 for any infinite group. [Abelian groups are somehow the “smallest”
infinite groups.]

It is unknown whether 8 depends on S (for a fixed I'). It even unknown if it depends on
quasi-isometries (between Cayley graphs!). Nevertheless, I' and S will often be implicit from
the context.

Example 1.3. Let us go back quickly to our example with Z. After n steps, the distribution
is well approximated by a centred normal distribution with variance n/4. For example,
writing N for a random variable with law the standard centred Gaussian,

PW, < 4) ~ P(van/ < a)= [

e % %dr ~ 44//n.
~24/ym

where the ~ should be read as lower and upper bounds up to constants (near 0, e /2 ~ 1).
Similarly, if ' : N — Ry, is any increasing function with lim, , F'(n) = 400,

]P’(|Wn! < \/ﬁF(n)> - /_2;(:)

This implies that £z (413 < 1/2. On the other hand,

e * P =X 1

(e}

P S B —2/F(n) 2?24 msoo
(IWal > V/n/F(n)) = e T © dr =X 1

This also shows B¢+13 > 1/2. [ )

Knowing the speed for one group implies bound on speed for other groups, see §4.
Let us do an example with high speed.

Example 1.4. Let us show that if the Cayley graph of I is a tree T of valency v > 3 (e.g. T'
is a free group on at least two generators, e.g. I' = Zy * Zy x Z,) then the speed exponent is 1
(in fact, the expectation grows linearly). To do this pick an infinite [geodesic] path R from e
to somewhere at infinity. Define the level of a vertex v in the tree by L(v) = 2d(v, R)—d(v, e).

N P N N N SN N soN N P

N 7 \/\/ \/\/ \/\/ . 7 |
®
.1
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Note that L(v) < d(v,e). L also defines a map L : T — Z. Let Z, = L(W;). Note that Z; is
going to be a random walk on Z but with a preference for a direction:

1 1
v and  P(Zui=k-1|Z=k)=_.

P(Zt+1:k+1|Zt:k): v

As in the previous example, the law of Z; will be (essentially) a binomial law (with probability
of success “T_l) The normal approximation will be N (n“T_Z, n%) Using this®, it is very
easy to show that,

P((1—env2 < Z, < (1+€)nt2) - L

v —_— v

Since Z, < d(W,,e), one concludes that

v

E(d(Wn,e)) > n(1 - €)*2.

This implies § > 1 (and so § = 1, since the linear upper bound is trivially true). &

1.2 Amenable groups

For a set F' C I" the boundary OF is the set of edges between F' and F°.

Definition 1.5. Assume I' is finitely generated. A sequence {F,} of subsets of I' is Fglner
. |OF,

if and only if the F, are finite and lim u

TN = 0. A group is said to be amenable if it has

a Fglner sequence. *
Alternatively, a group is not amenable if there exists a X > 0 such that, for any finite set
F,
|OF|
— > C.
||

This is also known as a “strong” isoperimetric profile (or having a positive isoperimetric
constant).

Example 1.6. Here are example of amenable groups:
- finite groups;
- Abelian, nilpotent, polycyclic and solvable groups;

. if B, is the ball of radius n (around e) in the Cayley graph and liminf X log|B,| =0
then the group is amenable (exercise!). [Such groups are called of “subexponential”
growth.]

Here are examples of non-amenable groups:
- free groups on at least 2 generators;
- hyperbolic groups (non-elementary ones, i.e. except virtually-Z groups®);
- some infinite torsion groups (“Burnside groups”). )

Given a few amenable groups there are many ways to build new ones:

SIf you are into probability, it’s probably more natural for you to use the Hoeffding inequality [or Chernoff,
or Azuma-Hoeflding, or ...] here.

6If P is a property of groups (e.g. being Z, being Abelian, being nilpotent, ...), a group group is said to be
virtually-P is it contains a subgroup of finite index which has the property P.
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Theorem 1.7 (“The closure properties”)

Let T', N and {I';};>o be amenable groups.

(a) If H is a subgroup” of I" then H is amenable “Subgroup”
(b) If H is an extension N by I' (i.e. 1 = N — H — I' — 1 is an exact sequence) then

H is amenable “Extension”
(c) If N < T then H=T/N is amenable “Quotient”
(d) If H is a direct limit of the I'; then H is amenable “Direct limit”

Note that any group containing a non-amenable group is non-amenable (by (a)). The previous
properties (with the eventual exception of (d)) were first shown in von Neumann [23] (together
with the first definition of amenability).

1.3 The Main results

To fix notations let’s recall the definition of compression exponent:

Definition 1.8. Let B be a Banach space. A coarse embedding f : [' — B is a map such
that there exist an unbounded increasing function p; : R>g — R>, and a constant C' > 0,
satisfying Vz,y € T

ps(d(z,y)]) < [If(z) — F(y)ll < Cd(z,y).
*

A very important note to make before going on is that the right-hand side is of a very
particular form. The reason is the following: in a graph metric, the first non-trivial value
of d(z,y) is 1. Hence, if the modulus of distortion® w; is finite, then the triangle inequality
(used along a path from z to y) implies ||f(z) — f(y)|| < d(z,y) - ws(1). This is an instance
of the Colson-Klee lemma.

Definition 1.9. The embedding is said to be equivariant if there is a representation 7 :
I' — IsomB of I in the isometries® of B and f(yz) = 7(7)f(z).

The function ps : Ryg — Ry is called the modulus of compression (associated to f).
The bf compression exponent is

log py(t)

a(f) =sup{c € [0,1] | 3K > 0 such that ps(n) > Kn°} = liminf Ton t
g
The compression exponent of I', ag(I'), is the supremum over all embeddings into B
of a(f). The equivariant compression exponent of T, aHB(l") is the supremum over all
equivariant f : ' — B of a(f). *
Markov type will be defined soon (in §2.1). For now, just note that L, has Markov type
min(2, p). [The following theorem can be stated for any metric space, not just Banach space.]

Theorem 1.10

Let T' be an amenable group and let B = supg Pr,s. If B has Markov type p, then

8wy is the modulus of distortion of the map f above if, for any z,y € T, || f(z) — f(¥)|| < ws(d(z,¥))
9Here “isometries” stands for surjective isometries. Indeed, in order for this to a representation (i.e. a group
homomorphism) the target needs to form a group.
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| pasP < 1.

The following theorem restricts to equivariant compression but holds for any (infinite finitely
generated) group.

Theorem 1.11

Let B = supg Br,s. If B has a modulus of smoothness with exponent of power-type p,
then paHB,B <1.

Theorem 1.11 is a strengthening of Guentner & Kaminker [14, Theorem 5.3]. Indeed, if

0‘5:2 > % then B < 1. This implies the “Liouville property” which in turns implies amenability.

2 Proof of Theorem 1.10

2.1 Main ingredient: Markov type p

A Markov chain on Y is a sequence of random variables {Z,,}>° , (with possible values in the
state space Y') such that

P(Zni1 =Y | Zn = Yn, Zn-1 = Yn-1y- -, Zo = Yo) = P(Zps1 =Y | Zn = Yn).

One usually see Z, as a random variable which evolves in time. The condition means that
the process has no memory (and its evolution is time independent): only the current state
determines the (possible) future evolution. Recall that the kernel is defined by K(z,y) =
P(Z,.1 =z | Z, =y) (does not depend on n!).

Definition 2.1. A Markov chain on a finite state space (Y is finite) is stationary if 7(y) :=
P(Z, = y) does not depend on n. It is reversible if 7(z)K(z,y) = 7(y) K (y, z). *

Example 2.2. Take the kernel of the simple random walk on a finite graph. Define the
initial distribution (z.e. the law of W) to be

where |E| is the number of edges'®. The claim is that this is a stationary and reversible
Markov chain. First check it is reversible: if there are k., edges between z and y,

T(@)K(2,9) =~ = 1(4)K(y, ).

~ 2|B]
Then check it is stationary:
k.
° k., degz 21 degy
= Z . = 51 Z Kzy =
- degz 2|E]| 2E| 5 2|E|

This shows P(Z; = y = m(y) so that Z; has the same law as Z,. By a trivial induction, Z,
all have the same law. s

10Because of loops, there might some problem of convention related to how you count the edges. If loops
contribute 2 to the degree, then a loop count as one edge. If loops contribute to 1, then a loop count as 1/2 an
edge.
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The notion of Markov type has been used to attack (successfully) many embedding prob-
lems of finite metric spaces. The main idea in Austin, Naor & Peres [4] is to use it on Fglner
sequences (which are the finite sets giving a “good” approximation of the infinite group). The
notion was introduced by K. Ball in [5].}! Markov type 2 implies [Rademacher or usual] type
2.

Definition 2.3. A metric space (X, dx) has Markov type p (p € [1,2]), if for every sta-
tionary Markov chain {Z,}%, on Y (finite!) and every mapping f : Y — X, one has

B (ax (12, 120 ) < ok ax (120, (20)') *

A rough interpretation (for p = 2) is that the distance grows in expectation as /t times
the size of the first step, so that some “central limit” behaviour holds. In K. Ball’s own
words: “This property was introduced as a nonlinear analogue of the classical type property
for normed spaces that arose in the theory of vector-valued central limit theorems and the
extension/factorisation theory of Kwapien and Maurey.”

K. Ball showed L, has Markov type p for p < 2 and it was shown by Naor, Peres, Schramm
and Sheffield [20] that Banach space with modulus of smoothness of power-type 2 (e.g. L,
for p > 2) have Markov type 2. Negatively curved Riemannian manifolds and §-hyperbolic
spaces also have Markov type 2 (see again [20]).

Example 2.4. Let us show that R has Markov type 2. Let K be the kernel of the Markov
chain. It acts on functions f : Y — R by convolution:

Kf(z)= ) K(z,9)f(y)

yey

It turns out that the reversibility of the Markov chain implies that K is self-adjoint in Ly(Y, 7):

(Kflg) =3, Kf(z)g(z)n(z) =%, (2, K(2,9)f(1))g(z)n(z)
= Yoy (@)K (z,9) f(¥)9(2) = ey (WK (y,2) f(y)9(2)
=%, (f@)7(y) . Ky, 2)9(2)) =5, f(y)K9(y)
=(f| Kg)

The reverse (“self-adjoint” implies “reversibility”) is also true: just let f and g vary over
all possible Dirac masses. An important upshot for us is that (as an operator) it has real
eigenvalues. Furthermore, it has norm |[K||pz .. < 1 (since K is convolution by a kernel
which sums to 1, use Young’s inequality). If you don’t know Young’s inequality, just note
that

K@) = Y K@ )P < (L If@)PKEY) (X K@) = X 176)PK(=,v).

where C-S is the Cauchy-Schwartz inequality. This implies

IKFII Y IKf@)P < Y2 1f @)K (z,y) = 2 (1F)P Y K(2,9) = [Ifll2-

1In this paper he shows that given X a metric space of Markov type 2 and Y a metfic space of Markov
cotype 2 then any Lipschitz maps f: Z — Y (where Z C X) extends to a Lipschitz map f: X — Y.
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Let K* be the kernel for the ¢-step Markov chain (the same Markov chain, but taking ¢ steps
at a time). One still has 3°, K*(z,y) = 1 (because one must get somewhere in ¢ steps). As a
operator, it is the same thing as applying the operator K t times. In particular, K* is also
self-adjoint (so also reversible).

If you rather want to see “directly” that K* is reversible (for the same =), note that

Ki(z,y) = > K(z,2))K(z1,22) ... K(Ts-1, 7).

TATI T NTE_ 1Y

where the sum is over all path of length ¢ between z and y. If one multiplies this by n(z),
one transform slowly the sum:

7T($)Kt(.’12, y) = E:CN:E;[N:EQ...N:Etf]_Ny 7T(IIJ)K($, $1)K($1, :I:Z) s K("Et*la y)
— Zszlsz...NI,’t_]_Ny K(:Bl) IE)?T(:Bl)K(:L‘l, $2) e K(xt—l) y)

— ZZN$1N$2...N$t71Ny K("El’ $)K($2, xl) c K(y7 xt*l)ﬂ.(y)
— E:CN:E;[N:BQ...N:Etf]_Ny K(y) $t,1) o K(.’IJg, xl)K(xla ZB)?T(y)
= n(y)K*(y, z)

Now let us do some massaging:
E(d(f(Z:), £(Z))?)
E[(£(2) - £()) ]
- ZE[( (2) — £(20)) | Zo = 2|P(Zo = )
=X [CHE =y] %= 2)(10) - (@) ]n(2)
= 2 m(e)K(2,9)(Flw) - f(@))’
= Zw(:z: VK (z,y f(y)2+27r(a: YK (z,y)f(z)* — 22 (2)K*(z,y)f(v)f(z)
e () K (v, z)f(y)? +Z7r(w VK (z,y)f(z)? — 22 (z)K"(z,y)f(y)f(z)
= 22 (2)K*(z,9)f (@)’ —22 (@)K (@) W) (@)
Z m)(ZKt(a: v))f(@)? - 2Zw<x )K*(z,)f(y) f(z)
= 22 (z)( :v)2 —2Z7r(rr VK (z y)f(y)f( )

= 2<(1d K)f, f)

Hence one needs to prove that ((Id — K*)f, f) < t{((Id — K)f, f). If f is an eigenfunction (of
eigenvalue A) this reads (1 — A*) < ¢(1 — A) or

This is true since |A| < 1. Decomposing a generic f as a sum of eigenfunctions concludes the
proof. s

A similar argument can be used to show L, has Markov type 2, and was first given by
K. Ball. He then used this (together with existence of isometric embeddings of L, in L,) to
show that L, has Markov type p for p < 2. For more see Ball’s original paper [5], Lyons with
Peres [17, §13.5, Theorem 13.16] or Naor, Peres, Schramm & Sheffield [20].
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2.2 The proof

The “story” goes as follows. Assume the target space X has Markov type p and there is an
embedding I' — X which has a compression function with ps(t) < t*. How fast should a
random walker go in the image? Well, since this guy has speed exponent 8, one “expects”
at time ¢ some significant mass at distance p;(¢?). On the other hand, the Markov property
says expected distance can only grow so fast; one can hope that a non-trivial bound pops up.
There are some things to fix, because the Markov type is only for finite spaces.

PROOF OF THEOREM 1.10: Take a coarse embedding f : I' — B with ps(t) > Kt* for some
K > 0 and o €]ag(l") — ¢,ap(T")[. Next, take a B > fr s — € (for some € > 0). For some
to and any t > t; we will obtain a bound on the compression function. Let F, be a Fglner
sequence. Let A, = U,cr, B(z,t) where B(z,t) is the ball of radius ¢ centred at z. It is an
exercise to check that the Fglner condition implies

lim 4nl _

n—oo ’F|_
n

Consider Z; to be he random walk restricted to A,, with initial measure the uniform distribu-
tion on A,. By random walk restricted to A,, we mean that the kernel is exactly as before,
except that if the element were to leave A, from some vertex z, it remains at = (instead of
leaving). If you wish, just replace every edge going out of A, by a loop. More precisely,

1/]S] if y = zs for some s € S and both z,y € A,;
P(Zi1=vy|Zi=z)=% |zSNA,| ify=z¢€A,;
0 otherwise.

Instead of going through the computation to check that this is a reversible and stationary
Markov chain, just note that this is the same situation as in Example 2.2. Indeed, since all
vertices have the same degree, the initial distribution is the uniform distribution.

We will use the following inequalities: (K is always some constant > 0)

(MTp)  Markov type p: E(dx (£(20), f(ZO))”> < KtE <dX (£(2), f(ZO))p> (MTp)
(1-L) The embedding is 1-Lipschitz: |[f(z) — f(e)| < Kd(z,e) (1-L)
(pf) The compression function lower bound: ||f(z) — f(e)|| > Kd(z,e)*° (pf)
(Fol) The Fglner condition: lim % =1 (Fol)

First use the Markov property to see one cannot get too far:

E(dB( F(Z), f(Zo))p> "2 ke <d3( (%), f(Zo)>p> 2 KPtE<d(Z1,ZO)p> < KPt

where the last inequality follows since the random walk always makes one or no step:
(Zl, Z0> = 0 or 1. Next, working in the other direction:

KPt > E<d3( £(2), f(zo))”> Y E(Pf(d(zt,Zo)>p> > jn,

S E<pf(d(Zt, %)) | Zo = a:)

zcFy,

where the last inequality is obtained by noting that the terms removed in the sum (corre-
sponding to z € A, \ F,,) are > 0. Pick B, €]8 — ¢, B[. Note!? that there is a § > 0 such that,

12The short way out is to note that there is nothing to prove if ap < 1 so that one may use Jensen’s inequality
and (py) to interchange expectations and ?*°. But one can still keep the compression function along for a while.
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for any t > tg, ]P’(d(Wt, er) > tﬁ") > ¢ (otherwise the speed exponent would be less than ).
If Zo =z € A,, the law of Z; is exactly the same as the law of W; (because A, contains the
t-ball around z). This'® implies:

]E(pf (4(2e, 20))" | Zo = :E> > 5ps(tPO)P.

Hence,

F, o
KPt > ‘|A|’5pf(tﬁ°)f’ F 650, (tP0)P

(ps)
For any ag €]a — €, af, there exists'™® C > 0 such that p;(tP°)P > Ct*0FP. One gets that:
Kt > K'teopor
Remembering the € lost on the way:
(as(T") —2€)(B — 2€)p < 1.
Taking € — 0, yields the conclusion?!®. [

2.3 Comments and questions

The theorem 1.10 is sharp for many amenable groups. In fact, to compute the exponent
a this is a very useful upper bound. The lower bounds can be obtained by explicit coarse
embeddings. See Austin, Naor & Peres [4] for a proof that, for coarse embeddings in Hilbert
spaces (they are all isomorphic), ar,(Z?Z) = 2/3. Further computations in wreath products
are done by Naor & Peres in [18] and [19].

The bound from Theorem 1.10 is also very useful as a bound on speed rather than a
bound on compression. Indeed, to show that g < % (and hence = %, thanks to the generic
lower bound of Virdg, see [16]) it suffices to show that o, > 1. It is often easier to produce
a good coarse embedding than to evaluate 8 by brute force. For more along these lines see
[13].

There are amenable groups with oz, = 0, see Austin [3] for a first construction (a solvable
group) and Bartholdi & Erschler [7] for more (groups of intermediate growth).

Compression, when restricted to amenable groups has many other nice features. First,
there is “Gromov’s trick” which says that if f : I' — H is a coarse embedding in a Hilbert
space H, then there is an equivariant coarse embedding g : I' — A’ such that the function ps
for g is the same as the one for f.

In Naor & Peres [19, Theorem 9.1] this is done in the non-Hilbertian setting. Namely
fix a p € [1,00[. If X is a Banach space and f : I' — X is a coarse embedding then there
is a Banach space Y which is finitely representable!® in ¢¢ and with ok (') > a3 (T). If,
furthermore X = L, then Y may also be taken to be L,. Hence aﬂLP = ay, for amenable
groups.

Here is a very important corollary of these results:

13together with the fact that in a Cayley graph all the vertices are the same

14The constant C depends on many things, but what is important is that the only place where a dependency
in n or t occurs is in the ration |F,|/|A,|. Fortunately, taking n» — oo then makes the dependency on ¢
disappear.

15Some constants will explode as € — 0, but that’s not what matters for compression

187J is finitely representable in V if for every ¢ > 0 and for every finite dimensional vector subspace F of U,
there is a linear operator T : F' — V such that ||z||ly < |[|[Tz||lv < (1 +¢€)||z||y for any z € F.
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Corollary 2.5

Let I be an amenable group. Then aan(F) is an invariant of quasi-isometry.

Indeed, it is obvious that ay,(I') is an invariant of quasi-isometry. Since a%p = ap, for

amenable groups the conclusion follows. This is FALSE for non-amenable groups: there are
groups with aﬂLP = % which are quasi-isometric to groups with aﬂLP = 0 (see the appendix in
Carette [11]).

What is true (for any group) is that ol (T") does not depend on the choice of generating
set.

Question 2.6 (Question 10.2 in Naor & Peres [19]). Find a hypothesis that ensures there
is a [equivariant] coarse embedding which realises the compression exponent?

Indeed, there are extremely few cases where this is known to be the case. For example for
Abelian groups this is true (they have a bi-Lipschitz embedding in Euclidean space). In de
Cornulier, Valette & Tessera [12] it is shown that a large class of groups among those having

ah = 1, these are the only ones.

Question 2.7 (Conjecture 1 in de Cornulier, Valette & Tessera [12]). Let I' be a compactly
generated group and assume I'" has a bi-Lipschitz embedding in a Hilbert space. Does I'" act
co-compactly on some Euclidean space?

In particular, are the only amenable groups with a [equivariant] bi-Lipschitz embedding
in Hilbert spaces virtually-Abelian groups? [In [12], it is shown that a7, = ozNL2 for compactly
generated amenable groups.]

Here is another “particular case” of 2.6. There are quite a few groups which are known
to have a bi-Lipschitz embedding in L; (e.g. Abelian groups, Free groups, Z,!Z, ...). 1t is
known that ar,(Zy172%) = 1.

Question 2.8 (Question 10.1 in Naor & Peres [19]). Has Z, ! Z? a bi-Lipschitz embedding
in Ll?

The compression of wreath products is largely unknown when the base has exponential
growth:

Question 2.9 (Just before Question 10.7 in Naor & Peres [19]). Compute o, (ZZZ(Z22Z2)).

Arzhantseva, Drutu & Sapir [2] constructed for any a € [0, 1], groups with ar,(I") = a.
However, these groups are non-amenable. For amenable groups, the values computed for oy,
fall in a very small set.

Question 2.10 (Question 7.6 in Naor & Peres [18]). Is there a finitely generated amenable
group T' with ag,(T") €]2,1[?

In fact, the only values which are known to be taken so far are {2¥71/(2* — 1)}x50, %

and 0. For §, more is known: there are groups with speed exponent 1, {1 — %}i>; and
1. Furthermore, Amir & Virdg [1] showed that for any b €]2,1] there is a group I' (of
intermediate growth) such that frs = b (for some S). The range ]2, 3[ (which corresponds
in compression to the range |2, 1[) remains unknown.

Here is somehow a more fuzzy question:

Question 2.11 (Question 10.4 in Naor & Peres [19]). Can one say something about the set
of values defined by a“Lp(I‘) as I runs over all finitely presented groups? (except that it is
countable)
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3 Proof of theorem 1.11

3.1 Cocycles and the main “lemma”

An equivariant coarse embedding is, in fact, very constrained. Indeed, one may (by trans-
lating everything) always put f(e) = 0 € B for simplicity. Next, recall that a surjective
isometry of a [real] Banach space is always affine'” (Mazur-Ulam theorem). Write

(MU) m(y)v = A(y)v + b(y)

where A is a map from I' into the linear isometries of B and b is a map from I’ to B.
Note that f(y) = w(y)f(e) = 7(y)0 = b(y). Using (MU) on each side of the equality
w(zy)v = m(z)7(y)v (which holds for all v € B) implies

Mzy)v + b(zy) = M) (A®)v + b(y)) + b(z) = A(@)A(Y)v + A(2)b(y) + b(z).

This means A is a homomorphism and b satisfies the cocycle relation:

b(zy) = Mz)b(y) + b(z).

It is left as an exercise to check that a cocycle is always 1-Lipschitz.

The main “lemma” (a very nice theorem) enables to retrieve the bound coming from
Markov type by assuming instead the equivariance of the cocycle (and the smoothness). Let
us start with a simple case in the Hilbertian setting.

Lemma 3.1 (Hilbert case)

Let . be a Hilbert space and let b be a cocycle for [the linear representation] A : I' —
Isom(.7¢), then, for any k > 0,

E(|[b(Wa)||?) < 2°E(|[o(W3)]2).

PRroOOF : Denote by o; each of the uniformly distributed letter, z.e. W; = ]—12:1 ;. Next
consider W[l = O't_l . -01_1 and W’t_lVVQt = 0¢11 -+ 0. These two variables are i.i.d., hence
so are Y; = b(W, ') and Y, = b(W; 'Wy,). Use the cocycle relation on Y; to get

(*) Yo = bW ' Wa) = b(W, ") + A(W,;)b(Wa:) hence Yy — Yy = AW, 1)b(Wa)

Remembering that A is isometric and that W;, Y; and Y5 are i.i.d,

—
*
~

Ello(Wa)[? "E BIAW)b(War)|? = E: -1
= E(INP+IYalP -2 | V) " 2E(IVP) - 2(E(Y) | E(Y))
= oR(|[Ya]?) - 2lE(Y) | < 2E(|[valP?)

H
a.

0.

To conclude, recall Y; has the same distribution as b(W;) and use induction. |

Ysurjectivity is automatically assume here, since () must have an inverse: m(y~1).
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3.2 Smoothness, martingales ...

Proving the full statement will require another important theorem due to Pisier [21]. This
result requires to recall two notions.

Definition 3.2. A Banach space X is said to have a modulus of smoothness of power
type p if there exists a K > 0 such that

Iz + 7yl —[lz — 7yll _
2

px (1) = sup{ 1|2,y € X and ||z||:||y||:1} <K %

Being uniformly smooth is equivalent to %513— pXT(t) = 0. One can check that necessarily
p < 2 (exercise!).

Proposition 3.3 (see Proposition 8 in [6])

X has modulus of smoothness of power type p if and only if there is a constant S > 0
such that
|z + [P + [lz — [P < 2[jz[[” + P[]

for any z,y € X.

For the record, L, has a modulus of smoothness with power type min(2,p) for p € [1, oo].
See Benyamini & Lindenstrauss [9, Appendix A] for more on this topic.

As for martingales, we will present the definition in a simplified context. Let (Q2,.%7,P)
be a probability space and ¥ C .# be a sub-o-algebra of .# and let X : (Q,.%#,P) - R be a
(real-valued!) random variable. One could ask what is the ¢-measurable content of X?

Assume (for simplicity) that X € Ly(Q2, #,P) (i.e. E(X?) < +00) and denote (X |Y) =
E(XY). Define E(X | ¢4) to be (the random variable) given by the projection of X on
Ly(2,%,P). In other words (this is done by picking ¥ = 1,), this is equivalent to

VAE%,/AXCHP’:AE(X\%)dJP’.
The important consequence of this (using A = Q € ¥) is
E(E(X |9)) = E(X).
Example 3.4. If X is already ¢-measurable then E(X | ¥) = X.
Let 2 be the o-algebra generated by X }(U) (for U C R). If 2" and ¢ are independent'®,

then E(X | ¢4) = E(X). Indeed, since X — E(X | ¢) is orthogonal to Ly(R2,%,P), for any
BcY9,

0= (X —E(X|¥)]|15) = E((x CE(X | y))JLB) " E(X ~E(X |9))E(Ls). &

Definition 3.5. A sequence of random variables (X,),>o is a martingale with respect to
the filtration!® .%, if

E(Xn+1 | <§.7'L) = X,. *

18This means that VA € 2" and VB € ¢, one has P(AN B) = P(4) - P(B).
increasing sequence of o-algebras.
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The general idea is that .%#, describes the total information that will be available at time
n. The interpretation (in its original appearance, where two players play a game with N
rounds and X, is the gain or loss after n rounds) is that the expected future gain cannot be
predicted from past information.

Example 3.6. Let I" be a group, S a finite generating set and u = 15/|S|. The underlying
o-algebra for the random walk W, is given by the “cylindrical” sets: subsets of S of the form
z x SN where z € S* (for some k € N). Let #, = {z x SV | z € S"}.

A function f : I' — R is said to be harmonic if it satisfies the mean value property:
f(y)= ﬁ Secs f(78) or f = f * p. The claim is that f(W;) is a martingale (for .Z,):

E(f(Wai1) | Zn) = E(f(Waoni1) | Zn) = (k1 2 f(Was) "= f(W,).

sES

where the second equality comes from the fact that the o-algebra of 0,,; is independent of
F, and that W, is .#-measurable (see Example 3.4). &

3.3 ... and the full “lemma”

Let us now state the theorem of Pisier [21] which will be crucial for the lemma. (The constant
below is taken from Theorem 4.2 in Naor, Peres, Schramm & Sheffield [20].)

Theorem 3.7

Let 1 < p < 2 and X be a Banach space with modulus of smoothness of power type 2.
Let {M,}? , be a martingale with value in X, then

n—1
E(|| Mn — Mo|lP) < Kx D E(|| Miy1 — Mi|[?).

t=0

where Kx = S,(X)?/(27~! — 1) and S,(X) is the constant from Proposition 3.3.

Here is the full statement of the main “lemma’:
Theorem 3.8

Let X be a Banach space with modulus of smoothness with power type p, let b be a
cocycle for [the linear representation] A : I' — Isom(X). Then, for any t > 1,

E([[6(W2)]IP) < Co(X)EE([[6(W1)[[P),

where C,(X) = 2P S,(X)P /(271 — 1).

ProOF : Recall that o; are the ¢! randomly chosen letter, i.e. W; = []%_, 0;. Also the o, are
ii.d. uniformly in S.
First try would be to use the cocycle identity repeatedly on W;:

B(W,) = b(Wi_1) + A(Wi_1)b(0v)
= b(Wt72) + )\(Wtfg)b(gtfl) + )\(Wt,l)b(at)

= 5o A(Wi_1)b(o),
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with the convention that W, = e. Unfortunately, this is not a Martingale, so there is not
much hope to get anywhere.
Second try is to change this a bit to be a martingale: write v = E(b(WQ) and let

Z)\ j—1 (b(UJ)_v>
= Z Ao10g -+ - Uj—l)(b(aj) - 11)

Let’s check that M; is a martingale:

E(Mt ’0'17---;0'7&—1) = E(Mt—l+)\(Ul"'0t—1)(b(0't)_'u) O1,...,0¢-1
o'tio'j M, + )\(0-1 e Gt—l) <E(b(o’t)> — 1))
LHESSCy v

Thus M, is a martingale. However, we are adding ¢ terms with a v, so there is not much
chance of getting anywhere either.

Third try is to note that there is another way of writing the cocycle relation:
(-) b(e) =b(e?) =b(e) + A(e)b(e) = 2b(e) (because A(e) is the identity) so that b(e) = 0.
(Y0 =ble) = bz tz) = bzY) + Az Hb(z) = blzt) + A(z) tb(z), so that b(z) =
—Az)b(z™Y).

Using (--) we have that
b(zy) = b(z) — Mzy)b(y ).

Iterating this on b(WW;) as above gives:

b(W:) = Z AW;)b(a; 7).

What is great in the above expression is the “—” sign. Indeed, when adding the terms in v
in M; one can add them symmetrically in this expression. In the meantime, just tag the sum
of our two identities by

(©) 26(Wy) = Zl A(W;-1)b(a;) Z AW;)b(o; 7).
J
Next introduce a quantity similar to M;:
- Zt:l,\(wtle)(b(ajl) ~v)
j=
= oA o2 (o) - )
j=

Since S is symmetric, o; and o} ! have the same distribution (and are independent unless
1 =7). Thus, M; and N; actually have the same distribution! Furthermore, (C) reads:

(C) 26(W) = My + A(Wy) Ny — v + A(Wy)v.
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Now we are ready to finish. Since

k k

(Tlp) 1D aillP < #2773 llaslP
=1 =1

and A(:) is an isometry:

PE(BWP) S B(IM,+ AWN, — v+ AW)l]?)
L m( M) + O R(AWNIR) + 47 ul]p + e AWl
R MP) + 42 E(| NP 2 42 ol
MM gp (M) + 2 4 Y |E(b(W))

< 2. (P +2- 2 (b))

Note that the very last term on the right is already a bound like the one we are after. Hence
a bound on E(||M;||P) is the only thing which stands in the way. This is where Theorem 3.7
comes in (M, = 0): indeed, since M, is a martingale, then

Th.3.7 1 i1
E(]| M) s K E([[Mir — Mi|P) = K Xp—o E([[b(0x) — v||)
P op~W1
< K E(|[b(oy)|F + [lulP) =T KtrR(||b(Wh)IP).

This completes the proof. [ |

3.4 The proof

With Theorem 3.8 in hand, the proof of Theorem 1.11 basically goes as the one of Theorem
1.10. Recall the classical result
Theorem 3.9 (Jensen’s inequality)

If Z is a (real-valued) random variable and g : R — R is convex then g(IE(Z)) < E(g(Z))

Functions z — z* are convex for A > 1.

PrOOF OF THEOREM 1.11: Note that the desired inequality is trivial if o < 1/p (since
B <1)or B = 0. So pick aq € [%,an[, Bo E]O,B[ and some generating set with By < Brs.
Pick b a cocycle with ps(t) > Ktoo.

As before, we will use the following ingredients: (K is always some constant > 0)

(tmL) Theorem 3.8: E(||b(W3)]|P) < KtE(||b(W1)|[?) (tmL)
(1-L) The embedding is 1-Lipschitz: ||b(z) — b(e)|| < Kd(z,e) (1-L)
(o) The compression function lower bound: ||b(z) — b(e)|| > Kd(z,e)>° (pf)
(spd) The speed: E(d(W;,e)) > Kt (spd)
() Cocycle are normalised: b(e) = 0. (+)
(Jen) Jensen’s inequality: E(Z?P*°) > (E(Z))pao. (+)

Note that Jensen’s inequality require pay > 1. On one side:

(1-L)

E(B7)I7) = KatE(wa)[7) L Kath(b(w:) - be) ) = Kotk (d(Wa, ) IP) = Kat,
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On the other:
) (ps) a (Jen) pag aof
E([|6(W3)|P) = E(|6(W) — b(e)|[") > KsE(d(We,e)™™) > KsE(d(Wie)) > KPP,

Combining these two equations, taking oy — o and By — B gives the conclusion [ |

3.5 Comments and Questions

Theorem 1.11 is sharp for the free groups on 2 generators, where B =1and aB—Jp min(2,p) =1
(see Naor & Peres [18, §2] for details).

It is absolutely unclear what happens to the compression exponents under relatively
generic group operations, e.g. semi-direct products. The best example is the semi-direct
product T' = Z? x SL4(Z) (with the obvious action of SLy(Z) on Z?). Kazhdan showed it has
no proper action on a Hilbert space (more precisely it has property (7")). As a consequence
it has equivariant compression exponent 0, although the equivariant compression of Z2 and
SL»(Z) are well-known (respectively 1 and 3).

Naor & Peres also show in [18, Lemma 2.3| that a“Lp(I‘) > a“Lz(I‘) for any p > 1. In the
non-equivariant case, more is known: for 1 < p < ¢ < 2, L, embeds isometrically in L,, so
ar,(T') > o, (T'). Also L, embeds isometrically in L, for any p, so oz (I") > ar,(I") for all
p > 1. See [19, Paragraph before Question 10.4] for more inequalities (they involve isometric
embeddings between “snowflaked” L,s).

Yu [24] has shown that hyperbolic groups have a“Lp > % for some p large enough. See also
Bourdon [10].

Question 3.10 (Question 7.7 in Naor & Peres [18]). Assume I' is hyperbolic. Is it true that
auLp(I‘) > £ for some p? or at least aﬂLP(F) — 2 as p— o0?

There are also some potential subtleties which are not investigated. In the cases where
a computation is done, the upper bound is done in L, but the actual coarse embedding is
in £,. This enables to show azp = oy,. Yet, it needs not be the case in general. Baudier 8,
Corollary 14] showed that oy, = ay,.

Question 3.11 (Question 10.7 in Naor & Peres [19]). Is there a group with aﬂLP # aﬂp?

Lastly, let us mention a theorem from the article where compression exponents were
introduced: if ay,(I") > 1 then T'is exact (see Guentner & Kaminker [14, Theorem 3.2]).

4 More about random walks

The speed exponent satisfies a monotonicity for surjective homomorphism. However, in order
to state it correctly, one needs to allow other measures for the choice of the random letter o;
than the uniform measure. Hence, instead of having P being uniform, it may only be some
finitely supported®® measure which satisfies P(s) = P(s!).

200One may also say interesting things about non-finitely supported measure if some “moment” condition
holds.
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Lemma 4.1
Assume ¢ : I' — H is a surjective homomorphism. Let S be generating for G be such
that ¢(S) generates H. Then Pr s > By p where P(h) = |¢ (R)|/|S].

In particular, since it is relatively easy to show B, p = 1/2 for any symmetric P, one gets

that Brs > 1/2 for any I with non-trivial map to Z. As mentioned above, there is a way of
proving that fr s > 1/2 for any group (due to Virag).

PRroOOF : Let dy be the distance of the Cayley graph with respect to Sy = support of P.
Define the function d' : I' — N by d'(y) = dg <¢('y), e). Note that d'(y) < dr(v,e): indeed

dp (P, ha) = dp (¢ }(h1), ¢ (he)), so that d'(y) = dr(YN, N) where N = ker¢. Let WT be
the random walker on I' and W be the random walker on H (which moves according to P
as in the statement). Note that P(d(W,e) =) = P(d'(WF) =4). This implies

E(du(Wn,e)) = E(d(W))) < E(dr(WE, €)) u

Let us mention a last (easy) example.

Example 4.2. Let us try to compute the return probability in Z¢. Pick some symmetric

generating set S. If p, is the law of W,,, recall that p, = P x--- x P (with n appearances of

P). Because the Fourier transform turn convolution in multiplication, let, for © € [—7, 7%,

$(©) = > e °P().

SES

Fourier analysis tells us
pae) = (2m)7 [ e=Cg(e) .
[71!1]d
Now, pick ST C S sothat S =S5TuU-S™.
$(©) => e*®P(s) = > cos(s-©)P(s)

s€S seS+

This shows ¢ is real and ¢(©) = 1 if and only if © = 0. This can be made even more visible

by writing
$(©)=1- > (1-cos(s-©))P(s).

seSt

Pick by,...,bs € S a basis of R¢, then,
$©)<1— > (1-cos(s-©))P(s) <1-ClOf

for some C' > 0 depending on {b;,...,bs} and |S|. This last expression is very useful, for
example one gets, using 1 — C|Q2 < e CI®F:

pa(0) = (2m) ¢ /[1,1]d $(©)"de < (2m) ¢ / e "C1P’ge < K/nd?

[7111}‘1
for some K > 0. &

Further computations lead to Bz« s = 1/2.
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5 Examples of equivariant compression

The simplest example is for Z¢

Example 5.1. Let ' = Z% and f : T' — R? be the identity map. Put the ¢’-norm on R?
and note that ||dr(z,y)|| = ||z — Y|

1
“—1
d? lz = ylle < llz =yl < llz —ylla-

Hence p; can be taken to be a linear function. It turns out this is also a “equivariant”
embedding. Indeed, this is the cocycle obtained by looking at I acting by translation on
R? (as a subgroup). The linear representation corresponding to this action is the trivial
representation (cocycles for the trivial representation are just homomorphisms). [

Free groups were also among the very first case investigated in Guentner & Kaminker
[14].

Example 5.2. Assume I' is a free group with generators a, ..., as. Take ¢ = characteristic
functions of words beginning with a4, z.e.

1 if g = aw where w is a word and aw is reduced
$(9) = 0 else.

Note that this function can be used to define a cocycle with values in ¢#(T") (for the right-
regular representation pgr): Indeed,

—1 if g = w ! and 7y = waw'(reduced)

b(7)(9) == ¢(g) — py9(g) = ¢(9) — ¢(g7) = 1  if g = aw ' where y = wa 'w'(reduced)
0 else.

80 ||b(7)|/5 =number of appearance of the letter ai! in 7.

Now take another cocycle for each letter a; and look at the cocycle &' given by the direct
sum (i.e. [' acts on @7 ,¢T" diagonally). One has [|b(y)||Z > K|g| (for some K > 0) so that
aﬂ,(Fd) > 1/p. Theorem 1.11 shows this is an equality for p € [1,2]. For p > 2, the correct
value is 1, see Naor & Peres [18, Lemma 2.3]. &

The “trick” in the previous example is sometimes referred to as “virtual coboundary”.
Indeed, if ¢ would be in ¢°T", b would be a [usual] coboundary. Here, ¢ ¢ ¢°I" but nevertheless
b is well-defined.

Example 5.3. Let B := /PT" and let I" act diagonally on each factor by the right-regular
representation. Define a cocycle via a “virtual coboundary”, u.e. first put f = >°,5¢an¢x
where ¢, € ¢°T" and a, € R are to be chosen. We would like to define a cocycle by

b(y) = f — oy f.

We need to insure that, for each v, b(y) is indeed in #°T". Using the cocycle relation, it suffices
to check this for s € S: we need

lpsf = £l = > o llpsdn — ullf < +o0.

n
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Just let [|[Vn|lp := S,cs|10s0n — dnllp and pick of = [|[V¢,||;Pn~" "¢, where € > 0. Next (see
exercises), we only need a lower bound on ||b(g)||-

B)E = Tl pebaly e 1l

n>1 ||v¢n||g - n|diam5uPn<|g| ||v¢'ﬂ||£
[

Take ¢, = 1p, where F, is a sequence of finite sets such that F}, C F,,,; and 8F,NOF, ;1 =0

—=

(here OF is the set of edges between F' and F°). Then ||V f||, < K|0F,| for some K > 0.

Y al|0F,| < +oo = of :=n"'"|0F,| "

n

where € > 0 is arbitrary. This gives, for n = sup{l | diam F,, < |g|},

1B > z (za> (IFl — |Fi s

with Fy = 0. Now, assuming further the o, are decreasing, for p € R>; the inner sum can
be written as

16(g)|E > > (n — k + 1)Pob(|Fi| — | Fi—1l)
k=1

Since 3¢, ap(by — br_1) = beac + Y57 be(ar — axr1) (given by = 0), one has
n—1
16(g)IIE > aB|Fo| + a2 > |Fe|((n — k+ 1)P — (n — k)F)

k=1

So let

1 n
OF,| =
then ||b(g)||2 > R,n '€ for n = sup{l | diam F,, < |g|}.

Apply this to the case where I' has polynomial growth, the F, can essentially®* be chosen
to be sequence of balls. One finds,

1 n
R, ~ S kY (n — k)Pt~ pPtt
k=1

nd-1 —

where the last equality was using Euler-Maclaurin with [ 2%(T — z)? ~ cstT****1. Thus,
with n = |g],
|6(g)[]5 > KnP * for some K > 0.

Taking € — 0 shows that al,(I") = 1 for groups of polynomial growth. &

Note the above bound on compression (together with the fact that nilpotent groups surject
on Z), gives a proof that fr s = 1/2 for any generating set.

More careful computations can be used to show aly(Z, ! Z) > 1/p (which is not sharp!..
unless p = 1) and gives some result for groups of intermediate growth. See Tessera [22] for a
more general class of groups with aﬂp(I‘) = 1 and further techniques.

2lone needs to pick some careful subsequence
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6 Exercises

Everywhere: IT' is a finitely generated group. For hints look at the end.

Exercise 1 Let f(n) = P(W,, = er). Show that f(n +m) > f(n) - f(m). Deduce that
the limit of f(n)/?" exists.

[Brt1] _
|Bn|

Exercise 2 Let B, be the ball of radius n in a Cayley graph of I'. Show that liminf, ..
1 implies the group is amenable.

Exercise 3 Show that the Fglner condition does not depend on the generating set S, i.e.
{F,} are Fglner sets for S they are also Fglner sets for T

Exercise 4 Show that E(d(Wym, er)) < E(d(Wo,er)) + E(d(Ws,er)).

Exercise 5 Given a cocycle b, many of the conditions for a coarse embedding are auto-
matically satisfied.

e Show that it suffice to check that p; (d(e,'y)> < |lb(7)]| < Cd(e,y) + C for all vy € T.

e Show that a cocycle is always Lipschitz (z.e. the upper bound always hold): ||b(7y)|| <
Kd(e,~) for some K > 0 (K depends on b).

Conclude that the only inequality to establish to see that a cocycle is a coarse embedding is
[6(NI > ps(17])-

Exercise 6 Show that there cannot be a Banach space with modulus of smoothness of
power type p for p > 2. Likewise for Markov type.

Exercise 7

Hint[s] for 1: One has more chances of returning at identity after time n + m as returning at time n and
n+m. Let g(n) = —log f(n) then g(n +m) < g(n) + g(m) and by Fekete’s subadditive Lemma lim 951—") exists.

Hint[s] for 2: EotifBnl = Bl 1 and |9B,| < |S] - |Ba14B,|

|Bal

Hint[s] for 3: Write the letters of T as words in S (and vice-versa) to see that the T-boundary of a set is
at most some thickening of the S boundary. The size of a regular tree being bounded, this yields a bound on
the T-boundary in terms of the S-boundary.

Hint[s] for 4: All points in a Cayley graph are the same. In particular, from each possible position at
time n, one has the same future after m steps. Check for the “worst case scenario” (triangle inequality).

Hint[s] for 5: Use that A is isometric and the cocycle relation. For the second point, write y as a word,
and use the cocycle relation many times.

Hint[s] for 6:

Hint[s] for 7:



Quantitative compression and random walks IHP - 2014/11/3 (version of 2014/11/4)

References

[1] G. Amir and B. Virag, Speed exponents for random walks on groups, arXiv:1203.6226

[2] G. N. Arzhantseva, C. Drutu, and M.V. Sapir, Compression functions of uniform embed-
dings of groups into Hilbert and Banach spaces, J. Reine Angew. Math., 633:213-235,
2009.

[3] T. Austin, Amenable groups with very poor compression into Lebesgue spaces, Duke
Math. J. 159(2):187-222, 2011.

[4] T. Austin, A. Naor and Y. Peres, The wreath product of Z with Z has Hilbert compres-
sion exponent 2/3, Proc. Amer. Math. Soc. 137(1):85-90, 2009.

[6] K. Ball, Markov chains, Riesz transforms and Lipschitz maps. Geom. Funct. Anal. 2(2),
137-172, 1992.

[6] K, Ball, E. A. Carlen and E. H. Lieb, Sharp uniform convexity and smoothness inequal-
ities for trace norms, Invent. Math. 115(3):463-482.

[7] L. Bartholdi and A. Erschler, Imbeddings into groups of intermediate growth,
arXiv:1403.5584

[8] F. Baudier, On the metric geometry of stable metric spaces, arXiv:1409.7738

[9] Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis. Vol.
1, volume 48 of American Mathematical Society Collogquium Publications, American
Mathematical Society, Providence, RI, 2000.

[10] M. Bourdon, Cohomologie et actions isométriques propres sur les espaces L?, to appear in
Geometry, Topology and Dynamaics, Proceedings of the 2010 Bangalore conference,
available at http://math.univ-lillel.fr/ bourdon/papiers/coho.pdf

[11] M. Carette (appendix by S. Arnt, T. Pillon and A. Valette), The Haagerup property is
not invariant under quasi-isometry, arXiv:1403.5446

[12] Y. de Cornulier, R. Tessera and A. Valette, Isometric group actions on Hilbert spaces:
growth of cocycles, Geom. Funct. Anal. 17(3):770-792, 2007.

[13] A. Gournay, The Liouville property via Hilbertian compression, arXiv:1403.1195

[14] E. Guentner and J. Kaminker, Exactness and uniform embeddability of discrete groups,
J. London Math. Soc. (2) 70(3):703-718, 2004.

[15] H. Kesten, Full Banach mean values on countable groups, Math. Scand., 7:146-1586,
1959.

[16] J. Lee and Y. Peres, Harmonic maps on amenable groups and a diffusive lower bound
for random walks, Ann. Probab. 41(5):3392-3419, 2013.

[17] R. Lyons with Y. Peres Probability on Trees and Networks, Cambridge University
Press, (2014). In preparation. Current version available at http://mypage.iu.edu/"rdlyons/



Quantitative compression and random walks IHP - 2014/11/3 (version of 2014/11/4)

[18] A. Naor and Y. Peres, Embeddings of discrete groups and the speed of random walks,
Int. Math. Res. Not. IMRN 2008, Art. ID rnn 076, 34 pp.

[19] A. Naor and Y. Peres, L,-compression, traveling salesmen, and stable walks, Duke
Math. J. 157(1):53-108, 2011.

[20] A. Naor, Y. Peres, O. Schramm and S. Sheffield, Markov chains in smooth Banach spaces
and Gromov-hyperbolic metric spaces, Duke Math. J. 134(1):165-197, 2006.

[21] G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20(3-4),
326-350, 1975.

[22] R. Tessera, Asymptotic isoperimetry on groups and uniform embeddings into Banach
spaces, Comment. Math. Helv., 86(3):499-535, 2011.

[23] J. von Neumann, Zur allgemein Theorie des Masses, Fund. Math. 13:73-116, 1929.

[24] G. Yu, Hyperbolic groups and affine isometric actions on #P-spaces, Geom. Funct.
Anal. 15(5):1144-1151, 2005.



LOCAL VERSUS GLOBAL EMBEDDABILITY OF LOCALLY
FINITE METRIC SPACES

after M. I. Ostrovskii [8]
written by
Sheng Zhang

ABSTRACT. We will present the techniques used by M. 1. Ostrovskii to prove
that the Lipschitz (resp. coarse) embeddability into an infinite dimensional
Banach space of a locally finite metric space is determined by its finite subsets.

1. INTRODUCTION

The purpose of this short note is to prove the following theorem by M. I.
Ostrovskii. Recall that a metric space X is said to be locally finite if every ball
in X contains only finitely many points.

Theorem 1.1 (Ostrovskii [3]). Let A be a locally finite metric space whose finite
subsets admit equi-Lipschitz (resp. equi-coarse) embeddings into a Banach space
X. Then A admits a Lipschitz (resp. coarse) embedding into X .

The main ingredients of the proof contain the following:

e Ultraproduct techniques in Banach space theory;
e Approaches to the selection of good-behaving subsequence;
e The gluing technique of embeddings.

The gluing technique was first introduced by F. Baudier to prove the following
characterization of superreflexivity.

Theorem 1.2 (Baudier [1]). A Banach space X is not superreflexive if and only
if the infinite binary tree B., equipped with the shortest path metric admits a
Lipschitz embedding into X .

Here the infinite binary tree is defined by By = Jio %, where Q; = {0,1}" for
i > 1and Qp = {0}, and the finite binary tree with n levels is defined similarly by
B, =, ;. By Ostrovskii’s theorem one can easily see that Baudier’s theorem
is indeed equivalent to J. Bourgain’s early result:

Theorem 1.3 (Bourgain [3]). A Banach space X is not superreflezive if and
only if the finite binary trees (B,) equipped with the shorted path metric admit
equi-Lipschitz embeddings into X.

The next theorem, due to F. Baudier and G. Lancien, is another application
of Ostrovskii’s theorem.

Theorem 1.4 (Baudier-Lancien [2]). Each locally finite metric space admits a

Lipschitz embedding into any Banach space without cotype.
1
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This theorem is an immediate consequence of Theorem 1.1, Theorem 2.6 and
the fact that each metric space with n elements admits an isometric embedding
into £ (see [1]).

The last application of Ostrovskii’s theorem we want to mention is the following
theorem by Ostrovskii. The proof follows immediately from Theorem 1.1 and the
Dvoretzky’s theorem (Theorem 2.4).

Theorem 1.5 (Ostrovskii [7]). Let M be a locally finite subset of a Hilbert space.
Then M admits a Lipschitz embedding into any infinite-dimensional Banach s-
pace.

2. PRELIMINARIES

In this section we will first list some definitions and facts that will be used
throughout this note, and then briefly introduce ultraproduct of Banach spaces.
A thorough discussion of ultraproduct techniques in Banach space theory can be
found in [5].

2.1. Definitions and Facts.

Definition 2.1. A map f: X — Y between two metric spaces X and Y is called
a Lipschitz embedding if there exists a constant C' > 1 such that for all u,v € X,
1
S(u,0) < d(f(u), f(0)) < C(u,v).
If this inequality holds for C' =1 then f is called an isometric embedding.

Let (X,,) be a sequence of metric spaces. A sequence of maps f, : X,, — Y are
called equi-Lipschitz embeddings if there exists a constant C' > 1 such that for
all n and all u,v € X,,,

Zd(u,0) < d(fy(w), fu(0) < Cdlu,v)

Definition 2.2. A map f: X — Y between two metric spaces X and Y is called
a coarse embedding if there exist two nondecreasing functions py, ps : [0, +00) —
[0, +00) with lim;_, p1(t) = oo such that for all u,v € X,

pl(d(uv U)) < d(f(U), f(U)) < pQ(d(ua U))
Let (X,,) be a sequence of metric spaces. A sequence of maps f, : X,, = Y are

called equi-coarse embeddings if there exist two nondecreasing functions py, ps :
0, +00) — [0, 00) with lim;_,. p1(t) = 400 such that for all n and all u,v € X,,,

pr(d(u, v)) < d(fn(u), fu(v)) < p2(d(u,v)).

Definition 2.3. A Banach space X is said to be finitely representable in a Banach
space Y if for any € > 0 and any finite-dimensional subspace E C X there exists
a finite-dimensional subspace F' C Y such that dgy(E, F)) < 1+ ¢, where dpgyy is
the Banach-Mazur distance defined by

dpy(E, F) = inf{|T|||T*||: T : E — F is an isomorphism}.

A Banach space X is called superreflexive if every Banach space Y that is finitely
representable in X is reflexive
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Theorem 2.4 (Dvoretzky). {5 is finitely representable in each infinite-dimensional
Banach space.

Definition 2.5. A Banach space X is said to have (Rademacher) cotype g,
2 < g < o0, if there exists a constant C; > 0 such that for every n € N and every

T1,. Xy € X,
a\ 3 1 n 7
S ) zg(zw)
7 \i=1

It is easy to see that every Banach space has cotype oo with constant 1. If
a Banach space X has some cotype ¢ < oo then we say that X has nontrivial
cotype, otherwise X is said to be without cotype.

(Average

gi==*1

Theorem 2.6 (Maurey-Pisier). A Banach space X has only trivial cotype if and
only if L is finitely representable in X.

2.2. Ultraproduct of Banach spaces.

Definition 2.7. A filter F on an infinite set I is a subset of P([) (the set of all
subsets of I) satisfying the following conditions:

(1) 0 ¢ F;

(2) F is closed under finite intersection.

(3) If A € F, then B € F for each B D A.

An ultrafilter U on [ is a maximal filter with respect to inclusion. An ultrafilter
is called free if the intersection of all the sets in it is empty.

Definition 2.8. Let U be an ultrafilter on I. X is a topological space and
(;)ier € X. We say that (z;);e; converges to x € X through U and write
limyx; =z if {i € I : x; € U} € U for any open neighborhood U of z.

Lemma 2.9. Let U be an ultrafilter on I and K be a compact set. Then any
(:)ier C K converges to some x € K through U. In particular, any bounded
real-valued collection (z;);c; converges to some x € R through U.

Let (X;)ier be a family of Banach spaces and U be a free ultrafilter on I.
Consider the £ -sum of (Xi)iel, i.e., the Banach space

(EP Xi)oo = {(wi)ies : 25 € X; and sup [la;]| < oo}

el el

with the norm ||(z;)ier|loo = sup;e; [|#i]]. In view of Lemma 2.9, for each (z;);es €
(Dicr Xi)oo, limy [|z;]| exists and defines a seminorm on (G}ZE 1 Xi)oo- It is easy
to check that the subspace of (,.; Xi)o on which the seminorm is equal to 0,
denoted by Ny, is closed.

Definition 2.10. The ultraproduct of (X;);c; with respect to the free ultrafilter
U, denoted by ([[;c; Xi)u, is the quotient space (@ZGI i)oo/ Ny with the norm
(@) = limy ||2;]|, where (z;)y is the element in (]],.; X;)u corresponding
to (Zi)ier € (B,e; Xi)oo- If all Xi’s are the same Banach space X, then the
ultraproduct is called an ultrapower of X and denoted by X,.
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Proposition 2.11. Let X be a Banach space and U be a free ultrafilter on I.
If X 1is finite dimensional then Xy is of the same dimension; if X s infinite
dimensional then Xy, is finitely representable in X.

3. PROOF OF THEOREM 1.1

Fix a point O in A and consider finite subsets A; = {a € A : d(O,a) < 2'}. By
the assumption there exist equi-Lipschitz (equi-coarse) embeddings f; : A; — X.
Without loss of generality we can assume that f;(O) =0 for all ¢ € N.

Let U be a free ultrafilter on N. For a € A, define fi(a) = fi(a) if a € A;
and fi(a) = 0 otherwise. Then it is easy to check that the map f : A — Xy,

a — (fi(a))y is a Lipschitz (coarse) embedding. Note that in both cases the
image of A under f, denoted by N, is a locally finite subset of X;; containing the
origin, so we may assume that every nonzero element in N has norm at least 1.
Then the theorem follows from the following lemma. 0

Lemma 3.1. N (and hence every locally finite subset of Xy) admits a Lipschitz
embedding into X .

Proof. The case when X is finite dimensional is trivial by Proposition 2.11, so we
assume that X is of infinite dimension. Consider finite sets N; = {u € N : |Jul| <
21}, Again by Proposition 2.11 there exist maps s; : N; — X such that s;(0) =0
and for all u,v € N;,

[ = ol < [si(u) = si(v)] < 2[ju = v]. (3.1)
To find a Lipschitz embedding, we first introduce a gluing map ¢ : N — X,
which pastes s;’s in the sense that for 27! < ||a|| < 2¢,

20 — |la al| — 211
p(a) = Qi—_llnsi(a) + HHT&-H(@). (3.2)

Clearly [|¢(a)|| < 2|lal|, but ¢ is not a Lipschitz embedding. For technical reason
(see the claim below) we need another Lipschitz map 7 : Ry — X so that the
map ¢ : N — X defined by ¢(a) = ¢(a)+ 7(]|a]|) is almost the desired Lipschitz
embedding (we say “almost” because the definition of ¢ given by (3.2) needs
a small modification later, but at this moment we use (3.2) for the reason of
easy understanding). To this end, consider the finite sets T; = {p(u) : u €
Nii1}. Let Fy = spanTj and choose p; € Sy so that dist(p;, F1) = 1. Let
Fy, = span(T3 U {p;1}) and choose p; € Sx so that dist(ps, Fp) = 1. Let F3 =
span(73 U {p1, p2})...Since X is infinite dimensional, we can continue this process
to get a sequence (F}) of finite-dimensional subspaces of X and a sequence (p;)
so that p; € Fi;; and dist(p;, ;) = 1 for all i. Then the 7 : R, — X is defined
in the following way:

v if0<t<?2,
T(t) = o
2p1 + Z?ZQ(QJ — 27 Npi 4 (t — 2M)pryy  if 28 <t < 21 for some k > 1.

It is easy to check that 7 is 1-Lipschitz. Moreover, the following claim holds.
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Claim: There exists a constant C' > 0 such that for any a,b € N,
18(a) = 20)[| = llp(a) — @ (0) + r(llall) — (o) = C([lall — [[bl])-
We prove this claim by considering three cases.
Case 1. 271 < ||| < ||a|| < 2°

In this case we have

lp(a) = @(b) +7(llall) = r(bIDIF = el = [[6l)p: + ©(a) = (b)]
> [lall = lof]

The last inequality holds because dist(p;, F;) = 1 and ¢(a) — ¢(b) € F;.
Case 2. 2071 < ||p|| < 2° < ||a]| < 2¢!

In this case we have
[e(a) = @(b) + 7([lall) = r([[ol)]]

= l(llall = 2)pirs + (2 = [[6l)pi + w(a) — @(B)[|.  (3.3)
Consider two subcases:
1
lall = 2" = 2 (llall = 181]). (3.4)
;1
lall = 2% < 2 (llaf = 21]). (3.5)

In subcase (3.4) we have

i1
(33) > fll ~2 > 1
because dist(pi11, Fiv1) = 1 and p;, p(a) — ¢(b) € Fiq.

llall = 1lo11) (3.6)

In subcase (3.5) we have
(3.3) 2 12" = [[bl)p: + ¢(a) — o (®)]| — (llall — 2°)
> (2" = [1bl)) = (llafl —2%) > %(Hall — 1ol
since dist(p;, ;) = 1 and p(a) — ¢(b) € F;.
Case 3. 2" < ||p]| < 2% < 2¢ < ||af| < 27!
In this case we have

le(a) = (b) + 7([lal)) = (o)
= [[(llall = 2)p1 + (2" =27 )pi + 7+ 0(a) = @),  (3.7)
where r is an element in F;. Consider two subcases:

lall = 2" > (2" = 2'7), (3-8)

=

lal| — 2" < Z(Qi — 271, (3.9)
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In subcase (3.8) we have

o 1
(28 —27 > —

7) > — 2l >
(37) 2 flaf| -2 > > 5

(llall = 1ol

AN

because dist(p;11, Fir1) = 1 and p;, 7, p(a) — p(b) € Fiyq.

In subcase (3.9) we have

1

(3.7) = (2" = 27 ) + 1 + ¢la) — p ()| = (lla]] —2')
> (2 =27 -2 -27)> %(HGH — ol

since dist(p;, F;) = 1 and r, p(a) — ¢(b) € F;.

Remark 3.2. Note that the proof of the claim has nothing to do with the expres-
sion (3.2) of .

Now we have shown that ||@(a) — @(b)|| > C(|la|| — ||b]]) for some C' > 0. For
convenience we will henceforth assume C' = 1. The rest of the proof is dedicated
to show that ¢ is a Lipschitz embedding from N into X. Again, we proceed by

considering the above three cases, but in a reverse way (from the easiest to the
hardest).

Case 3. 2"1 < ||p]| < 2% < 2¢ < ||a]] < 27!

In this case we have

3(2i+1 + 2k>

i __ 9k _ Iy _ >
20 =2" _ lall = [bll _ [l¢(a) = 2@)[| _ 3(lla] + [|6]])

- < < < < .
21+ 28 7 lafl + o] la — o]l lall — llo] 20— 2
Note that
i+1 | ok i+2
2 | +2 < 2' _s
N _ 2k - -1
so we conclude that @ is a Lipschitz embedding.
Case 2. 2071 < ||b]| < 2" < ||a]| < 27!
In this case
2 — o] laf] — 2
pla) —o(b) = —Tsi(b) + TSH-Q(CL)
271 — |laf o — 2"
+ 9 siv1(a) — i1 si+1(b).
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The first and the second terms both have norms at most 4(||a|| — ||6]|). The norm
of the last two terms can be estimated as follows:

2itl _ g bl| — 21
||%3i+1(a) - H”Tsiﬂ(b)ﬂ

28 — (|la|| — 2 2t — ||p|]) — 2+
B (7 DA Y

al| — 2 b

= [lsis1(a) — 5:01(0) ~ %w(a) S e 6o
< 2[la — bl + 4(fla]l — 2) +4(2" — [|b]])
< 6lla — 0.

These along with the fact that 7 is 1-Lipschitz imply that @ is Lipschitz.

To estimate from below, we use (3.10) and get

al| —2¢ 20 —|b
Hw@—w@nzwwmw—%mw—l%r—%m@+ 9w
b a
20 s - L=
> oa(0) — s Sl ol
> b — 8(]all o] (3.11)
At this step, if [|a]| — [[b]] < Lla — b|] then

uﬂw—@wmznww—¢wm—udwm—7mww
> Jla = b = 9(all — 151) = = la — b].

— 10
If la]| — [[b]] > 15]la — b||, then by the claim we have
(@) = BO)1 > llall = 18] = <= lla — b].
10
Therefore @ is a Lipschitz embedding.
Case 1. 271 < ||b]| < ||a|| < 2°
In this case
2' — [|a] lal] — 2™
p(a) — o(b) = 9i—1 (si(a) — s:(D)) + T(Siﬂ(a) — 5i41(b))
16l = llal lall — [18]
+ Tsz(b) + T8i+1(b>,
so by (3.1) we have
2' — ||l lafl — 2"
lpa) =)l < —=r—2lla = bl + —r—2lla — b|

+4(llall = 1oll) + 4(llall = [|6l]) < 10[la = b,
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and hence

1©(a) = 2O < [le(a) = wO)I + [Im(llall) = 76l
< 10fla = bll + (llall = [oll) < 11fla — b].

In order to estimate ||p(a) — @(b)|| from below, a subsequence of the maps
(s;)22, with good behavior is needed, and hence we have to slightly modify the
definition of ¢ by changing the index in (3.2). The technique used here dates
back to [0] by Kadets and Pelczynski.

First we may assume that X is separable, otherwise we can simply replace X
by span(lJ;-, si(N;)). Let (z,,)72, be a sequence of nonzero vectors which is dense
in X. By Hahn-Banach theorem we can pick =} € Sx- so that 2% (x,) = ||z,
for each n. Then it is easy to check that the sequence (z7)2°, is norming in X,
meaning that ||z| = sup,, |z} (x)| for all z € X. Let M be the closed subpace
generately by (%), then the natural embedding from X into M* is a linear
isometric embedding, so we may identify X with its image under this embedding.
The selection of subsequences of (s;)2; is presented in the following two steps.

Step 1. Since every closed ball in M* is compact and metrizable in the weak™*
topology, and also note that the sets NN;’s are finite and increasing, we can choose
a subsequence (still denoted by (s;)72,) such that for each j the sequence (s;(a))2;
is weak*-convergent for all a« € N;. Denote the weak*-limit of this sequence by
m(a).

Step 2. We choose a sequence (k;) C N by induction as follows:
First choose k; such that for each pair a,b € Ny with m(a) # m(b),

| (sn(@) = sn(b) = (m(a) —m(b)))] < 100!\m(a) —m(b)]

for all n > ki, where f = f,; is a fixed element in Sj; so that
Fm(a) — m(®) > 2 Jlm(a) — m(b)|
— 100

This can be achieved because Nj is finite and (s;(a) — s;(b))2, converges to
m(a) —m(b) in the weak* topology.

Suppose that k; has been chosen, we pick ¢; > k; such that for each pair
a,b € N; satisfying sy, (a) — s, (b) — (m(a) — m(b)) 7& 0,

|g(8n<a) — Sn(b) — (m(a) - ( )))| = 1000

for all n > g, where g = g, qp is a fixed element in Sy so that

95k, (a) — s, (0)— () = m(B))) > i3, (@) = s, 8) — (m() = m(B)).
(3.13)

la — o] (3.12)

This can be achieved because Nj is finite and (s;(a) — si(b))2; converges to
m(a) —m(b) in the weak* topology.
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Now choose k;j1 > ¢; such that for each pair a,b € N;i with m(a) # m(b),
1
lm(a) —m(b)] (3.14)

[f(sn(@) = sa(b) — (m(a) —=m(b))] < 155

for all n > k; i1, where f = f,; is a fixed element in Sy, so that

fm(@) = m(b) > ~o[m(a) — m(®)]. (3.15)

This can be achieved because Nj; is finite and (s;(a) — si(b))2;,, converges to
m(a) — m(b) in the weak™ topology.

We redefine ¢ in the following way: for a € N with 2071 < ||a| < 27,
2" — ||all lafl — 2"
p(a) = Tski(a) + Tskm(a)-
To estimate ||p(a) — @(b)|| from below, it suffices to estimate ||p(a) — ¢(b)|| and
get an inequality of the form as (3.11), which along with the claim will allow us

to consider two subcases separately and complete the argument, just as shown
right after (3.11). We write

o(a) — (8) = m(a) — m(t) + 2o (o (0) 51, (6) — (ma) — (b))
2 (0) = 510 0) — ()~ m(8)
ol = lall_ . lall = o]
+om sk(0) + o Sk (). (3.16)

First we consider the case when |[m(a) — m(b)|| > ti5lla — b||. By (3.14) and
(3.15) we have

le(a) = o)l = fas(pla) — @ (b))

= fun(m(a) — m(®)) + fus (T —llal

2i—1

(10) = 0,0) = Gmfa) ~ m(0) )
s (L 00 (0) = 500 0) = (0ta) = )

[0l = lal [[all — o]
+ 22‘_1 fa,b(ski (b)) + 21'_1 fa,b(3k¢+1 (b))
> 2 im(a) = ()| - —[Im(a) - m(®)]|  &(]la]l - [1])
— 100 100
98
> — bl — — ||6]).
> %o — b — 8l — i)
For the case when [|m(a) —m(b)| < t5/la — b]|, we separate into two subcases:
2 — lal — s (b) — —m®)| > L fa—b 3.17
sim1 k(@) = 51, (b) — (m(a) =m(B)] = 5lla = bl (3.17)
w — s (b) — — m(b 1 —b 3.18
ot lIsk(@) = s (b) = (m(a) —m())|| < g5 lla = bl (3.18)

In the case (3.17) we use (3.12) and (3.13) and get
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le(a) = )| = gr,.an(pla) — (b))
2' — |al

= hnam@) = 10+ 10 (5 o) = 55,0) = (mla) = m() )
i (PG (51 (@) = 10, 0) = ()~ (0

2171
bl| — ||a all —||b
Aol o) + wgki,a,b<s@<b>>
1
> 2 la—b — bl — 8(|lal| — b
>yl e S

= ol — bl = 8(]all — ).

On the other hand, in the case (3.18) we have

Lo b > 210 ”<usk< )= s (B~ () —m(E)])
||a|| 1
> _
— — 1
which implies that i1 ” | < — 99 and hence HHT @ Apply triangle

inequality to (3.16) we get

lafl — 2"

lo(a) — o(®)] = %nshﬂ(a) = s () — (mla) — m(®))]
2Nl (@) - 5(6) — (mla) — m®)]

2i—1
~ () =m0 sl = 1
89

————b——————b— b
99(||a = gl =) = gglla—bll = g lla = 8 = S(hal = o1
= %0 — bl (] — o).

|
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ON ASSOUAD’S EMBEDDING TECHNIQUE

MICHAL KRAUS

ABSTRACT. We survey the standard proof of a theorem of Assouad stating
that every snowflaked version of a doubling metric space admits a bi-Lipschitz
embedding into R™ for some n € N.

1. INTRODUCTION

Let (X,dx),(Y,dy) be metric spaces and f: X — Y be a mapping. Then f is
called a bi-Lipschitz embedding if there are constants A, B > 0 such that

(1) Adx(2,y) < dy (f(x), f(y)) < Bdx(z,y) for all z,y € X.

If f is a bi-Lipschitz embedding, then the distortion of f is defined to be the infimum
of % over all constants A, B > 0 for which holds.

A metric space (X,d) is said to have a doubling constant K > 1 if for every
r > 0 every closed ball in X of radius 7 can be covered by at most K closed balls of
radius 5. By a closed ball of radius 7 we mean a set of the form B(z,r) = {y € X :
d(y,x) < r}, where x € X is the center of B(x,r). The space X is called doubling
if it has a doubling constant K for some K > 1. Note that doubling metric spaces
are separable.

If (X,d) is a metric space and « € (0,1), then d* is clearly also a metric on X
and the space (X, d®) is called the a-snowflaked version of (X, d). Note that (X, d)
is doubling if and only if (X,d%) is doubling (possibly with a different doubling
constant).

An important open problem in embedding theory is to characterize intrinsically
those metric spaces that admit a bi-Lipschitz embedding into R™ for some n € N
(we will always consider the Euclidean norm and metric on R™). It is easy to see
that if a metric space admits a bi-Lipschitz embedding into R™ for some n € N,
then it must be doubling. It is known that the converse does not hold. For example,
the 3-dimensional Heisenberg group with its Carnot metric is doubling but does
not admit a bi-Lipschitz embedding into R™ for any n € N (see [Sel Theorem 7.1]).
However, Assouad [As, Proposition 2.6] proved the following fundamental theorem.

Theorem 1.1 (Assouad, 1983). Let (X,d) be a doubling metric space and o €
(0,1). Then (X,d*) admits a bi-Lipschitz embedding into R™ for some n € N.

Assouad’s proof of Theorem [I.I} which we will present here, actually gives the
following stronger quantitative statement.

Theorem 1.2 (Quantitative version of Assouad’s theorem). For every K > 1 and

€ (0,1), there is an N = N(K,a) € N and D = D(K,«a) > 1 such that for
every metric space (X,d) with a doubling constant K, the space (X,d*) admits a
bi-Lipschitz embedding into RN with distortion at most D.

Let us mention that in the original paper of Assouad [As], Theorem [1.1]is stated
for metric spaces of finite Assouad dimension instead of for doubling metric spaces.
Let (X,d) be a metric space. The Assouad dimension of X (called the metric

Date: October 15, 2014.
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dimension in [Ad]) is the infimum of those § > 0 for which there is C' > 0 such that
for every 0 < a < b, for every Y C X such that d(z,y) > a whenever z,y € Y,z # y,

and for every Z C X such that diamZ < b, we have |[Y N Z| < C (g)ﬁ (if M is a
set, we denote by |M]| the cardinality of M). However, it is not difficult to prove
that X is of finite Assouad dimension if and only if it is doubling. It is actually the
value of the doubling constant, and not so much the Assouad dimension, that is
relevant to the proof of Assouad’s theorem, and so it seems more natural to state
the theorem in the present form.

The purpose of this survey is to present in detail the proof of Theorem [[.2} In
Section [2] we recall the notion of the tensor product of Hilbert spaces, which will be
used in the proof. The proof itself is presented in Section 3] In Section[d] we discuss
some questions concerning the dimension of the receiving space RY in Theorem
L2

2. TENSOR PRODUCTS OF HILBERT SPACES

In this section, we briefly recall the notion of the tensor product of Hilbert spaces,
which will be used in the proof of Theorem Those who are familiar with tensor
products can skip this section.

Let us first describe the algebraic tensor product of linear spaces. Let V, W be
linear spaces over R. We denote by A(V x W) the set of all formal finite linear
combinations of members of the Cartesian product V' x W that is, the set of all ex-
pressions of the form Y7, a;(e;, f;), where a; € R,e; € V, fi € W,i=1,...,n, and
n € N. We identify Y7 | a;(e;, fi) and .7 1 ar(iy(ex(i), fr(s)) for any permutation
mof {1,...,n} and we also identify Z?jll a;(e;, fi) and Y0 a;(e;, fi) if angr = 0.
We make A(V x W) into a linear space by defining

a <Z ai(eiafi)> = mez‘(eiafi)
i=1 1=1

and
n n

n
D ailes i) + Y biles fi) = > (ai+bi)(es, fi).
i=1 i=1 i=1
Furthermore, we denote by Ag(V x W) the linear subspace of A(V x W) generated
by the elements of the form
2
(a1e1 + azez, by f1 + bafo) — Z a;bj(ei, fj).
i,j=1
The algebraic tensor product of V-and W, denoted by V ® W is the linear quotient
space A(V x W)/Ao(V x W). Elements of V ® W are called tensors. We denote by
e® f the tensor containing (e, f), that is, the equivalence class (e, f)+ Ao (V xW). So
any tensor from V®W can be written as Z?:l a;e;Rf;, wherea; e Rje; €V, fi e W
and n € N. The purpose of taking the quotient is that now we have
2
(a1e1 4 azez) @ (b1 fr + bafo) = Z abje; ® f;.
i,j=1
It is not hard to show that if (e;)ser, is a basis of V and (f;);er, is a basis of W,
then (e; ® fj)(i,j)er, xr, 15 a basis of V @ W. In particular, if V' and W are finite
dimensional, then dim(V @ W) = dim V dim W.

Now, let Hy, Hs be real Hilbert spaces with inner products (., .)1, (., .)2 and norms
[I-ll1, 1]-]l2 respectively. We define an inner product on the algebraic tensor product
Hy ® Hy by setting (e1 ® f1,e2 ® f2) = (e1,e2)1(f1, fa)2 for all e1,ea € Hy, f1, fa €
H,, and by extending bilinearly to all of Hy ® Hs. It is of course necessary to
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check that (.,.) is well-defined and that it is indeed an inner product. As usual,
the inner product (.,.) gives rise to a norm on H; ® Hy defined by ||z| = /(z, z)
for x € H; ® Hy. The completion of H; ® Hy under this norm, which is of course
a Hilbert space, is called the tensor product of H; and Hs and is also denoted by
H, ® Hy (from now on, we will always use this symbol for tensor products of Hilbert
spaces, so no confusion should arise). Note that for any e € Hy, f € Hy we have
lle® fIl = llell1llf|l2- Note also that if H; and Hs are finite dimensional, then their
algebraic tensor product is also finite dimensional and so the completion leaves the
space unchanged. Hence in this case dim(H; ® Hs) = dim Hy dim H,.

3. PROOF OF THEOREM

Let us prove Theorem [1.2] We will basically follow the lines of the original proof
of Assouad [As] (see also [He7 Theorem 12.2] for an exposition in English). We will
use the following lemma.

Lemma 3.1. Let a,7 € (0,1), A,B > 0 and m € N. Then there is an N € N and
D > 1 such that if (X, d) is a metric space and there are mappings @;: X — R™,
i € 7, satisfying

(1) llpi(s) =) = A if T+ < d(s,t) < 77,

(2) |lpi(s) — @i (t)]| < Bmin{r*d(s,t),1} for all s,t € X,
then (X,d®) admits a bi-Lipschitz embedding into RN with distortion at most D.

Proof. Let (X, d) be a metric space and suppose that there are mappings ¢;: X —
R™, i € Z, satisfying the conditions (1) and (2). We will also work with the space
R?", where n € N will be chosen later. Let eg,..., ez, be an orthonormal basis of
R?" (for example the canonical basis) and extend the sequence (e;) 2n-periodically
to all of Z, that is, e;492, = e; for every i € Z. Also, fix an arbitrary sg € X.

We define a mapping f: X — R™ @ R?" by

=Y 7 (@ils) — pils0)) ® e
iz
(By R™ ® R?" we mean the tensor product of the Hilbert spaces R™ and R?" as
described in Section [2} It is linearly isometric to R?™".) The convergence of the
series will follow from the first estimate bellow. Let us show that for large enough
n the mapping f is a bi-Lipschitz embedding of (X,d®) into R™ ® R?",
Let s,t € X,s # t, and let k € Z be such that 7! < d(s,t) < 7%. Let us first

estimate || f(s) — (t)|| from above. We have
1F(s) = F@OI <D llpils) = i)l + D " llpils) — pil®)ll
i>k i<k
< ZT’“B + ZTiO‘BTfid(s,t)
i>k i<k
_ BT(k-i-l)aZTwc +Bd S t (a—1) ZTZ(I )
= 0
1
= Br (k+1)ee _ ~ B k(a—1) -
e T BT 1—rl-a
1
< Bd(s,t)* — + Bd(s7t)d(s,t)0‘—11ﬁ
-7

1 1
=B d(s,t)°.
(17"1 + 17’10‘) (5,%)

Note that no restriction on n was needed in this estimate.



4 MICHAL KRAUS

Now, let us estimate || f(s) — f(t)|| from bellow. We have

1f(s) = F)Il = Yo Teils) i) ®e

k—n<i<k+n
= 2 el — el = 30 T lenls) — walt)l-
i>k+n isk—n

For the first sum we have

S T eils) = wilt) @eil| = THlpw(s) — @ (t)l| = TFYA > d(s, 1) A,
k—n<i<k+n
where the first inequality holds since the summands on the left hand side are mu-
tually orthogonal. The second sum satisfies

> T leis) — w0l < Y2 7B = Brikineey T
i>k+n i>k+n i=0
1 no

— B (k4+n+1)a < Bd e
T 1—70 — (5,1) 1—7a

)

and for the last sum we have

D Teils) @@l < Y TBT (s, t) = Bd(s, t)rF @Dy D ilme)

i<k—n i<k—n i=0
1 n(l—a)
= Bd(s,t)rk—m@=D___ = < Bi(s 1)* L .
1—rl-a 1—rl-o

Hence we obtain

T

156 = 101 = (4B (o + T ) s

Now if n is large enough so that the constant on the right hand side is positive (which
depends only on «, 7, A and B), then the mapping f is a bi-Lipschitz embedding of
(X, d*) into R™®R?" and both the dimension of the target space and the distortion
of f depend only on «, 7, A, B and m. O

Proof of Theorem[I.4 Let K > 1 and fix an arbitrary 7 € (0,1). Let (X,d) be a
metric space with a doubling constant K and let ¢ € Z. We will construct a mapping
v =p;: X = R™ for some m € N such that the conditions (1) and (2) in Lemma
[3:1] will be satisfied for some A, B > 0, and A, B and m will depend only on K and
our choice of 7. Lemma will then complete the proof of Theorem [1.2)

Let ¢ = +7'*1 and take a c-net Y in X. By a c-net we mean a maximal subset
of X such that all pairs of its distinct points have distance at least c. By Zorn’s
lemma, such a set exists. It is then clear that for every y € Y we have

Geveaeas (2ea) )| <m

where m € N depends only on the doubling constant K and the choice of 7 (we can
take any m > K2+1°g2(%+4)). Let k: Y — {1,...,m} be an (m, (2 4 4)c)-colouring
of Y, that is, k(y) # k(y) if y,y' € Y,y # v/, and d(y,y’) < (£ + 4)c. Such a
mapping clearly exists. Indeed, since Y is clearly countable, we can make it into a
sequence (y;) and define k(y;) inductively by choosing a value from {1,...,m} not
taken by those y; for [ < j for which d(y;,y;) < (£ + 4)c. Since there are at most
m — 1 such y;, this is always possible.
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Let ey, ..., e, be an orthonormal basis of R™. We define ¢: X — R™ by

0(s) = gy(s)eny),

yey

where
1
gy(s) = % max{2c — d(s,y),0}.
Let us verify that ¢ is the desired mapping.
First,if s € X, let B, ={y €Y : gy(s) # 0} = {y € Y : d(y,s) < 2¢}. Then
clearly |Bs| < m. This in particular shows that the sum in the definition of ¢(s)

is in fact finite, hence convergent. Let s,t € X. It is clear that for every y € Y we
have

19,(5) ~ 9u(0)] < ed(s, 1) = 27 "d(s, 1),

C T

and therefore

lels) = el < 32 layls) — g0 < 2m>rd(s,6) = (s, ).
yeEB;UB;

Furthermore, we have

llo(s) = @)l < o)+ le@ll = || D gu(erw || +{[ Do 95 (Bercy)

yEB; yEB:
<2m< —.
T

Hence
dm .
llp(s) = @(®)]] < — min{r~*d(s, ), 1},

and therefore the condition (2) in Lemma [3.1]is satisfied with B = 42,
Now, let s,t € X be such that 4c = 7+ < d(s,t) < 7% = éc. Then B,N B; =)
and the vectors ey, for y € Bs U B; are mutually orthogonal, and therefore

lo(s) =N = D lay ()1 + D lay (.

yEB; yeB;

Since Y is a c-net, there is a y € Y such that d(y,s) < c¢. Then gy(s) > %, and
therefore [|¢(s) —¢(t)|| > 3. Hence the condition (1) in Lemma is satisfied with

— 1 :
A = 5 and the proof is complete. O

4. THE DIMENSION OF THE RECEIVING EUCLIDEAN SPACE

Let K > 2 and « € (0, 1) be fixed. Let us inspect the above proof of Theorem [L.2]
to see how large the dimension N (K, «a) it gives. We are interested in an estimate
from below. At the beginning of the proof we choose an arbitrary 7 € (0,1). Then

we take m € N such that m > K2+1°g2(%+4), and A = % and B = 477”. The
dimension N (K, «) is then equal to 2mn, where n € N is such that
Fno 7_n(l—oz) A T

< = .
1—7’0‘+1—Tl_0‘ B 8m

Then we must have
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and therefore

T(1—-7%) 871
log, ( 8m ) B log, (T(lfr‘Lro‘)) _ logy 8 + logy m — logy (7(1 — 7))

n >
alogy T alog, alog,
o logym _ log, K2 Hosa(F+4) ~ (2410gy (£ +4))log, K
~ alog, % - alog, % N alog, %

S log, %log2 K logy K
alogyt o

Similarly, we must have
7.n(l—a) T

— <
1—7l- " 8m

)

and therefore
logy K

l1—a
Hence

1 1
n>1og2K1rnax{7 }
a'l—a
It follows that no matter which 7 € (0,1) we choose at the beginning of the proof

we obtain
1 1

N(K,a) =2mn > 2K410g2Kmax{, }
a'l—a
(here we used the fact that m > K2+l°g2(%+4) > [2tlogad — K*). In particular,
the construction gives N(K, @) — oo as @ — 0 and also as aw — 1. Is this necessary?
To answer this question, we can start by trying to optimize the constants that

come into the construction. For example, it is not clear at first sight whether we
can take some m < K 2+log (1+4) that would work as well. However, let us take a
different point of view. In this context, the notion of Assouad dimension introduced
after Theorem [T.2] proves useful. Let us denote the Assouad dimension of a metric
space (X, d) by dim4(X,d). It is not difficult to prove the following facts (see also
[As]).

e dim4(R™) =n for every n € N.

o dimu(X,d*) = L dim4(X,d) for every o € (0,1).

o If (X,d) admits a bi-Lipschitz embedding into a metric space (Y, d), then

dimy (X, d) < dimy (Y, 4).

It follows that if (X, d) is a doubling metric space and « € (0,1), then in order to
have a bi-Lipschitz embedding of (X, d®) into R" we must have n > 1 dim (X, d).
In particular, in Theorem we must have N (K, a) — oo as o — 0 for any K > 2
(by taking e.g. X = R). However, note that if a € (b,1) for some b € (0,1), then
this method does not show any obstruction for having a bi-Lipschitz embedding
of (X,d*) into R™ for some n € N independent of a. It turns out that this is
not accidental. Indeed, Naor and Neiman [NNJ Theorem 1.2] proved the following
theorem.

Theorem 4.1 (Naor, Neiman, 2012). For every K > 1 there is an N = N(K) € N
and for every K > 1 and a € ($,1) there is a D = D(K,a) > 1 such that for
every metric space (X,d) with a doubling constant K, the space (X,d®) admits a
bi-Lipschitz embedding into RN with distortion at most D.

Note that the theorem holds true if we replace % with any fixed constant b €
(0,1). The point is to have o bounded away from 0. Let us mention that the proof



ASSOUAD’S EMBEDDING TECHNIQUE 7

in [NN]| gives the estimates

log K\ ”
N(K) < Clog K and D(K,a) < C (fg > :
-«
where C' > 0 is some absolute constant. We will not discuss the proof of Theorem
here. Let us just say that the proof of Naor and Neiman is probabilistic. Later,
David and Snipes [DS] found a non-probabilistic proof of Theorem based on the

original construction of Assouad.
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OBSTRUCTION TO UNIFORM OR COARSE EMBEDDABILITY
INTO REFLEXIVE BANACH SPACES

A. DALET

ABSTRACT. This paper is based on the paper [11] of N. J. Kalton. The main
result is that c¢p cannot be uniformly or coarsely embedded into a reflexive
Banach space. In order to prove it, we will present a Ramsey type argument
and Kalton’s property Q, which used together permit to rule out coarse or
uniform embeddings into reflexive Banach spaces.

1. INTRODUCTION

Let (M,d), (N,d) be metric spaces and f : M — N be any map. For ¢ > 0,
define
or(t) = nf{6(f(2), f(y)); d(z,y) =t}
and
wr(t) =sup{d(f(z), f(y)); d(z,y) <t}
The map f is said to be:
e a coarse embedding if t_1>i+moo @r(t) = 400 and wy(t) < +oo, V¢ > 0. Then

M coarsely embeds into N.
e a uniform embedding if 7}in%wf(t) = 0 and ¢¢(t) > 0, V& > 0. Then M
—

uniformly embeds into N.
e a strong uniform embedding if f is a coarse and a uniform embedding.
e a Lipschitz embedding if there exist A, B > 0 such that for every z,y € M,

Ad(z,y) < 0(f(x), f(y)) < Bd(z,y).

In 1974, Aharoni [1] proved that every separable metric space can be Lipschitz
embedded into ¢y. There exist quantitative versions of this result due to Assouad
[4], Pelant [17] and finally the sharp constant of distortion is 2 and is given by
Kalton and Lancien in [13]. It is an open question to know whether there exist
other Banach spaces into which every separable metric spaces can be Lipschitz
embedded.

This question is equivalent to the following: if ¢q Lipschitz-embeds into a Banach
space, does it imply that it linearly embeds into this space? In [10] Kalton proved
that there exists a Banach space into which ¢y strong uniformly embeds but does
not linearly embed. More precisely, for any non trivial gauge w and any metric
space (M, d), the Lipschitz-free space over (M,w o d), denoted F, (M), is a Schur

R+ — R+

space. Now w : t*, t<1 is non trivial, thus F,(cp) is a Schur
t
t, t>1
space. Moreover it is easy to see that the identity from (co, || [|oo) to (co,w o] - [|oo)

is a strong uniform embedding. It is known from [9] that (cp,wo]| || ) isometrically
1
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embeds into its Lipschitz-free space. Finally, we conclude that ¢y strong uniformly
embeds into F,(cg), which is a Schur space, hence ¢y cannot be linearly embedded
into it.

It was proved independently by Christensen [7], Mankiewicz [15] and Aronszajn
[3] in the 70’s that if a separable Banach space X Lipschitz embeds into a space
Y with the Radon-Nikodym property, the embedding admits a point of Gateaux-
differentiability and one can deduce that X linearly embeds into Y. Thus, because
every reflexive space has the RNP, it is not possible to find a reflexive Banach
space which is universal for Lipschitz embeddings of separable metric space, but
one can ask whether there exists a reflexive Banach space into which every separable
metric space could be uniformly or coarsely embedded. Following a paper of Kalton
[11] (see also [14] or [8]) we will prove that there exists no reflexive Banach space
containing uniformly or coarsely the space cg. More precisely we will define a
property, failed by cg, and prove that a Banach space failing this property cannot
be uniformly or coarsely embedded into a reflexive Banach space. This implies
a previous result: Mendel and Naor proved in [16] that ¢y cannot be coarsely
embedded into a super-reflexive Banach space. However Baudier obtained in [5] that
any Banach space without cotype contains strongly uniformly every proper metric
space. In particular (@iﬁ’jﬁﬁo) which is reflexive, contains strongly uniformly
every proper metric space.

27

Section 2 is about Ramsey theory and is devoted to the proof of a Ramsey type
argument due to Kalton [11]. In section 3 we introduce the Q-property and prove
that a Banach space failing it cannot be uniformly or coarsely embedded into a
reflexive Banach space. In section 4 it is proved first that a stable Banach space
has the Q-property. Then we present a theorem which permits to rule out the
Q-property and we use it to prove that the James space J and its dual fail it. To
conclude this section, we focus on the space ¢y and prove that it does not have the
Q-property. Then we prove a stronger result of Kalton: ¢y cannot be uniformly
or coarsely embedded into a Banach space having all its iterated duals separable.
Finally in section 5, we compare the structure of the paper [11] with the proof of
the fact that C[1,w;] cannot be uniformly embedded into ¢ in [12].

2. PRELIMINARIES: RAMSEY THEORY AND SPECIAL GRAPHS

Let M be an infinite subset of N and k € N. The set G(M) is the set of all subsets
of M of size k. We will write an element 7 of G(M) as follows: 7 = {ny,...,nk},
with nqy < -+ < ng.

First we state Ramsey’s theorem (see [18]):

Theorem 2.1. Let k,r € N and f : G,(N) — {1,...,r} be any map. Then there
exists an infinite subset Ml of N and i € {1,...,7} such that for every m € Gi(M),

fm) =i
It is not difficult to deduce a topological version of this result.
Corollary 2.2. Let (K,d) be a compact metric space, k € N and f : Gx(N) — K.

Then for every € > 0, there exists an infinite subset M of N such that for every
n,m e Gk(M)7 d(f(ﬁ)mf(m)) <E&.

We can think about a result as a part of Ramsey theory if for a given coloring
of a mathematical object, there exists a sub-object which is monochromatic.
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From now we will follow the paper of Kalton [11] (see also [14], [8]). For an
infinite subset M of N, endow the space G(M) with the following metric d: two
distinct subsets @, m € Gi(M) are said to be adjacent (d(m,m) = 1) if

ny<mp<ng <o <ng<mgor mp<ng <me < <myg < N

We will write @ < ™ when nj < mq. In this case, d(7,m) = k.

We will start by a Ramsey type result which will be useful to give an obstruction
to uniform and coarse embeddability into reflexive Banach spaces. Before to state
it we need some tools.

Let X be a Banach space, k € N, f : Gx(N) = X a bounded map and U a
non-principal ultrafilter on N. We define a bounded map 9y f : Gx—1(N) — X** as
follows:

Vn € Gk_1(N), auf(ﬁ) = w*- 1irenuf(n1, ey M—1, nk).
ng

We can iterate this procedure for 1 <r < k: 9/, f : Gx—(N) — X @) where X @)
is the 2r-th dual of X. Then 9f f is an element of X (2%).

Proposition 2.3. Let f : Gx(N) — R be a bounded map. Then for every e > 0,
there exists M, an infinite subset of N, such that:

Vi € Gr(M), |f(m) — 0 f| <e.

Proof. Let € > 0. By induction on j € N, we will construct M = {mq,...,m;,...}
such that if @ C {my,...,m;} is of size i < min{j, k}, then |9} f(7) — Of f| < &
e Because
O f=w*-lim ... lim f(ny,...,n.)

ni1 €U ng €U
and for m € N,
k—1 * . .
=w*-lim ... 1
Oy~ f(m) =w" - lim ... lim f(m,na, ... )
we can deduce that there exists m; € N such that [0} f(my) — 9 f| < e.
e Assume my < --- < m; chosen.

Let 1 < i <min{j,k—1} and 7 = {nq,...,n;} C {m1,...,m;}. Then

for m > my,

o rmum) — o @) <w'- lim lim ... i T M,
‘ U f(n m) u f(n)| S w nli{%u nwgréu n;irenu |f(n17 s Mg, T, M2, 7nk)
- f(nl, ey My M 15 M2+ v e ,nk)|

Thus there exists Az € U such that for every m € Az, m > m; and

w*- lim lim ... lim |f(ny,...,n5m,Np0, ..., 1K)
n;+1 €U n;y2 €U ni €U

— f(nl,...,ni,ni+1,ni+2,...,nk)|) <e€

Moreover the intersection A of all Az is not empty and belongs to &. Thus
pick mjit1 € A.
Then for every @ = {ny,...,n;} C {mq,...,m;},1 <i<min{j k — 1},
O @O M) = Ofif| < 1oy TV F UMy ) = B ) + |0l £ () — O
< 2
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We deduce the result with 7 = k. O

It is possible to generalize this result to bounded maps which takes values into
a Banach space X.

Lemma 2.4. Let f: G,(N) — X be a bounded map. Then for every € > 0, there
exists M, an infinite subset of N, such that:

Vi € Gr(M), | @) < 10 f]l +ws(1) +e.

Proof. For two bounded maps f : Gx(N) — X and g : Gi(N) — X*, define
f®g:Gau(N) = Rby f®gn)=(f(n2,n4,...,n2k), g(n1,n3, ..., n2k-1)).
Then 07(f @ g) = Ouf @ dyg. Indeed,

a[/[(f ® g)(”h AR n?k—l) = 11H€1u<f(n27 Ny, .- ’an)7g(n17n37 s 7n2k—1)>
nak

= (Ouf(ng,...,nok—2),9(n1,...,Nok—1))
thus

3124(f®9)(7l1,-~-7n2k—2) = N lim <8Mf(n2an4a---an2k—2)ag(n17n37“-an2k—1)>

2k—1E€EU

= (Ouf(na,...,nox—2),0ug(ni,...,nox_3))
= (Ouf ® Oug)(ni,...,nak—2).
In particular, 9% (f ® g) = 0} f ® 9 g.

Let f : Gx(N) = X be a bounded map. Hahn-Banach theorem gives a map
g from Gi(N) to X" such that for every 7 € Gi(N). (f(7).g(m)) = [ £(7)| and
llg(m)|| = 1. Tt follows,

107 (f @ 9)| = |94 f @ Oyl = 104 f. 0| < 9L FN|O%all = 1104 £

The map f ® g : Gox(N) — R is bounded, then we can apply Proposition 2.3
and for every € > 0 there exists A an infinite subset of N such that for every
m € Gox(A),|f @ g(m) — 02F f @ g| < &, hence

[f @ 9@ <e+ |07 f @ gl <e+ 04 f].
Now we enumerate A = {m; < n; < mg <ng < --- <m;j <nj; <...} and set
M = {ml,...,mj,...}.

Let m € G (M), then for any p € G (A) which is adjacent to 7 (such a p exists

by the definitions of A and M), we have

LF @) = {f (), 9(m)) = (f(P), 9(m)) + {f () — f(P), 9(n))
< f®glnipr, .. nepe) + 1 @) = F@)IIlg@)]|
<e+ 0 fIl +w(d@p) = e + |0 fIl +wy(1)

We can now state the result we will use to prove the main theorem:

Corollary 2.5. Let X be a reflexive Banach space and f : G(N) — X be a bounded
map. Then for every e > 0, there exists M, an infinite subset of N, and x € X such
that:

Vi € Ge(M), [|f(7) — =] <ws(1) +e.
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Proof. Since X is reflexive there exists 2 € X such that 8ff = z. We define a
bounded map g : Gx(N) — X by g(n) = f(n) — «z, for all @ € Gi(N). Clearly
0kg =0 and wy(1) = wy(1). Finally by a direct application of the previous lemma:

Ve > 0,3M C N: Vi € Go(M), [g(m) | < 9kg]l +wy(1) + .

That is,
Ve >0,IM C N:Vr € Gi(M), || f(7) — x| < wf(1) +e.

3. OBSTRUCTION TO UNIFORM OR COARSE EMBEDDINGS INTO REFLEXIVE
BANACH SPACES

Given (M, d) a metric space, € > 0 and § > 0, we say that M has the Q(g,d)-
property if for every k € N, for every map f : G(N) — M with ws(1) < 6, there
exists an infinite subset M of N such that:

vn <m e G(M), d(f(n), f(m)) <e.

We define A () as the supremum over all 6 > 0 such that M has the Q(g, d)-
property.

The key result of this paper is the following:

Theorem 3.1. Let (M,d) be a metric space.
(1) If M uniformly embeds into a reflexive Banach space, then

Ve > 0,Ap () > 0.
(2) If M coarsely embeds into a reflexive Banach space, then

i Bu(€) = o
Proof. Let X be a reflexive Banach space and h : M — X be any map.
We will prove that for every 6 > 0 and f : Gp(N) — M a map such that
wf(1) < 0, there exists an infinite subset M of N so that for every m < p € Gi(M),
en(d(fm), f(P)) <4 wi(d) and conclude.

Let 6 > 0 and f : Gx(N) = M be a map such that wy(1) < 6. We can apply
Corollary 2.5 on the map ho f : Gx(N) = X, with € = wpor(1), to obtain M, an
infinite subset of N, and € X such that for every m,p € Gy (M),

[ho f(m) —ho f@) <[[ho f(m) -zl +[hef(P) -zl <4 whos(l) <4wn(d)

The last inequality holds because we clearly have wpof(1) < wp(0).

(1) Uniform embedding. Let ¢ > 0, then there exists o > 0 such that
vr(e) >4 a and § > 0 so that w,(0) < a.
For this 6 > 0, for every f : Gx(N) — M such that wy(1) <, there
exists an infinite subset M of N such that ¥7r < p € G (M),

er(d(f(m), f(P))) <4 wn(d) <4 a<pn(e)

We finally conclude that d(f(m), f(p)) < e, M has the Q(e, §)-property and
YANY: (6) > 0.
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(2) Coarse embedding. Let ¢ > 0, then there exist 8 > 0 such that w,(6) < 8
and ¢ > 0 such that @, (t) > 4 .
Let € be greater than ¢. Then for every f : Gi(N) — M such that

(,Uf(l

) < 6, there exists an infinite subset M of N such that Vii < p € G (M),
en(d(f(m), f(D))) <4 wn(d) <48 < en(t) < onle).

Then d(f(7), f(P)) < e and Aps(e) > §. To conclude, lim Ays(e) = +o0.

e—>+

Which completes the proof. O

In the case where X is a Banach space, the function Ax has some particular

properties:

Lemma 3.2. Let X be a Banach space.

(1) There exists 0 < Qx < 1 such that for every e >0, Ax(e) = Qx - €.
(2) For every 0 <e <1, we have Ax(e) = Ap, (¢).

Proof.

(1) To prove that there exists a constant Qx > 0 such that for every ¢ > 0,
Ax(e) = Qx - ¢, it is enough to prove that for every A > 0 , we have
Ax(A-e) = A-Ax(e). To do so consider 6 > 0 and prove that § < Ax(A-¢)
is equivalent to 6 < X\ - Ax(e), exanching the role played by the fonctions

fand f/\

We will now prove that Ax (1) <1 and then conclude that Qx < 1.
Consider (z,,)ren a sequence in X such that for all m # n, ||z, — x| =1
and f: G1(N) = X defined by f(n) = z,,Vn € N. In this case wy(1) =1
and for every n # m, ||f(n) — f(m)]| =1, thus Ox = Ax (1) < L.
(2) Finally let 0 < e <1 and prove A, () = Ax(e).

Because Bx is a subset of X it is easy to see that Ap, () > Ax(e)
for all € > 0.
Let k € N and f: Gx(N) — X be a map.
Remark that if there exists an infinite subset M of N such that for every
n<m € Gy(M),||f(m) — f(m)| < e, then the image of G\(M) by f
belongs to a ball of radius 1. Indeed if M = {m; < --- <my < ---},
denote M = (mq,...,my) and M’ = {my41 < - < m; < ...}
Then for every m € G (M'), we have ||f(7m) — f(m)| < e < 1, thus
F(Gx(M)) C £() + By.
So we can consider only f : Gx(N) — X so that there exits M and
xo € X such that f(Gr(M)) C 2o+ Bx and ws(1) < A, (¢). Now for
n € G (M) define g(m) = f(7) — xo9. Because g : G(M) — Bx and
wy(1) < Ay (g), there exists M’ an infinite subset of M such that for
every 71 < 7 € G (M), llg(m) — g(m)|| < =, that is || () — £ ()| < e.
Finally we can conclude that Ax(e) > Ap, (¢).

U

Thanks to this Lemma we are ready to define the so called Q-property:

Definition 3.3. We say that a Banach space X has the Q-property if Qx > 0.

We can use Theorem 3.1 in order to give an obstruction to uniform or coarse
embeddings into reflexive Banach spaces in terms of property Q.
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Corollary 3.4. Let X be a Banach space which fails the Q-property. Then

(1) Bx cannot be uniformly embedded into a reflexive Banach space.
(2) X cannot be coarsely embedded into a reflexive Banach space.

Proof.

(1) Assume that Bx uniformly embeds into a reflexive Banach space. Then
for every positive €, Ap, () > 0. But Ap, (1) = Ax(1) = 9x -1>0, so
finally X has the Q-property.

(2) Assume that X coarsely embeds into a reflexive Banach space. Then

lim Qx - = EETOCAX(E) = 400, hence Qx # 0 and X has the O-

e——+o00
property.
]

4. EXAMPLES

4.1. Reflexive spaces. It is clear by Corollary 3.4 that a reflexive Banach space
has the Q-property.

4.2. Stable spaces. Recall that a metric space (M,d) is stable if for every se-
quences (Tn)nen, (Yn)nen in M, if the following limits exist, then

e n 8 o) = i g s )

It is proved in Section 2 of [11] that a stable metric space strongly uniformly
embeds into a reflexive Banach space. So we deduce that a stable Banach space
has the Q-property. But we will prove this by another way: the next proposition
is proved by a Ramsey type argument.

Proposition 4.1. Let (M,d) be a stable metric space and f : G,(N) — M a
bounded map. Then for every e > 0 there exists M, an infinite subset of N, such
that for every m < m € Gi(M),

d(f(m), f(m)) < wp(l) +e.

Proof. Since f is bounded, applying Theorem 2.1, we can find an infinite subset M
of N and a > 0 such that for every p,q € Gx(M), |d(f(P), f(q)) —a| < .
Let U be a non-principal ultrafilter which contains M. Then,

e e
A N i, i AT F) < 51

and because M is stable (see Lemma 9.19 in [6]),

li ol lim ... Li I m)) < 1).
Jim .t T n;glud(f(n)af(m)) <wy(1)

Then, one can find m; < --- <my <n; <--- <nyg such that

A, F() < wp(1) + 7.

Therefore,
€

a < d(f(m), Fm) + -

Finally for every p,q € G (M),

d(f(p), f(@)) <

3

g

4+a<wf(1)+€.
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Corollary 4.2. A stable Banach space X has the Q-property.

Proof. Let € > 0 and f : Gx(N) — X be such that wyr(1) <

bounded and we can use the previous proposition to obtain an infinite subset M of

In particular f is

Nl o

N such that for every m < m € Gx(M), || f(7) — f(M)| < ws(1) + g <eg, that is X
has the Q-property. O

4.3. Some Banach spaces failing the O-property. The following result will
be useful to prove that some spaces do not have the Q-property.

Theorem 4.3. Let X be a Banach space with the Q-property. Then for every e > 0
and every (Tn)nen bounded sequence in X with a w*-cluster point x** € X**, there
exists a subsequence (Yn)nen Of (Tn)nen such that
2k
Vk e N, Vi1 € Gox(N), || Z(—l)jynjﬂ > (1—¢)Qxkd(x™, X).

j=1

Proof. Let € > 0 and (z,,)ren be a bounded sequence in X with a w*-cluster point
x** € X**. We will denote B := sup ||z, || and 6 := d(z**, X'). We can assume that
neN

1 € 1 eQx0
0>O Let>\>1andP€NbeSuChthat ﬁ21—§and FS m
First it is possible to extract a subsequence (v,)nen Of (2, )nen such that for
every 1 < m < n and every sequence (aj)}‘:l of positive numbers such that

m n
E aj; = E a; = 1,
j=1

j=m-+1

we have
n

m
0
1> ajvo;— > ajvll > X
=1

j=m-+1

We will prove that one can find a subsequence (yp,)nen Of (v )nen such that for
every k > 1, there exists by > 0 such that for every @ € G (N),

0 2k ‘
b= < § 1(—1)]ynj | < bx.
iz

GQ (N) — R
no= ||vn1 — Un,y ”
using Ramsey’s theorem, one can find b; > 0 and ¢; : N — N an increasing bijection

such that:

Consider first g; : . Since the sequence (v, )nen is bounded,

0
Vm € Gz(gﬁl(N)), by — F < gl(ﬁ) < by.

Now for a fixed k € N, assume that for every 1 <1 < k—1, ¢; is constructed such
ng (N) — R
. . . 2k _
that ¢;(N) is extracted from ¢;_1 (N). Consider gy, : 7o | Zl(_l)JU”j |
j=
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As previously there exists by > 0 and ¢y : N — N such that:

0
VﬁGGQk(ng"'O(Pk(N)) bk_ﬁ<gk( )<bk

N — N

n = @ro---oppy(n)
Y(ny) = @1 0---0pg(n1). Thus the subsequence (vy(,))nen verifies: for every

k € N, there exists a constant by such that Vi € Gox(N) verifying nq > %, we have

If we define ¢ : , we obtain that if ny > %, then

bk——<HZ 0y || < br.

We will denote the subsequence (v¢(n))n€N by (yYn)nen-

Gk(M) - X
Fix k € Nand set M = {n € N; n > £}. Define f : —— z:ynj.VVe
i=17
have
wg(l) =sup HZyn] Zym]H, <m1<n1<m2< S < my < ny

k
=sup { || Z(* Z/m 5 = < ny <o <ngk p < bg.

Since X has the Q-property, there exists M/, an infinite subset of M, such that for
_ , _ _ b
every m <™m € Gy (M), [[f(m) — f(m)]| < 5 So,
X

e k> L -3 =l - sl < 2 < B
\ L Y T L Yma AR Ox = Ox
j=1 j=1
k-0
that is b, > QXT
Now if @ € Gox(N), one can find m € Gar,(M ) such that
2k 2%k 2k
p 2Bk ) 2Bk
1> =1y, + D> (1) ym, | < —= or || Z Y yny; = D (=1 ym, || < -5
Jj=1 Jj=1 j=1
Finally,
) 2Bk 0 2Bk kO 2Bk
1Dy, || > — Bt N "
317002 I 1y | = 25 2 b= = T > b= =
Oxkb eQxkb
> - 0+ 2B) > kO 1-—
=T (2(23+9)>( +2B) 2 k6Qx (1 -¢),
which concludes the proof. ([

Corollary 4.4. The James space J and its dual J* fail the Q-property. In partic-
ular they cannot be uniformly or coarsely embedded into a reflexive Banach space.
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n
Proof. Let (en)nen be the canonical basis of J and z, = ) e;, n € N. With the
j=1

notations of Theorem 4.3, we have z** = (1,...,1,...) € J** and d(z**, X) = 1.
For every k € N and every 1 € Gox(N),

2k
1D (=1, lls = (2k)"/2
j=1

Finally assume J has the Q-property, that is Q; > 0. Then for every ¢ < 1, one
can find k € N such that (1 —)Qsk > (2k)Y/2. Thus (2, )nen does not verify the
conclusion of Theorem 4.3.

In the case of J* we consider the sequence (€}),cn which converges to an element
of J*** of norm 1. Moreover for every k € N and every m € Gox(N), we have

2k ]
[ >2(=1)%e, |
j=1

7+ < kY2 and we conclude as previously.

The second part of the result is just a consequence of Corollary 3.4. (]

4.4. The space cy.

Corollary 4.5. The space cq fails the Q-property. In particular ¢y cannot be uni-
formly or coarsely embedded into a reflerive Banach space.

Proof. We will prove that the summing bases of ¢y does not verify the conclusion
of Theorem 4.3. .

Let (en)nen be the canonical bases of ¢y and z, = ) e;, n € N. With the
j=1

notation of Theorem 4.3, we have z** = (1,...,1,...) and d(z**,X) = 1. Tt is

2k A
clear that for every k € N and every @ € G2x(N), we have || > (—=1)/z,,|| = 1.
j=1
Finally assume ¢y has the Q-property, that is Q., > 0. Then for every ¢ < 1,
one can find k& € N such that (1 —€)Q.,k > 1. Thus (z,)nen does not verify the

conclusion of Theorem 4.3.

The second part of the result is a consequence of Corollary 3.4. O

In fact in [11] Kalton proved, before the introduction of the Q-property, that ¢
cannot be uniformly or coarsely embedded into a Banach space such that all its
iterated duals are separable. This result is stronger because all iterated duals of J
are separable and this space fails the Q-property.

Theorem 4.6. Let X be a Banach space such that all its duals are separable. Then
co cannot be uniformly or coarsely embedded into X .

Lemma 4.7. Let X be a Banach space such that for every k € N, the 2k-th dual
XK of X is separable. Then for every uncountable family (fi)icr of bounded
functions f; : Gx(N) — X and for every e > 0, there exist i # j and M, an infinite
subset of N, such that

vi e Gp(M), [|fi(m) — f;(M)]| < wp(1) +wp; (1) +e.
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Proof. For every i € I, 9f, f; belongs to X (®*) and this space is separable thus there
exist ¢ # j such that |0}, fi — 05 f;|| < 5.

Now if we apply Lemma 2.4 to f; — f;, we obtain M an infinite subset of N such
that for every m € G (M),

€
1£:) = f5@ = (i = )@ < 106 (i = F)ll + wpom g (1) + 3
< wfi_fj(]‘) +e< (.Ufi(l) + (.ij(l) +e.
O
Proof of Theorem 4.6: Let X be a Banach space having all its iterated duals sepa-

rable and A : ¢g — X be a map. We will prove that h cannot be a coarse or uniform
embedding. First, we can assume that h is bounded on bounded sets.

Let (en)nen be the canonical basis of ¢y and define, for every A infinite subset
of N,

sa(n) = Z er,n € N,

r<n
reA
Let £k € N and 0 < t < +00 and define, for every A infinite subset of N,
Gk (N) — O

Ia: _

k
no—= t)y sa(ny)
=1

We have {hofa; A infinite subset of N} an uncountable family of bounded functions
ho fa : Gx(N) —» X then we can apply Lemma 4.7: for every £ > 0, there exist
A # B and M, infinite subsets of N, such that

Vi€ Gp(M), [[ho fa(@) = ho fa(@)| < who, (1) + wnops(1) + ¢

Moreover, we have wpof, (1) < wp(t), for every D infinite subset of N. Indeed
wry (1) <t and whofy, (1) = wh(wyy (1)) < wa(?).
Thus we have A # B and M, infinite subsets of N, such that for every @ € G (N),

[[ho fa(m) = ho fa(m)]| < 2wn(t) +e.

Since A # B are infinite, there exists p € G (M) such that ||fa(P) — fa(D)| = kt.
Hence, op(kt) < ||ho fa(D) — ho fz(D)| < 2wr(t) + &, for every e > 0. Finally we
have

VEk € NVt > 0, pp(kt) < 2wy ().

We will now distinguish two cases to prove that h cannot be a coarse or a uniform
embedding:

e Uniform embedding. If }iH(l) wp(t) = 0, we deduce that for every ¢ > 0,
L—

¢n(t) = 0 and conclude that h cannot be a uniform embedding.

e Coarse embedding. If for every ¢ > 0, wy,(¢) is finite, we can deduce that
, li+m pp(t) is finite, that is h is not a coarse embedding.
— 400

O
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5. LIPSCHITZ AND UNIFORM EMBEDDINGS INTO fo

To conclude we mention that in [12] Kalton follows the same ideas to prove that
C[1,w1] cannot be uniformly embedded into £, where w; is the first uncountable
ordinal.

For every k € N we define G (w1) the set of all subsets of w; of size k. We keep
the same notations as previously and define a distance d over G (w;) in the same
way. Kalton proved the following results:

Theorem 5.1 (To compare to Corollary 2.5). Let f : Gp(w1) — Lo be a Lipschitz
mapping with Lipschitz constant L. Then there exist x € {o, and ) C wy such that
for every @ € G(9),

5@ 2l < 5.

As a corollary (to compare to Corollary 4.5) it is proved:

Corollary 5.2. The Banach space and C[1,w1] cannot be uniformly embedded into
loo -
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Influence of uniform asymptotic smoothness on
small compression embeddability.

Abstract

Following the exposition of N.J.Kalton and N.L.Randrianarivony
in [KR], we will introduce some techniques related to metric midpoints
and the notion of asymptotic uniform smoothness in order to study
some results concerning the uniform structure of Banach spaces. In
particular, we will show that £, ® ¢ is not uniformly homeomorphic
to L, for 1 < p < co. As in the recent paper of F. Baudier [B],
we also will use the techniques from [KR] to compute the compression
exponent ay, (£,) of the embeddings of £, into £,, when 1 < p < ¢ < oo.

1 Introduction

In this note, we will discuss useful tools for the study of uniform embeddings
of metric spaces. These methods are particularly relevant for Lebesgue se-
quence spaces £, or more generally £,-sums of Banach spaces.

A Banach space B has unique uniform structure if whenever E is a Banach
space uniformly homeomorphic to B, then FE is linearly isomorphic to B.
The space £, is known to have unique uniform structure for 1 < p < oo, by
a result of W.B. Johnson, J. Lindenstrauss and G. Schechtman in [JLS]. It
was also asked in [JLS] if £, @ f2 has unique uniform structure : the answer
is still unknown. The uniqueness of the uniform structure of L, is still an
open question as well. As ¢, @ {2 is a complemented subspace of L,, it is
natural to ask if the two latter spaces are uniformly homeomorphic. The
authors of [KR] proved the following theorem.

Theorem 1 (Theorems 5.2 and 5.6 in [KR]) Let 1 < p < oo, p # 2. The
space £, ® Ly is not uniformly homeomorphic to Ly,.

We will show that this result follows from two other interesting facts
: for p < r < 2, the space £, ® {2 is not uniformly homeomorphic to any
Banach space containing a copy of ¢,; and for 1 < p < oo, p# 2, £, ® {5 is



not uniformly homeomorphic to any Banach space containing (3 £2)e, .
The proofs of the results in [KR] rely on the combination of two main ideas.
The first idea is the use of metric midpoints in the study of coarse Lips-
chitz embeddings, which yields some restrictions for embeddings between
¢p-spaces or f,-sums of Banach spaces. The second idea is the notion of
asymptotic uniform smoothness which was used in the form given in the
next theorem. We denote by Gi(M) the set of k-tuples of elements of a
subset Ml C N, equipped with the distance

d((n1, i), (m, ) = %\A A B

where A = {ny,..n;} and B = {mq,...my}.

Theorem 2 (Theorem 4.2 in [KR]) Let 1 < p < oco. Let X be a reflexive
Banach space such that

limsup ||z + 2, |7 < [|2|[P + limsup ||z,[[P ()

for all x € X, and all weakly null sequence (xy)n in X. Assume that M is
an infinite subset of N, and that f : Gx(M) — X is a Lipschitz map. Then
for any € > 0, there exists an infinite subset M of M such that

diam(f(Gx(M'))) < 2Lip(f)k"/? + .

G. lancien noticed in [L] that the tools used in [KR] can be used to give
a very simple proof of the fact that ¢, is not uniformly homeomorphic to
¢, when 1 < p,q < o0, p # g(recall that a more general fact is known for
1 < p < oo since £}, has unique uniform structure). More precisely, he proved
the following result.

Theorem 3 (Corollaries 4.8 and 4.10 in [L]) Let 1 < p,q < oo, p # q. Then
¢y, does not coarsely Lipschitz embed into .

Theorem 2 was also used by F. Baudier in [B] to compute the £4-
compression of £, denoted by ay, (£,).

Theorem 4 (Corollary 2.19 in [B]) Let 1 < p < ¢ < co. Then

p
Qy, (Ep) = 6



In the sequel, we assume the reader familiar with the following notions re-
lated to metric embeddings : uniform (coarse, Lipschitz, or coarse Lipschitz)
embeddings (homeomorphisms), Lipschitz (coarse Lipschitz) constants, the
Lipschitz for large distances principle, compression exponent of an embed-
ding.

This note is organized as follows. In section 2, we discuss the metric mid-
points technique. Section 3 is devoted to asymptotic uniform smoothness
and the proof of Theorem 2. In section 4, we show Theorem 1 and Theorem
3 with the tools introduced in the two previous sections. In section 5, we
give the proof of Theorem 4.

Sections 2,3 and 4 follow the exposition of [KR]. This note was also in-
spired by the course [L] where much more can be found on related subjects,
and in particular on the use of the uniform asymptotic smoothness modulus.

Notations :

Bx (resp. Sx) : the closed unit ball (resp. sphere) of the space X
[vi]; : the closed linear span of the elements (v;);
A < B : there exists a constant C' > 0 such that A < CB

tip ()= sp @O and Lip,, = inf Lip, ()

2 DMetric midpoints

The aim of this section is to show the following proposition.

Proposition 5 (Proposition 3.5 in [KR]) Let (X;); be a sequence of Banach
spaces, and 1 < p<r < oo. Let f: (ZJ X;)e, = £y be any coarse Lipschitz
map. Then, for anyt > 0, 0 > 0, there exist © € (Z] Xj)e,, T >t and a
subspace B C (3_; Xj)e, of the form B = { w = (w;)52; € (32; Xj)e, | w1 =
. =wy =0} for some N, so that for some compact set K C ¢, we have
f(x+7Bg) C K +67By,.

Remark 6 (i) The same result holds for any equivalent norm to the usual
norm on the domain space (3_; X;)g, (this is clear from the proof below).
(ii) One can generalize the previous proposition by replacing the target space
¢, by any finite direct sum of the form (Z?:l bp)e,, for 1< pi,.pp <7<
oo (see Proposition 3.6 in [KR]).

To show Proposition 5, we will use the by now well-known metric midpoint
technique. The latter notion was introduced by Enflo in an unpublished



paper, to show that ¢; and L, are not uniformly homeomorphic.
Let X be a metric space. For x,y € X, and § > 0, the approximate metric
midpoint of x,y with error ¢ is the set

d(z,y)
2

Mid(z,y,d) ={ z € X | max(d(z, z),d(y,2)) < (1+ ) }.

Before proving Proposition 5, we prove three lemmas.

Lemma 7 Let X be a Banach space, and 'Y a metric space. Let f: X =Y
be a coarse Lipschitz map. If Lip (f) > 0, then for any t,e > 0 and any
0 <0 <1 there exist x,y € X with ||z — y|| > t, and

fMid(z, y,0)) € Mid(f(z), f(y), (1 + €)9).

Proof Fix t,¢,0 as in the statement of the lemma. Let v > 0.
Recall that for s > 0, we have Lip,(f) = supg(s y)>s %. We have

also
Lipoo(f) = f Lip,(f) = lim Lip,(f).

S—00
Then there exists s > ¢ such that : Lip,(f) < (1 + v)Lipo(f) (1).
On the other hand, for all s > 0 we have Lipyy;_s5)(f) > Lip,(f). Hence
we can find z,y € X satisfying
llz—y|| >2s(1—6)"" (2), and
A(f(2), £(9)) > (1 — ) Lips (Dl —ol] (3).

Now let v € Mid(z,y, d). By inequality (2) above, and a triangle inequality,
it is clear that ||x — u|| > s. So we obtain

d(f(z), f(u)) < (14 v)Lips (f)|lz — ul| ( by (1) and |[z — ul| > s)
< %(1 +v)(1 4+ 6)Lipo (f)||x — y|| (since u € Mid(z,y,J))

11+v
21 —v

IN

(1+0)(f)d(f(x), f(y)) (by inequality (3)).

Repeating the inequalities above with y and u, we deduce that

1+v
1—v

max(d(f(x), f(u)),d(f(y), f(u))) < % (1+0)(f)d(f (), fy))-

The lemma follows if we choose v sufficiently close to 0. |



Lemma 8 Let 1 < p < oo, and let (X;); be a sequence of Banach spaces.
Let x,y € (Z] Xj)e,, and define u = %(m +y), v= %(x —y). then for any
0 < d <1, there is a closed subspace E={ w = (w;)32; | w1 =..wny =0}
for some N, so that

u+ 6Y/7||v||Bg C Mid(z, y, d).

Proof For p =1, this is easily checked with N = 0.

Let p > 1, and let 0 < v < (((1 + )P — 1)1/P — §/P)||v||. Take N such that
> [vj|[P <vP. Define E := (3_ 5y Xj)e, C (32; Xj)e,-

Let z = §'/P||v||2’ for some 2’ € Bg. By the choice of v, it is clear that
lIz]] < ((1 4 6)? — 1)/?|jv]| — v. We now check that u 4 z € Mid(z,y, §).
Notice that x —u — z = v — z, so we have

e —u—zP < ol + > fvy — 2

J<N j>N
< ll? 4+ (3 fog )7+ (D 1=1)PyP
>N j>N
< ll? + (v + (14 6)P = )P [Jo]| = v)?
< (L+0)P[[ollP.
Hence we have ||z —u —z|| < (1+6)||v||. Since y —u —z = —v — z, we have
also ||y —u — z|| < (14 0)]||v]|, and the lemma is proved. ]

Lemma 9 Let1 <p < oo, x,y € £y, and define u = %(x—l—y), v= %(:E—y)
Then for any 0 < § < 1, there is a compact set K such that

Mid(z,y,8) C K + 26Y/7||v]| By, .

Proof Let v > 0, and write v = (vj)‘]?‘;l € {,. Take N such that
> jsn|vilP < VP Let u + 2 € Mid(z,y,6), and write 2 = 2’ 4 2" where
Pl E() = [ej]jSN and 2" € E = [ej]j>N-

Since we have 2||z|| < ||z = v|| + ||z + v|| < 2(1 + 9)]||v||, we have ||Z'|| <
(1+9)||v||. Hence u+ 2’ € K :=u+ (1+ 9)||v||Ep.

Now from the convexity inequalities

1
lalP < i(la + 0P + |a — bP) for all a,b € C,

we obtain )
|[v][P = vP 4 |27 < 5 v+ 27+ [Jo = 2[[7),

!



and

127117 < ((1+0)7 = D[l + v
< 279][v] "

for v sufficiently small, since ((1 4+ 0)? — 1) < 2P. This shows that 2" €
261/ |v|| By, . u

Now we are able to give the proof of Proposition 5.

Proof of Proposition 5 : If Lip(f) = 0, then for any ¢, there exists
7 > t such that Lip_(f) < 6. Then the conclusion of the proposition holds
with 2z = 0 and K = {f(0)}.

Now we assume that 0 < Lip,(f) = C < oo for some s. Take 0 < v < 1
such that 4CvY/P~1/" < §. By Lemma 7, we can find u,v € (227 Xj)e, such
that ||u — v|| > max(s, 2tv=/") and f(Mid(u,v,v)) C Mid(f(u), f(v), 2v).
Let = 1(u + v), and define 7 = l/l/rH%(u —v)||. By Lemma 8, there is
a closed subspace E = { w = (w;)52, € (3_; Xj)¢, | w1 = ..wn = 0} for
some N, so that z+7Bg C Mid(u, v,v). So f(z+7Bg) C Mid(f(u), f(v),2v).
By Lemma 9, Mid(f(u), f(v),2v) C K + 20YP||f(u) — J()|| By, for some
compact subset K.

Since ||u —v|| > s and C' = Lip,(f), we have

2017\ f (w) = f(0)]] < 20MPC|u — |

= p/r-lror
< JT.

So proposition 5 is proved. |

3 Asymptotic uniform smoothness

The aim of this section is to prove Theorem 2. First of all, we discuss briefly
the assumptions of Theorem 2, in particular the asymptotic smoothness con-
dition (%). We end the section by two remarks concerning the study of the
asymptotic uniform smoothness in the literature.

The reflexivity assumption on the space X is necessary : the non-reflexive
space ¢ satisfies condition (x) for any p, but every separable metric space
can be Lipschitz embedded into ¢y by a result of Aharoni [A].



The /¢,,-spaces satisfy condition (x). Let us check this fact now. Take z, z, €
¢,(X) (for X an infinite countable set) such that (z,), is a weakly null
sequence. Let ¢ > 0, and let ¢, > 0 be positive numbers, I C X a finite

subset such that
Z |zk|P < €’ and Z lex|P < €P.
kI keX

Denote x,, = (Zp 1)k € £p(X). There exists N such that for all n > N, and
all k € I, we have
|xk + $n’k|p < |l‘k|p + 62.

Moreover, by Minkowski inequality, we have

S ok + 2wl < (O 2 VP 4+ S Jwnsl?) /PP

kel kel kel
< (e+ [lznl]).

Hence it follows, for n > N,

||z + z,||F = Z |z + @ 1 |P + Z |2k + 2 i [P
kel kgl

< |[2]|P 4+ € + (e + [[zal])".
By passing to the limsup and letting € tend to 0, this shows that x and
(2 )n satisfy inequality (x).

Now we give the proof of Theorem 2.

Proof of Theorem 2 : The theorem is a straightforward consequence
of the following statement : for any & € N\{0}, any Lipschitz map f :
Gp(M) — X and any e > 0, there exists an infinite subset M’ C M and
u € X such that

£ (n1, ...ng) — ul] < Lip(f)k'P 4 €/2 for all (n1,..ng) € Gp(M').

We show this statement by induction on k. For k = 1, there exists a subset
My such that (f(n))nem, converges weakly (since X is reflexive and the
sequence (f(n)), is bounded in X), and we denote u = lim,ep, f(n) its
limit. Then for all n € M, we have

[f(n) —ul] < i [f(n) = f(m)]|
< Lip(f).



The statement for k = 1 follows immediately.

Now we assume that the inductive statement holds for £ — 1, and let f :
Gr(M) — X be a Lipschitz map, and € > 0.

By weak compactness, there exists an infinte subset My C M such that for
all m = (nq,...ng_1) € Gi—1(M), the sequence (f (7, ng))n, converges weakly
along My, and we denote f(7) its limit. The map f : Gp_1(M) — X is
bounded and satisfies Lip(f) < Lip(f).

Let € > 0. By the inductive assumption, there exists an infinite subset
M; € My and u € X such that

Hf(ﬁ) —ul| < Lip(f)(k; _ 1)1/p €.
By assumption (x), we have

limsup |17, ng) — P < (Lip(F)(k — 1)V7 + &)
nE €M1

+ limsup || f (7, ng) — f(ﬁ)Hp
n, €My

As for the case k = 1, we have

limsup || f (72, nx,) — f(7)|[P < limsup limsup || (7, k) — £ (7, m4,) |7
npeMy ngEM1  n) €My

< Lip(f)P.

Hence we obtain

limsup ||, nx) — ] < (Lip(7)(k — 1)!/% + €)” + Lip(f)?)""”
npeMy

(Llp( PPk A+ fu(eéN'P
Lip(f)k'? + fa(€)

for some functions fi, f2 (depending on L, k, p) which tend to 0 as €' tends
to 0. Then we choose €' so that fa(¢') < €/4. By the inequality above, we
can find an infinite subset M’ C M; such that the following holds

1/ (@) = ul] < Lip(f)k"? + €/2.

This completes the proof of Theorem 2. |

Remark 10 In section 4 of [KW], the authors characterize Banach spaces
with property (my), that is Banach spaces satisfying :

limsup ||2+z,|] = (||z|[P+lim sup ||z,]|P)/? for all weakly null sequence (zy,)n.



Property (my) is obviously a strenghtening of assumption (x). It is shown
in [KW] that the spaces ¢, and the Bergman spaces on the unit disk have
property (mp) for 1 < p < oo and p # 2, whereas L, and the Schatten
p-ideals S), don’t have property (m,).

Remark 11 The following modulus of asymptotic uniform smoothness for
a Banach space X, was introduced by V. Milman in [M] :

oy (t) = sup inf sup (||z +ty|| — 1).
x(£) xesxdim(x/y)@oyesy(ll =1

For instance, we have :

o) = A+ )P -1 X = (3, Fy)e,, where 1 < p < oo and the F),’s
are finite dimensional;

-px(t)=0,for 0 <t <1and X = cp.

For all x € X\{0}, and all weakly null sequence (z,), in X, we have the
following generalization of assumption (%) :

lim sup ||z

))-

limsup ||z + || < [[2]|(1 + px( ]|

This was used in [KR] to prove a more general version of Theorem 2 (see
Theorem 6.1 in [KR], and section 4.4 in [L]).

4 About uniform structure of ¢, ® /;

In this section, we first prove Theorem 1, and then Theorem 3. We will need
the following Ramsey-type argument in our proofs.

Lemma 12 Let X be a Banach space, M be an infinite subset of N, and
f: Gr(M) = X be any map with the property that for some compact set K
and some § > 0, we have f(Gr(M)) C K +dBx. Then for any € > 0, there
is an infinite subset M C M such that diam(f(Gr(M’'))) < 2§ + €.

Proof Decompose f as f = g+ h where g : Gx(M) — K and h :
Gr(M) — 6Bx. By Ramsey’s theorem (applied to a finite covering of K
by balls of radius €/2), there exists an infinite subset M/ C M such that
diam(g(Gr(M))) <e. [

For p < 2, Theorem 1 will be an easy consequence of the following
proposition.



Proposition 13 (see Theorem 5.1 in [KR|) Let 1 < p < r < 2. Then £,
does not coarse Lipschitz embed into £, @ (5.

Proof Let f:{, — £, ® {3 be a coarse Lipschitz embedding. Consider f
as a map into £, G ¢2 and assume (after a rescaling of f) that

|z = yll < [If(x) = FW)II < Cllz — y|| whenever [[z —yl| > 1.

Denote f(z) = (g(x),h(x)). Let k € N, and 6 > 0. By Proposition 5, there
exist 7 > k,x € £, and N € N such that g(x +7Bg) C K + 07 By, for some
compact subset K C £, and where E = [e;]j>n.

Let M={neN|n>N }, and define ¢ : Gx(M) — ¢, by

o(ny,..np) =+ 7k (e, + ... + €n,).

It is clear that k=17 (e, + ... +en, ) € Bg for (ny,...nx) € M, hence we have
goo(Gp(M)) C K +67By,. By Lemma 12, there exists an infinite subset
My C M such that diam(g o ¢(Gx(My))) < 307.

Moreover, we have Lip(p) < 2Y/77k~1/". Indeed, take @ = (ny,...n;) and
7' = (n},...,n;) in M. After reordering (this operation clearly does not
change the computation below), we can assume that n; = n} for i < s, and
that n; # n) for ¢ > s. Notice that in such a case we have d(7,7) = k — s.

Then the following equalities hold :
o) — @)|lr = 7K " [[(eny + - + €ny) = (e + o+ €nr)|r
_ kal/r(z len, |” + ‘en;’T)l/T

i>5
< 7tk Yol am, ).

Then it follows that Lip(h o ) < 2Y/7C7k~Y/". By Theorem 2 (with p = 2,
and e = 21/7C7kY/2=1/7) | we have diam(hop(G(M'))) < 3x2Y/7Crk!/2-1/7,
Thus

diam(f o (GR(M'))) < 3 x 277 (CE/>71/" 4 6).

On the other hand, it is clear that diam(p(Gr(M'))) > 7, so that
diam(f o (G (M))) > 7.
Then the following inequality holds :
1 <3 x 2V (CEV2UT 44).

For k large enough, and 0 close enough to 0, this gives a contradiction. W

10



Corollary 14 (Theorem 5.2 in [KR]) Let 1 < p < 2. Then L, is not
uniformly homeomorphic to £, ® ls.

Proof Because of the Lipschitz for large distances principle, it is sufficient
to prove that L, does not coarsely Lipschitz embed into ¢, © f>. But this is
a well-known fact that ¢, isometrically embeds into L, for 1 < p <r < 2.
Then the result follows from the previous Proposition 13. |

Remark 15 In [KR], a more general version of Proposition 13 is proved
(with an analog proof) in Theorem 5.1. From this version, the authors show
that ¢, © ¢, has unique uniform structure when 1 < p < 2 < ¢ < oo. The
uniqueness of the uniform structure of ¢, @ ¢, was proved in [JLS] for the
cases 1 <p<qg<2and2<p<q< 0.

Now we deal with the case p > 2. The second half of Theorem 1 is
a consequence of the following obstruction for coarse Lipschitz embeddings
into ﬁp @ Lo.

Proposition 16 (Theorem 5.5 in [KR]) Let 2 < p < co. Then there is no
coarse Lipschitz embedding of (3 la2)e, into £y, & ls.

P

Proof The proof is a slight modification of the proof of Proposition 13.
Take f = (g, h) : (D_4l2)e, — l2Doolp satisfying the Lipschitz condition with
constant 1 and C for distances > 1, as in Proposition 13. Let £ € N and
d > 0. For every i, let (e;5); be the canonical basis of the i-th coordinate
space f2 in (Y 42)y,.

By Proposition 5, there exist 7 > k, x € (3_/2)g, and N such that g(z +
TBp) C K + d1By, for some compact subset K C {2, and where £ =
leijli>N,j>1-

Define ¢ : G1(N) — (3_¥€2)¢, by

(p(nl, nk) =x + Tk_1/2(€N+1,n17 ) eN"FLnk)'

Since gop(G(N)) C K+07By,, Lemma 12 implies that diam(gop(Gr(Mp))) <
307 for some infinite subset My C N.

Moreover we have Lip(h o ¢) < Cv/27k~'/2) so by Theorem 2 there exists
an infinite subset Ml C Ml such that diam(G(M)) < 3v2CTk!/P=1/2,

Thus diam(f o ¢(Gk(M))) < 3v27(CkY/P=1/2 1 §). On the other hand, we
have diam(f o ¢(G(M))) > 7. Hence

1 < 3V2(CkYP1/2 1 4),

11



which is a contradiction for large k£ and small §. ]

The following corollary completes the proof of Theorem 1.

Corollary 17 (Theorem 5.6 in [KR]) Let 2 < p < oco. Then Ly is not
uniformly homeomorphic to £, @ (5.

Proof  Since 2 < p < o0, f5 embeds isometrically in L,. Hence (}_{2)y,
embeds isometrically in (Y Lp)g, =~ Lp. Then the result follows from Propo-
sition 16. [

Remark 18 The authors of [KR] also prove (with the same idea but again
with some modification on the embedding of the discrete sets G (M)) that
there is no coarse Lipschitz embedding of (3 £2)e, into £,@¢2 when 1 < p < 2
(Theorem 5.7).

Now using the same tools as in the previous proofs, we prove Theorem

Proof of Theorem 3 : First let 1 <p < q < oo, and let f : {; — £, be
a coarse Lipschitz map. Let 6 > 0. By Proposition 5, there exists = € ¢,
N € N and 7 > 0 (which can be chosen arbitrary large) such that

f(.’L‘+TBEN) C K—F(STng

for some compact subset K C ¢, and Enx = [ej]j>n. For n > 1, define
ZTp = ¢+ TeNtn. Then ||z, — zy|| > 7 whenever n # m. Moreover for all
n > 1, we have f(z,) = k,+J7v, for some k, € K and v, € By,. By passing
to a subsequence still denoted by (), we have || f(zn) — f(xm)|]p, < 37 for
all n,m € N. Since § can be chosen arbitrary small and 7 arbitrary large,
inequalities for the sequence (x,), contradicts the fact that f is a coarse
Lipschitz embedding. Hence ¢, does not coarsely Lipschitz embed into £,
when 1 < p < ¢ < 0.

For the second half of the proof, let 1 < ¢ <p < oo and let f : ¢, — ¢, be a
coarse Lipschitz map such that

2 = yllg < f(x) = FW)llp < Cllz — yllg whenever [z —yll; > 1.

Define ¢ : Gx(N) — £, by ¢(n) = en, + ... + epn,. A computation as be-
fore gives Lip(f o ) < 2C. By Theorem 2, there exists an infinite subset
M C N such that diam(f o ¢)(Gx(M)) < 6CEP. On the other hand,
diam(f o ¢)(Gr(M)) > (2k)'/¢ since M is infinite. Since ¢ < p, we have a
contradiction for large k, and the theorem is proved. |

12



5 Compression exponent oy, (/)

In this section, we show how Theorem 2 was used in [B] to compute the
compression exponent oagq(ép) for 1 < p < ¢ < oco. First we recall the
definition of the Y-compression exponent of X, for X, Y Banach spaces.

Definition 19 Let X,Y be Banach spaces. The Y-compression exponent
of X, denoted by ay (X) is the supremum of all numbers 0 < o < 1 over all
embeddings f : X — Y such that

|z = yll* SIS () = FW)I < [lz — y[| whenever [z —y|| > 1.

Theorem 4 asserts that ay,(f,) = £ when 1 < p < ¢ < co. One half of
the result is a consequence of the following result obtained in [AB].

Proposition 20 (Proposition 5.2 in [AB]) Let 1 < p < g < co. Then there

exists a Lipschitz embedding of (£, H.Hg/q) into (Lq,].lq)- In particular, we

have the inequality oy, (£p) = L.

The proof of the previous proposition uses a construction of specific maps
to define a Lipschitz embedding from £,(N,R) into ¢4(N x Z x Z,R). More
precisely, the authors of [AB] prove (see Theorem 3.4 in [AB]) that there
exist real-valued functions (1; k) (j,x)ez and positive constants Ay 4, By 4 such
that

Apglz —ylP < ZZ k(@) = Yjn()|? < Bpgle —y|” for all 7,y € R.
kEZ jEZ

Then we define
[ p(N,R) = £,(N X Z x Z,R)
(@i)ien = (Vjk(i) — ¥;k(0))ijkenxzxz-
By the inequalities above, it is easily checked that the map f is a Lipschitz
embedding of (¢, H.Hg/q) into (4g,|]-|q)-

Now we show how the uniform asymptotic smoothness argument was
used in [B] to give an upper-bound to the compression exponent ay, (£p).

13



Proof of Theorem 4 : In view of Proposition 20, we are left to show that
g, (bp) < %. Let k € N, and 0 < a < 1. Let f:{, — ¢, be a map such that

|z = yll* S1If(x) = FW)I < [lz = yl| whenever [z —y|| > 1.
Define ¢ : G(N) — ¢, by
o(ny,..ng) = ep, + ... + ey, for all (ny,..n) € Gx(N).

It is clear that o is 2'/P-Lipschitz, so f o ¢ is Lipschitz as well. Then by
Theorem 2, there exists an infinite subset Ml C N such that

diam(f o p(Gx(M))) < k1.
On the other hand, we have diam(p(Gj(M))) = (2k)'/P. Tt follows that
diam(f 0 p(GH(M))) 2 diam(p(G(M))) = ko/7.

The condition k%/? < kY4 for all k € N, implies that & < 2. Hence the

|

theorem is proved. |
References
[A] I. Aharoni. Every separable metric space is Lipschitz equivalent

to a subset of car. Isr. J. Math., 19, 284-291, 1974.

[AB] F. Albiac and F. Baudier. Embeddability of snowflaked metrics
with applications to the nonlinear geometry of the spaces L, and
¢y for 0 < p < oo. arziv, 1206.3774, 2012.

[B] F. Baudier. Quantitative nonlinear embeddings into Lebesgue
sequence spaces. J. Top. Anal. (to appear).

[JLS] W.B. Johnson, J. Lindenstrauss and G. Schechtman. Banach
spaces determined by their uniform structures. Geom. Funct.
Anal. 6, 430-470, 1996.

[JR] W.B. Johnson and N.L. Randrianarivony. ¢, (p > 2) does not
coarsely embed into a Hilbert space. Proc. Amer. Math. Soc.,
134, no. 4: 1045-1050, 2006.

[KR] N.J. Kalton and N.L. Randrianarivony. The coarse Lipschitz ge-
ometry of ¢, ® {,. Math. Ann. 341, 223-237, 2008.

14



[KW] N.J. Kalton and D. Werner. Property (M), M-ideals, and almost
isometric structure of Banach spaces. J. Reine Angew. Maith.,
461, 137-178, 1995.

[L] G. Lancien. A short course in non-linear geometry of Banach
spaces. Topics in Functional and Harmonic Analyis, Theta Series
in Advanced Mathematics, 77-102, 2012.

[M] V.D. Milman. Geometric theory of Banach spaces. II. Geometry
of the unit ball (Russian). Uspehi Mat. Nauk, 26, 73-149, 1971.
English version : Russian Math. Surveys, 26, 79-163, 1971.
Address

Baptiste Olivier.
E-mail : baptiste.olivier100@Qgmail.com

15



ESTIMATING DISTORTION VIA METRIC INVARIANTS

SEAN LI

1. INTRODUCTION

In the latter half of the 20th century, researchers started realizing the importance of
understanding how well certain metric spaces can quantitatively embed into other metric
spaces. Here “well” depends on the context at hand. In essence, the better a metric space X
embeds into Y, the closer geometric properties of X correspond to that of Y. If one continues
on this train of thought, then one can try to embed a relatively not well understood metric
space X into another more well understood space Y. If such a good embedding exists, then
one can try to use the properties and techniques developed for Y to understand the geometry
of X. If no such good embedding exists, then one can try to deduce the obstruction of such
an embedding, which would give more information for both X and Y.

While part of the motivation came from purely mathematical considerations, the same
philosophy also found use in the development of approximation algorithms in theoretical
computer science. Indeed, one may be asked to solve a computational problem on a data
sets that comes with a natural metric. There are some untractable problems that become
much easier to solve when the data set contains some further structure—being Euclidean for
example. Thus, be embedding the data set into this easier to solve space, one can speed up
the computation at the loss of accuracy that can be bound by the fidelity of the embedding.
While the topic of such applications are intresting on their own and could easily (and have)
fill books, they are beyond the scope of these notes, and we will not pursue this line any
further. See [1§] for more information on approximation algorithms.

We now introduce the the quantity to which we measure how well a metric space embeds
into one another. Recall that f : (X,dx) — (Y,dy) is called a biLipschitz embedding if
there exists some D > 1 so that there exists some s € R for which

SdX(x7y) < dY(f(x)vf(y)) < Dde(l’,y).

Thus, up to rescalings of the metric, f preserves the metric of X in Y up to a multiplicative

factor of D. Here, D is called the biLipschitz distortion (or just distortion) of f. Two metric

spaces are said to be biLipschitz equivalent if there exists a surjective biLipschitz embedding

between them. We will typically be calculating distortions of embeddings of metric spaces in

Banach spaces and so by rescaling the function, we can usually suppose that s =1 or 1/D.
Given metric spaces X and Y, we let

ey (X) :=inf{D :3f: X — Y with distortion D},

with the understanding that ¢y (X) = oo if no such biLipschitz embedding exist. We can
then say that cy (X) is the distortion of X into Y without referencing any map.

Upper bounding cy (X)) typically entails constructing an explicit embedding for which you
bound the distortion. We will be more interested in lower bounding ¢y (X), for which one

has to show that all embeddings must have biLipschitz distortion greater than our lower
1



bound. There are many ways to achieve this. In these notes, we will use biLipschitz metric
invariants (or just metric invariants) to accomplish such a task. We now introduce our first
metric invariant, the Enflo type, which will give a nice simple example to show how one can
use such properties to estimate distortion lower bounds.

2. ENFLO TYPE

We define the quantity
c2(n) = sup{ey, (X) : X is an n-point metric space}.

Thus, every n-point metric space can embed into Hilbert space with distortion no more than
ca(n).

Amazingly, it wasn’t until 1970 that it was shown that sup,,cy c2(n) = co. The first proof
of this fact was given by Enflo in [6]. Nowadays, it is known that cs(n) =< log n| The upper
bound was found by an explicit embedding by Bourgain [4] in 1985 and the lower bound was
first matched by expander graphs as shown in [9] in 1995. The lower bound established in
[6] is the following.

Theorem 2.1.
ca(n) > /logn.

We now describe the metric space used by Enflo. The Hamming cubes are the metric
spaces

D, = ({O’ 1}n7 H ’ Hl)
Thus, elements of D,, are strings 0 and 1 of length n. These are just the corners of a cube
of the ¢} normed space. We call two pairs of points in D,, an edge if they are of distance 1
(i.e. if their strings differ in only one place) and a diagonal if they are of distance n (i.e. if
their strings differ at every place). Note that the metric of D,, can also be viewed as a graph
path metric based on the set of edges. Each point x has n other points that form edges with
x and 1 other point forms a diagonal with z.

To establish our lower bound, we need to show that c3(D,) > y/n. One can easily verify
that D, also embed into ¢; with distortion no more than /n if one just embeds the points
to the corresponding points of the unit cube in R™ so our lower bound will actually tight for
this specific example.

Enflo proved Theorem using the following proposition.

Proposition 2.2. Let f: D, — {5 be any map. Then,
Yoo lf@ =P Y ) = f))* (1)
{z,y}e€diags {u,v}€edges

Note that we are not really using the metric structure of D,, here, just the graph structure.
We will first need the following lemma.

Lemma 2.3 (Short diagonals lemma). Let z,y, z,w be arbitrary points in {s. Then

lz = 21+ lly = wl® < llz = yl* + ly = 2II* + Iz = w]|* + [lw — 2[|*.

'In these notes, we will say a < b (resp. a 2 b) if there exists some absolute constant C' > 0 so that
a < Cb (resp. a > Cb). We write a < bif a <b < a.
2



Proof. As the norms are raised to the power 2, they break apart according to their coordi-
nates. Thus, it suffices to prove that

(x =2+ (y—w) < (z -y +y—2)°+(-w?’+(w—1)
But
-y’ + -2’ +z-w?+w-—2? (-2 -y—w?=@E—-—y+z—w)?>0.
OJ

Proof of Proposition 2.4 We will induct on n. For the base case when n = 2, we simply
set x,y, z,w to be the images of the points D,, so that {x, z} and {y,w} correspond to the
images of diagonals. Lemma then gives our needed inequality.

Now suppose we have shown the statement for D,,_; and consider D,,. Note that D, can
be viewed as two separate copies of D,,_;. Indeed, the set of points of D,,_; that correspond
to strings all beginning with 0 form one such D, _; and the subset corresponding to strings
all beginning with 1 form the other. Let D and D™ denote these two subsets in D,_;. It
easily follows that, for each v € D there exists a unique w € DM for which {v,w} form
an edge and vice versa. Let edges’ C edges denote this collection of edges. Let edges, and
edges, denote the edges of D(®) and D™, respectively. Note that these are still edges of D,
and

edges = edges, U edges, U edges’, (2)

where the union above is disjoint. Let diags, and diags, denote the diagonals of D and
DM Note that these are not diagonals of D,, as their distances are only n — 1. However, if
{u, v} is a diagonal of diags, and v/, v’ € DM so that {u,u'} and {v,v'} are edges of edges’,
then {u’,v'} € diags,; and {u,v'}, {v/,v} € diags.

By the induction hypothesis, we have that

Yo M@ —fwliF<s Yo 1w = f@)IP (3)

{z,y}€diags, {u,v}€cedges
oo @ =rwiP< D I = f)* (4)
{z,y}ediags, {u,v}cedges,;

Let {u,v} € diags,. As was stated above, there exists a unique {u’,v'} € diags, so that
{u,v'},{u',v} € diags. Using Lemma 2.3, we get that
1f(w) = fFOIP + 1f () = fo)]?
< |1f(w) = F@)IP+ 1 (0) = FOP+ I1LF @) = F@OIP+ () = fo)]*
As all diagonals of diags can be expressed in such manner, we get that

S f@ -l

{x,y}ediags

< D M@—rIP+Y, Y Ifw) = &I 6)

{u,v}€edges’ 1=0 {w,z}€diags;

The proposition now follows immediately from , , , and . 0
3



We can now prove our main theorem.
Proof of Theorem[2.1. Let f : D,, — {5 be any embedding satisfying the biLipschitz bounds

sd(z,y) < [|f(z) = f()ll < Ds-d(z,y), (6)
for some s € R. We then get from Proposition (2.2) and the biLipschitz bounds of f that

Prldigs| = S ey’ D Y i@ - fW)I?

{z,y}€diags {z,y}€diags

— 29 oo d(u,v)* = D*s*ed

< Y - f@P <D Y duv)’ = D*sledges|.
{u,v}€cedges {u,v}€cedges

In the first and last equalities, we used the fact that edges and diagonals have distance 1
and n, respectively. One easily calculates that |diags| = 2"! and |edges| = n2"~!. This

gives that
n?|diags| n22r—1
D > = = .
- \/ ledges| n2n-1 Vi

02(Dn) > \/57

which finishes the proof as |D,,| = 2". O

This shows that

Looking back at the proof of Theorem ([2.1]), we see that the crucial property that allowed
everything to work was the fact that /5 satisfied for every embedding f : D,, — {5. Thus,
any metric space (X, d) satisfying for every embedding f : D,, — X satisfies

CX(Dn) > \/ﬁ

For any p > 1, we say that a metric space has FEnflo type p if there exists some T" > 0 so
that for every f: D, — X,

Sodlf@) fy)P<T Y dlf(w), f(v) (7)
{z,y}ediags {u,v}cedges
We let T,(X) be the best possible T" such that @ is satisfied is called the Enflo type p
constant. We usually do not care about its specific value other than the fact that it exists.
A superficial modification to the proof of Theorem immediately shows that there exists
some C' > 0 depending on T and p so that

cx(Dy) > Cn'~»

and so cx(n) > C(log n)l_% also.

We make a few important observations before moving on from Enflo type.

Observe that having Enflo type p is a biLipschitz invariant, that is, if f : (X, dx) — (Y, dy)
is a bijective biLipschitz map between two metric spaces and one has Enflo type p, then so
does the other. Letting D > 1 be the distortion of f, one can further bound the Enflo
constants

LT, (X) < T,(Y) < DT,(X). 0

4



Also, if a metric space X biLipschitz embeds into another metric space Y that has Enflo
type p, then X also has Enflo type p.

Note also how the proof of the distortion lower bound comes from the statement of the
property. The property gives us a ratio bound of distances in the image. The first step then
is to apply the biLipschitz bounds of the embedding to translate that into a ratio bound
of distances in the domain along with the distortion constant. The distortion lower bound
then follows from using the geometry of the domain to estimate showing its ratio bound of
distances. A more succinct way of expressing this comes from (8. One gets from Proposition
2.2 that Ty(¢2) < 1. One can also calculate (as we did) that T5(D,,) > v/n. Thus, if D is the
distortion of F': D,, — {5, one gets

T5(Dy)
Ty(lo) > /n.

Thus, we see that this method follows the philosophy of metric embeddings described in
the introduction as getting a good distortion lower bound will come from the fact that the
domain’s geometry does not allow for the distance ratio to be as good as that in the image.
In the case of Enflo type, diagonals in Hilbert space can be much shorter than they are in
D,,.

The distortion bound for Hamming cubes is one of the simplest and straightforward bounds
one can derive from metric invariants. There are other metric invariant that allow you to
calculate distortion bounds of other spaces, but they may not always follow so quickly and
easily. The next metric invariant we discuss will also give a simple distortion bound for a
different family of metric spaces. But before we introduce it this new metric invariant, we
make a brief detour into nonlinear functional analysis to show how certain linear invariants
can give rise to metric invariants.

V&

D

3. THE RIBE PROGRAM

Let X be an infinite dimensional Banach space. Recall that X has Enflo type p if there
exists some T' > 0 so that for all n € N and all embeddings f : D,, — X, we have

Yo @ —fwlr<T Y 1fw) = f)l".
{z,y}€ediags {u,w}€cedges

The reason that this is called Enflo type is because it is a generalization of the linear property
Rademacher type, which says that for some 7" > 0, for any n € N and z4,...,z, € X, we
have that

E.

~—

p n
<T?Y |l P (9
=1

n
E iy
i=1

Here, E is taking the expectation with respect to uniformly chosen e € {—1,1}". To see how
Enflo type p implies Rademacher type p, simply take f to be the linear function

f:D,—X

{ai,...,an} — 2(2% — 1.
i=1
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Pisier proved a partial converse [16] which says that if X is a Banach space with Rademacher
type p > 1, then X has Enflo type p’ for any p’ < p. Thus, the Banach spaces with
Rademacher type p > p’ > 1 give us a rich class of Enflo type p’ metric spaces. Whether
Rademacher type p implies Enflo type p is still an open question.

Note that Rademacher type is a linear isomorphic invariant much like Enflo type is a
metric biLipschitz invariant. One can also observe that Rademacher type only depends on
the finite dimensional linear substructure of X. Indeed, the defining inequality (9) only
needs to be verified on finite subsets of vectors. Such isomorphic properties that depend
only on the finite dimensional substructure of a Banach space are called local properties.

We recall that a Banach space X is said to be finitely representable in another Banach
space Y if there exists some K < oo so that for each finite dimensional subspace Z C X, there
exists some subspace Z' C X so that dgy(Z,Z") < K. Here, dp), is the Banach-Mazur dis-
tance. We have thus shown that local properties are invariant under finitely representability.
Examples of local properties include Rademacher type, Rademacher cotype, superreflexivity,
uniform convexity, and uniform smoothness.

Ribe proved in [17] the following theorem, which gives a sufficient condition for mutual
finite representability.

Theorem 3.1. Let X and Y be infinite dimensional separable Banach spaces that are uni-
formly homeomorphic. Then X andY are mutually finitely representable.

Ribe’s theorem should be compared to the Mazur-Ulam theorem [12], which shows that
any bijective isometry between Banach spaces is affine, and Kadets’s theorem |[7], which
states that any two separable Banach spaces are homeomorphic. These two theorems state
that the super-rigid world of isometries and the super-relaxed world of homeomorphisms are
completely trivial for completely opposite reasons when applied to Banach spaces. Thus,
Ribe’s theorem states that interesting phenomena exist inbetween these two extremes.

Thus, if two Banach spaces are equivalent in some metrically quantitative way (as ex-
pressed by the modulus of continuity for the uniform homeomorphism), then their finite
dimensional linear substructures are isomorphically equivalent. In particular, uniform home-
omorphisms preserve local properties.

Thus, as uniform homeomorphisms only deal with a Banach space’s metric structure,
Ribe’s theorem suggests that local properties may be recast in purely metric terms. This
endeavor to do so is called the Ribe program and has produced a great number of metric
invariants, including Enflo type (although Enflo type predates Ribe’s theorem). The next
metric invariant we will cover is Markov p-convexity, which characterized the local property
of having a modulus of uniform convexity of power type p. We will not go into any more
details about the rest of the Ribe program, but we refer the interested reader to the surveys
[1,/14] and the references that lie therein.

4. MARKOV CONVEXITY

Recall that a Banach space X is said to be uniformly convex if for every € > 0, there exists
some § = d(¢) > 0 so that for any x,y € X such that ||z||,|ly|]| <1 and ||z —y|| < J, we have

r+y
2
6
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As the name suggests, the unit ball of a uniformly convex Banach space is convex in a
uniform fashion. Here, d(¢) is called the modulus of uniform convexity. A Banach space is
said to be uniformly convex of power type p > 1 (or just p-convex) if there is some C' > 0 so
that the modulus satisfies

d(e) > CeP.

It easily follows that a p-convex Banach space is p’-convex for all p’ > p. It was proven in [2]
that a Banach space X is p-convex if and only if there exists some K > 0 and an equivalent
norm | - | so that

p

TEYE  vpgeX (10)

2K

r—y

2

P
mv+vaz‘ '+2

This is a one-sided parallelogram inequality with power p. We will use this characterization
of p-convex Banach spaces from now on.

Pisier prove in [15] the striking fact that any uniformly convex Banach spaces can be
renormed to be p-convex for some p € [2,00). He also proved that p-convexity is preserved
by isomorphism and so is actually a local property as it only depends on 2-subspaces of X.
Thus, the Ribe program suggests that there is a metric invariant characterizing p-convexity.
In [10], the authors introduced a metric invariant known as Markov p-convexity that was
shown to be implied by p-convexity. In [13], the authors completed the characterization by
showing that any Banach space that was Markov p-convex had an equivalent norm that was
p-convex. Before we describe Markov p-convexity, we first must establish some notation.

Given some Markov chain {X;}ic7 on a state space 2 and some integer k € Z, we let
{X,(k)}rez denote the Markov chain on  so that for ¢ < k, X,(k) = X, and for ¢t > k,

X, (k) evolves independently (but with respect to the same transition probabilities) to X;.
We never specify that the Markov chain has to be time homogeneous. We can now describe
Markov p-convexity:.

Let p > 0. We say that a metric space (X,d) is Markov p-convex if there exists some
IT > 0 so that for every f: Q — (X, d) and every Markov chain {X;};cz on Q,

iZE l (f<Xt>,f2g<t<t—2 ) <TPY E(f(X), f(Xa)]. (1)

k=0 teZ teZ

It follows immediately that this is indeed a biLipschitz metric invariant.

The full proof of the equivalence of Markov p-convexity with p-convexity is beyond the
scope of these notes. We will just prove the easy direction of p-convexity implying Markov
p-convexity later. First, we will try to make sense of exactly what Markov convexity is
saying. For this, it will be more illuminating to see what spaces are not Markov convex.

Markov p-convexity says in essence that independent Markov chains do not drift too far
apart compared to how far they travel at all places and all scales. An example of a simple
metric space that does not satisfy this property—and the one that motivated the definition
of Markov convexity—are complete binary trees. Indeed, the branching nature of trees allow
for Markov chains to diverge linearly.

Let {X;}iez be the standard downward random walk on B,,, the complete binary tree of

depth n, where each branching is taken independently with probability 1/2 and the walk
7



stops completely after it reaches a leaf (thus, B, is our state space). We can set X; to be at
the root for t < 0. Here, we are using time inhomogeneity.

Proposition 4.1. Let X; be the random walk as described above on B,. Then there exists
some constant C' > 0 depending only on p so that

0o E [d <Xt7 *;?;Et B 2k)> } > C’lognz E [d(Xt, Xt—l)p] :

k=0 teZ teZ

Proof. From the description of the random walk, we can easily compute
> E[d(Xy, Xes1)"] = n. (12)
tez
To compute the left hand side of , we have when k € {0,..., [% lognJ} and t €
{2k ... ,n} that
E | (X, Xt - 2k))p] — or-lokr,

Indeed, this is simply because there is a 1/2 chance that X, ok ; and X;_or,q(t — 2F) are
different in which case X; and X,(t — 2%) would differ by 2**!. Thus, we have the lower
bound

L%lognJ n ‘) ~t _oky)’ L%log”J n
E[d <X );it : )> } — Z 227"1 > Cnlogn, (13)

k=0 =2k k=0 t=2k
where C' > 0 is some constant depending only on n. By and , we have finish the
proof. 0

We can now prove the following theorem.

Theorem 4.2. Let p > 1 and suppose (X,d) is a metric space that is Markov p-convez.
Then there exists some C' > 0 depending only on X so that cx(B,) > C(loglog |B,|)"/?.

Proof. Let X; be the random walk on B,, as described above. Let f : B, — X be a Lipschitz
map with distortion D. Then we have by definition of Markov p-convexity and distortion
that there exists some II > 0 so that

oy B RCA)] e ()]

k=0 teZ k=0 teZ

7P Y CR[A(f(X), f(Xio1))P] < 207 DPSPIIP Y DR [d(X, X))

teZ tez
Appealing to Proposition M, we see that we must have D > %, which establishes the
claim once we remember that |B,| = 2"t — 1. O

We now prove the following theorem.

Theorem 4.3. Let p € [2,00) and let X be a p-convex Banach space. Then X is Markov

p-convex.
8



As an immediate corollary of Theorems [4.2] and [4.3] we get

Corollary 4.4. Let X be a p-convexr Banach space. Then there exists some constant C' > 0
depending only on X so that cx(B,) > C(logn)'/.

We will follow the proof of Theorem {4.3| as done in [13]. We first need the following fork
lemma.

Lemma 4.5. Let X be a Banach space whose norm | - | satisfies . Then for every
x,y,z,w e X,

|z —wP+ |z — 2P |z —w|P <

2r—1 4r—1Kp —

Proof. We have by that for every z,y, z,w € X that

ly —w|? + |z — y[P +2ly — «fP. (14)

o —wP 2 z+wl|’
_ P —wlP _
|z — 2P 2 r+z|’
_ P _ P _

Thus, adding these two inequalities together and using convexity to | - [P, we get

|z —wP + |z —2P 2 r+wl’ 2 r+zf
_ |P _ ~|P _ p R — N —
2y =[P +ly — 2P + |y —wl” = T Tor 5 ol
- |z —wP+ |z — 2P |z —w|P
- 2r—1 4r-1Kp
U

This lemma says that the tips of the fork z,w cannot be too far apart if {z,y, 2} and
{z,y,w} are almost geodesic. Thus, if z and w are independently evolved Markov chains,
this will property essentially tells us then that they cannot diverge far.

We can now prove Theorem [4.3] The only property concerning p-convex Banach spaces we
will use in the following proof is . However, is a purely metric statement (although it
is not biLipschitz invariant). Thus, the following proof shows that any metric space satisfying
(14) is Markov p-convex.

Proof of Theorem[{.3 We get from that for every Markov chain {X;}iez, f: Q — X,
t € 7Z, and k > 0 that

F(X0) = F(Kia) P+ [F(X (= 257D) = F(Xp)l | LX) = FXK(E =25
2r—1 4r—1[p
< |f(Xt72k—1) - f(Xt)‘p + |f(Xt72k—1) - f()zt(t - 21:—1))’1; + 2|f(Xt72k—1) - f(th2k)|p-

Note that (X, o, X;(t — 2871)) and (X,_ox, X;) have the same distribution by definition of
X;(t — 271, Thus, taking expectation, we get that

E[lf(X:) — f(Xi_o0)|?] N E|f(Xy) — f()N(t(t — k=1
2p=2 4r=1KPp
< 2B [ f (Xy—gi1) = FX)P] 4 2E [| f (Xpoon1) — f(Xpar)["].
9



We divide this inequality by 2*=1P+2 o get

E{|f(X:) — f(Xi_or)[P] N E||f(Xy) - f()?t(t — 2k

9kp 2(k+L)p Kp
E Hf(Xt—Tv*l) — f(Xt)m + E Hf(Xt—zkfl) — f(Xt—zk)’p]
= 9(k—1)p+1 2(k—1)p+1 :

Sum this inequality over Kk =1,...,m and t € Z to get
m B [If(X0) — f(K(t =2 )p]

_ E[lf(Xe) — f(Xi_or)|?]
3 [/ ( )2 | Y T

k=1 tez k=1 teZ
— ]E |f Xt 2k— 1) — Xt |p — |f Xt 2k— 1 _f(Xt—Qk)|p]
< ZZ 9(k—1)p+1 ZZ 9(k—1)p+1
=1 teZ k=1 teZ
-1
E[lf(Xy) — f(Xi_9i)P
=0 teZ

By the triangle inequality, we have that
Eflf(Xe) — f(X
S B TRl S g 0x6) — pxeal).

p
teZ teZ

We can clearly assume that ), _, E[|f(X;) — f(X¢1)[P] < 0o as otherwise the statement of
the proposition is trivial. Thus, we have that the summation on the right hand side of
is finite for every m > 1. We can thus subtract the left hand side from the right hand side

in to get
E[I£(X0) - f(Rult = 2]

Z Z k+1)pr

< S E(F() — (X)) - 30 BRI S - g,

This is the same as the following inequality

m-1__ R [| FX0) — F(Xi(t— 2’f)lp}

>0 o < (@AKP Y E(IF(X) = F(Xi)l].

k=0 teZ teZ

Taking m — oo then finishes the proof. O

Corollary 4.4 was first proven by Matousek in [11] using a metric differentiation argument.
The result of [11] was itself a sharpening of a result of Bourgain in [5] which says that the
finite complete binary trees embed with uniformly bounded distortion into a Banach space
X if and only if X is not isomorphic to any uniformly convex space. This is actually the
first result of the Ribe program giving a metrical characterization of the local property of
a space being isomorphic to a uniformly convex space (also called superreflexivity, although
this was not the original formulation). It is now known that the statement of Bourgain also

holds with the infinite complete binary tree [3].
10



GO [ od

G

FiGURE 1. The first four Laakso graphs

Another class of metric spaces that lend well for using Markov convexity to estimate
distortion bounds are the Laakso graphs. Laakso graphs were described in [8]. We define
the graphs {G}2, as follows. The first stage Gy = 0 is simply an edge and G is as pictured
in Figure To get Gy from Gj_1, one replaces all the edges of Gj_; with a copy of Gy.
The metric is the shortest path metric. For each Gy, let r be the left-most vertex as shown
in Figure . We can define the random walk {X;}cz on each Gy where X; = r for t <0
and for t > 0, X, is the standard rightward random walk along the graph of GG where each
branch is taken independently with probability 1/2. Once X; hits the right-most vertex (at
t = 6"), it stays there forever.

We have the following proposition.

Proposition 4.6. Let G, be the Laakso graphs of stage n and let X; be the random walk on
G, as described above. Then there exists some constant C > 0 depending only on p so that

Dy alslanka) N S TR

k=0 teZ teZ

The proof is similar to the proof of Proposition although it does require a little more
work. The reader can either attempt to prove it as an exercise or consult Proposition 3.1 of
[13].

Analogous to Theorem [£.2], we get the following distortion bounds for embeddings of G,,
into Markov p-convex metric spaces:

Theorem 4.7. Let p > 1 and suppose (X,d) is a metric space that is Markov p-convez.
Then there exists some C' > 0 depending only on X so that cx(G,) > C(log |G,|)*/?.
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POINCARE TYPE INEQUALITIES AND NON-EMBEDDABILITIES:

GROSS TRICK AND SPHERE EQUIVALENCE
MASATO MIMURA

ABSTRACT. This report describes a rough sketch of proofs and explains the motivation of
main results in the paper “Sphere equivalence, Banach expanders, and extrapolation” (in
Int. Math. Res. Notices) [Mim14] by the author. Specially, we indicate some potentially
use of group theory, which we call “the Gross trick”, to study metric embeddings of
general graphs.

1. MOTIVATIONS

First we give our notation. Unless stating, we always assume the following:

I' = (V,E) is a finite connected undirected graph, possibly with multiple edges
and self-loops (here E is the set of oriented edges). T' is a metric space with the
path metric dr (namely, dr(v,w) is the shortest length of a path connecting v and
w, and set dr(v,v) = 0), and diam(I") means the diameter (the length of largest
distance).

For v € V, deg(v), the degree of v, is the number of edges which starts at v. Note
that a self-loop contributes twice to the degree of the vertex. A(I") is the maximal
degree max,cy deg(v) of I

o {I', = (V,, E,)}n is a sequence of finite graphs.

(X, p) is a pair of a Banach space X and an exponent p. We always assume that
p € [1,00) (in particular, p is always assumed to be finite.)

e Y is also used for a Banach space. ¢ is also used for an exponent in [1,00).

For r € [1,00] and k > 1, ¢* stands for the real £,-space of dimension k. £, means
the real /,-space over an infinite countable set.

e In this report, X(p) means £,(N, X).
e For X, S(X) is the unit sphere of X.

In a metric space L and A, B C L, dist(A, B) means the distance, namely,
inf{d(a,b) : a € A,b € B}.

a 3 b for two nonnegative functions from the same parameter set 7 means that
there exists C' > 0 independent of t € T such that for any ¢ € T, a(t) < Cb(t).
a =< b means both a X band a Z b hold. a 3, b if parameter set 7 has variable ¢
and C' = C,; may depend on q.

We write a 3 b if a 3 b holds but a = b fails to be true.

1.1. Classical spectral gaps. Here assume that I" is k-regular (that means, deg(v) = k
for all v € V). Then the (nonnormalized) Laplacian L(I") := kI, — A(I"), A(I") being the
adjacency matrix (the matrix (@, )0 Where a,,, is the number of edges connecting v
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Key words and phrases. Expanders; Banach spectral gaps; Matousek’s extrapolation; coarse embed-

dings; distortions.
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2 MASATO MIMURA

and w, counting self-loop twice), is a positive operator and has eigenvalues 0 = \o(I") <
M) < X(T) < --- < A1), This Ay(T') is the classical spectral gap of I'. This has a
Rayleigh quotient formula:

1 lnf ZUEV Z vw)EE |f( ) - f(U)|2
2f:VoR >_vev |f () =m(f)[?

Here m(f) := > oy f(v)/|V| and f runs over all nonconstant maps.

M(l) =

- (%)

1.2. Banach spectral gaps. The point in (x) is that R has a metric and a mean struc-
tures.

Definition 1.1. For (X, p), define the the (X, p)-spectral gap of T by

VS S SIS o 1100 R )
MEXD) =g T T e —m )

Here m(f) := >,y f(v)/|V| and f runs over all nonconstant maps.

Ezample 1.2. M\ (T") = M (I} R, 2) = A (I'; 45, 2) (the latter equality is by Lemma 1.3). It
is known that A;(I';R, 1) is proportional to h(I'), the (edge-)isoperimetric constant (also
known as (nonnormalized) Cheeger constant) of T', see [Chu97, Theorem 2.5]. Here A(T)
is defined as inf{|E(A, V\ A)|/|A| : 0 < |A| < |V|/2}, where E(A,V\A) :={e = (v,w) €
E:veAweV\ A}

We note that Mendel and Naor [MN12] have explicitly introduced the notion of nonlin-

ear spectral gaps (for the more general case where X is a metric space) and studied that
in detail.

1.3. Poincaré-type inequality. (xx) is equivalent to saying the following:

ViV = XY lIf ) =m(H)” < FXp Z Yo @)= f@)P - (xx )

veV veV e=(v,w)EE
This bounds the “p-variance” from below by the “p-energy” in a rough sense.
Lemma 1.3. (1) If Y is a subspace of X, then \i(I'; Y, p) > M ([; X, p).

(2) M(T; X, p) = Mi(T; X, p).
In particular, A\ (I'; R, p) = A (I'; £, p).

Proof. (1) is trivial. For (2), > is from (1). To get <, integrate (* % *) over N. O
1.4. Banach expanders.

Definition 1.4. A sequence {I', },en is called (X, p)-anders if the following three condi-
tions are satisfied:

(1) sup, A(T') < o0

() lim,,_,o diam(I',,) = oo;
(731) There exists € > 0 such that inf, A\{(T',; X, p) > e.

(Classical) expanders equal (R,2)-anders, which also equal (R, p)-anders for all p by
Matousek’s extrapolation (Theorem 1.16). By Lemma 1.3, they are also equal to (¢,, p)-
anders.
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1.5. Who cares? 1: coarse embeddings.

Definition 1.5. Let (A,dy) be a metric space. We say f: A — X is a coarse embedding
if there exist a nondecreasing p_py : Rsg — R with limy o p— () = +00 such that for
any v, w € A,

p—(da(v, w)) < |[f(v) = fw)llx < py(da(v,w)).
This (p_, py+) is called a control pair.

For {I',},, with lim,_, diam(I',) = oo, define a coarse disjoint union [],T', to be an
(infinite) metric space (][, I'n, d) whose point set is | |, V,, and whose metric satisfies:
e For every n, d |y, xv,= d,, where d,, denotes the original metric on I',,.
e For n # m, dist(V,,, V) > diam(I',,) + diam(I',,).

Theorem 1.6 (Matousek, Gromov, Higson, et al.). Let {I',},, be (X, p)-anders for some
p. Then [, Iy, does not admit coarse embeddings into X .

Proof. Take € > 0 in Definition 1.4 and K := ¢~'. Suppose, in contrary, that f: [[ I, —
X be a coarse embedding with control pair (p_, py). Set f,, := f|y,. For considering each
fn, we may assume m(f,) = 0. Then by (% * *),

ﬁ%zmnmwsﬂ;ﬁij S alw) = L)

vEVR vEVn e=(v,w)EE,

< KA(T,)ps (1),

Therefore, by letting M = (2K sup,, A(I',))"/?p, (1) (independent on n), we have that at
least half of v € V,, satisfies || f,(v)|| < M. Because diam(I',)) — oo, this contradicts that
limy s 4 oo p—(t) = +00. O

Remark 1.7. Recently Arzhantseva and Tessera [AT14] prove the following:

Theorem 1.8 ([AT14]). There exists {I',}, such that

(1) sup,, A(I',) < ooy

(it) 11, T'n does not admit coarse embeddings into ls;

(ii7) but [[,, Iy does not admit weak embeddings of any expanders into itself.
Here a sequence { A, }m of finite graphs is said to admit a weak embedding into a metric
space Z if there exist K > 0 and K-Lipschitz maps f,,: \,, = Z such that
limy, 00 SUPyev (Am) |fn_zl(fm(v))|/‘Am‘ = 0.

This shows that expanders are not the only obstruction to admitting coarse embeddings

into ¢5. Their proof of (i7) employs some sorts of relative Poincaré-type inequalities.

1.6. Who cares? 2: distortions.

Definition 1.9. The distortion of I into X, denoted by cx(I') is defined by

df: V — X, 3r > 0 such that Yv,w € V, }

cx(I') ;= inf {C’ >0: rd(v,w) < ||f(v) = fw)]| < Crd(v,w)

We have 1 < ¢, vi(I') < diam(I'). The latter estimate is obtained by the trivial embed-
2
ding: I' 3 v +— 0, € £5(V). Hence, by the Dvoretzy theorem, for infinite dimensional X,

we have
1 < ex(T) Zx diam(D).
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Theorem 1.10 (Generalized Grigorchuk—Nowak inequality, see [GN12] and Theorem 2.3
of [Mim14] ). For any e € (0,1),

(1= e)Y/Pr (T) | M (T; X, p)\ P
cx(T) > 5 diam(T") (W) :

Here r.(T") is defined as inf{diam(A)/diam(T") : |A| > €|V|}.

Theorem 1.11 (Special case of a generalized Jolissaint—Valette inequality, see [JV14] and
Theorem 2.3 of [Mim14]). Let I' be a vertex-transitive graph (this means that the graph
automorphism group acts V' transitively). Then

A\ (T: X 1/p
cx(T) > 2@~ Y/rdiam(I) (M>

A(T)
Note that, as we will recall in Section 3, all Cayley graphs are vertex-transitive.

Corollary 1.12. For infinite dimensional X, assume {I',,},, be (X, p)-anders for some p.
Then cx(T',) <x diam(T,).

Proof. Note that {I',}, is in particular a family of expanders (see (3) of Corollary 1.17)
and is of (uniformly) exponential growth. If you do not know this fact, then this is de-
duced from the Matousek extrapolation (Theorem 1.16) and Example 1.2 on isoperimetric
constants.

Hence the conclusion follows from Theorem 1.10 and the discussion above. 0

Lemma 1.13 (Austin’s lemma [Ausll], see also in Lemma 2.7 in [Mim14]). Let {I',},
satisfy diam(T',) oo (possibly with sup, A(I',) = o). Let p: Ry 7 Ry be a map
with limy_, 4 o p(t) = 400 which satisfies that p(t)/t is nonincreasing for t large enough.
Assume that for n large enough ﬁ%&%})) < cx(I'y) hold. Then for any C >0, (p, Ct) is
not a control pair of [[, 'y into X.

Proof. Assume, in the contrary, that there exists a coarse embedding f: ], I, — X such
that

pld(v,w)) < ||f(v) = fw)|[Cd(v,w), v,we[]T,

holds. Set f, :== f |r,: Vi, = X. We may assume, by rescaling, that f is a 1-Lipschitz
map and that each f, is biLipschitz. Then we have the following order inequalities.

diam(T’,) _ d(v, w)
STy 2 ) Sl < a2
d(v,w) diam(T,)
B pld(o,w) ~ p(diam(T,)

This is a contradiction. O

Lemma 1.13, together with Corollary 1.12, gives an alternative proof of Theorem 1.6.
Indeed, suppose, in contrary, that there exists a coarse embedding f of (X, p)-anders
into X. By rescaling, we may assume that the control pair for f is (p,t) for some p
(note that because [ [, I';, is uniformly discrete, p; may be taken as linear function). By
replacing p with a smaller proper function if necessary, we may also assume that p(t)/t is
nonincreasing for ¢ large enough. Then Lemma 1.13 and Corollary 1.12 give the desired
contradiction.
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1.7. Motivating problem. A naive question on (X, p)-anders might be: “Are any ex-
panders are automatically (X, p)-anders for all (X, p)?” The answer is no. Indeed, by the
Fréchet embedding:
Vi3 v (dv,w))wey,
I',, embeds isometrically into ELZ"‘. Thus if X has trivial cotype, then there exists a
biLipschitz embedding of any [, I',, into X. Here X is said to have trivial cotype if X
contains uniformly isomorphic (in particular uniformly biLipschitz) copies of {¢Z },..
The following question is a big open problem in this field:

Problem 1.14. Are any expanders are automatically (X, p)-anders for all X of nontrivial
cotype and for all p?

In this report, we study the following two questions:

Problem 1.15. For arbitrarily taken T,
(a) estimate A\ (I';Y,p) from A\ (T; X, p);
(b) estimate A\ (I'; X, q) from A\ (I'; X, p).
In both cases, estimates may depend on A(I'), but not on |I'| itself.

1.8. previously known results.
(b): Matousek extrapolation

Theorem 1.16 ([Mat97]). (1) For p € [1,2), A\ (TR, 2)p/2 Zamp MR D) Zam)p
(2) FO’Fp € [27 OO); )\I(FaRap) =A(D),p >\1<F7R7 2)p/2.

Corollary 1.17. (1) For anyp, {I'y}. are expanders if and only if they are (R, p)-anders.
(2) Ezxpanders do not admit coarse embeddings into £, for any p.
(3) For any (X,p), (X,p)-anders are (classical) expanders.

Proof. (1) immediately follows. (2) is from Theorem 1.6. (3) follows from X D R. O

(a): Pisier [Pis10]
The following definition is in [Pis10], which uses some idea of V. Lafforgue: X is said

to be uniformly curved if lim., o Dx (€)= 0 holds. Here Dx(€) denote the infimum over
those D € (0, 00) such that for every n € N, every matrix T = (¢;;);; € M,,(R) with

[Tey—ey <€ and  [Jabs(T)[|lgg—ep <1,
where abs(T") = (|t;;]);; is the entrywise absolute value of T', satisfies that
T @ Ix|es(n,x)—ts(n,x) < D.

Theorem 1.18 ([Pisl0]). Ezpanders are automatically (X,2)-anders for any uniformly
curved Banach space X.

Expamles of uniformly curved Banach spaces are ¢,, L,, noncommutative L, spaces,
for p € (1,0), and more generally are given by complex interpolation theorey.

Remark 1.19. Pisier also showed in [Pis10] that uniformly curved Banah spaces are super-
reflexive, which is equivalent to admitting equivalent and uniformly convex norms. Recall
that X is said to be uniformly convez if for any € € (0, 2],

sup{fl +yll/2 : 2.y € S(X), |z =yl > e} < 1.
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We also mention that the existence of “special expanders”, which have the expander
property for a wider class of Banach spaces, is known independently by V. Lafforgue
[Laf08] and Mendel-Naor [MN12]:

Theorem 1.20 ([Laf08], [MN12]). There exist (explicitly constructed) expanders {I',},
which are (X, 2)-anders for any X of nontrivial type.

Here recall that X has trivial type if and only if X contains uniformly isomorphic copies
of {{1},.

2. MAIN RESULTS

2.1. Sphere equivalence and Ozawa’s result. In [Mim14], the author call the follow-
ing equivalence the sphere equivalence. This has been intensively studied for several years,
and we refer the reader to Chapter 9 of [BL0O0].

Definition 2.1. X and Y are said to be sphere equivalent, written as X ~g Y, if there
exists a uniform homeomorphism (, namely, a biuniformly continuous map) between S(X)
and S(Y). We write [Y]g for the sphere equivalence class of Y.

If X and Y are isomorphic (in other words, if Y has an equivalent norm to that of X),
then clearly X ~g Y. There, however, exist many nonisomorphic Banach spaces which
are sphere equivalent.

Example 2.2. The sphere equivalence class of Hilbert spaces for instance contains the
following:

o /, L, for any p: a uniform homeomophism is given by the Mazur map. For ¢,
the Mazur map is

Myo: S(ly) = S(la);  (ai)i (sign(ai)|ai|”/2)i.

e Noncommutative L, spaces associated with arbitrary von Neumann algebras [Ray02].
e Any Banach space of nontrivial cotype with unconditional basis [0S94].

Note that this sphere equivalence may go beyond superreflexivity; and moreover having
nontrivial type. Indeed, the results mentioned above on (noncommutative) L, spaces hold
even for p = 1.

Ezample 2.3. Another example is given by complex interpolations (for a comprehensive
treatise of complex interpolation, see a book [BL76]). Theorem 9.12 in [BLOO0] states that
for a complex interpolation pair (X, X7), if either X, or X; is uniformly convex, then
any 0 < # < 0 <1, Xy ~g Xg. This result will be used for the proof of our main results.

On (a) of Problem 1.15, Ozawa [Oza04] made the first contribution.

Theorem 2.4 ([Oza04)). If X ~g ly, then expanders do not admit coarse embeddings
into X. In fact, any expanders satisfy a weak form of (X, 1)-ander condition for such X.

2.2. Main results. Here we exhibit main results in this report, extracted from [Mim14].

Theorem A (For more precise statement, see Theorem 4.1 in [Mim14]). Assume X ~g Y.
Then for any p € [1,00), and a sequence {I'y},, {Tn}n are (X,p)-anders if and only if
they are (Y, p)-anders.

More precisely, for a uniform homeomorphism ¢: S(X) — S(Y'), we may bound A (T'; X, p)
from below in terms of
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L4 )\1 (Fa Kp);
e the modulus of continuity of ¢;
e and some constants depending on p, A(T'), and the modulus of continuity of ¢~

For instance, if ¢ is a-Holder continuous for some « € (0,1], then we have
M(D; X, p) Zpamya AT Y, p)e.
Here M is a constant only depend on the modulus of continuity of ¢—1.

Note that on the estimation above, the order of the estimate (for instance, the Holder
exponent if we have an estimate of such type) depends only on the modulus of continuity
of ¢. The modulus of continuity of the inverse map ¢~! appears only on postive scalar
constant in our estimate.

Theorem B (Generalization of Matousek’s extrapolation). Let (oo >)p,q > 1. Then
for any X sphere equivalent to a uniformly convex Banach space, and a sequence {T'y,}n,
{T,}n are (X, p)-anders if and only if they are (X, q)-anders.

Remark 2.5. We note that recently Naor, in Theorem 1.10 and Theorem 4.15 in [Naol4],
has independently established similar results. Our approach is group theoretic, and dif-
ferent from his. In our proof, we introduce the “Gross trick”, see Section 6.

As byproducts to above Theorems A and B, and aforementioned works of Ozawa and
Pisier; and Lafforgue and Mendel-Naor, we have the following corollaries.

Corollary C. Any expanders are automatically (X, p)-anders for an X sphere equivalent
to uniformly curved Banach space and for p € (1,00). If, moreover, X € [l5]g, then the
assertion above holds even for p = 1.

In particular, for expanders {I',},, we have for such X of infinite dimension that

Cx(Fn) =x dlam(Fn)

Corollary D. The expanders constructed in Theorem 1.20 are (Y,2)-anders for any Y
sphere equivalent to a Banach space with nontrivial type.
In particular, they do not admit coarse embedding into any such Y .

Note that, for instance, noncommutative L, spaces are examples of such Y with trivial
type (though all expanders do not admit coarse embeddings to them by Theorem 2.4).
In the view of the results above, the following questions might be of importance.

Problem 2.6. (1) Does the class of Banach spaces sphere equivalent to uniformly curved
Banach spaces contain all superreflezive Banach spaces? Does it contain all Banach
spaces of nontrivial type/nontrivial cotype?

(2) Does the class of Banach spaces sphere equivalent to Banach spaces of nontrivial type
coincide with the class of all Banach spaces of nontrivial cotype?

To the best of my knowledge, all of the problems above may be open.

Remark 2.7. On (2), one inclusion is verified from Corollary D and Subsection 1.7 (also,
in [BLOO], the authors of the book announced a result that the class of Banach spaces
with trivial cotype is closed under the sphere equivalence). Hence, the true question in
(2) is whether the sphere equivalence class above contain all Banach spaces of nontrivial
cotype.
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Remark 2.8. There is also a notion of “ball equivalence” (namely, the unit balls are uni-
formly homeomorphic). In [BL00, Chapter 9], it is shown that if X and Y are ball
equivalent, then X @ R ~g Y @& R (the other direction: “X ~g Y implies that X and Y
are ball equivalent” is easy). Therefore, if we consider Banach spectral gap, then there is
no serious difference between the sphere equivalence and the ball equivalence.

3. REPRESENTATION THEORETIC CONSTANTS FOR CAYLEY GRAPHS

We first give the proof of Theorem A for Cayley graph of (finite) groups, and explain
where group theory can contribute to this problem. In this section, let GG be a finite group,
S # e be a symmetric (finite) generating set of G. Recall the definition of Cayley graphs.
The Cayley graph of (G, S), written as Cay(G, S), is constructed as

e the vertex set V = G;
e and the edge set £ ={(g,s9) : g € G,s € S}.

Ezample 3.1. Cay(Z/nZ,{£1}), n > 3, is the cycle of lenth n. Although we do not treat in

this report, Cayley graphs are also defined for G infinite. In that case, Cay(Z?, {£(1,0),4(0,1)})
is the Z*-lattice in R?. For a free group F, with 2 free generators a, b, Cay(Fy, {a*!, b*1})

is the 4-regular tree.

Remark 3.2. Recall that a group G has two natural action on itself: the left multiplication
and the right one. We have employed the left multiplication to connect edges in Cay (G, S),
and the right one is left. In fact, this right multiplication becomes a graph automorphsim
(in other words, for every g € G, (v,w) € E iff (vg,wg) € F). Since this right action
of G on itself is transitive, Cay(G,S) is a vertez-transitive graph (it means that the
automorphism group of the graph acts transitively on the vertex set). Hence, (finite)
Cayley graphs are special among all (finite) graphs.

Also recall that in our notaion, we allow graphs to have self-loops and multiple edges.
However, if we consider only Cayley graphs, then they do not show up.

3.1. isometric linear representations and displacement constant.

Definition 3.3. We take (G, S) and (X, p).

(1) Define mg,x, = Tx,p as the left-regular representation of G on £,(G, X (»)), namely, for
g € G and € € £,(G, X)), pr(g)g( ) = §(g*1v) Then £,(G, X)) decomposes as
G-representation spaces: £,(G, X)) = £,(G, X)) ™D @ £,0(G, X(p)) Here the first
space is the space of 7y ,(G)-invariant vectors (which consists of “constant functions”
form G to X(p)) and the second space is the space of “zero-sum” functions, namely,

lpo(G, X)) = {E € 0,(G, X)) + Y _E(v)
veG
We omit writting G in 7g.x, if G is fixed. We use the same symbol mx , for the
restricted representation on £, (G, X))

(2) (p-displacement constant) The p-displacement constant of (G,S) on X, written as
kxp(G,S), is defined as

H'va(G7 S) = lnf _ Sup HT(X»I’(‘S)é- - f“ ‘
0££€Lp,0(G, X () sES €l




GROSS TRICK AND SPHERE EQUIVALENCE 9

Remark 3.4. We will use in the proof of Proposition 5.1 the following norm inequality:
for £ € £,0(G, X)), we have

dist (&, 4,(G, X)) ™ @) > —||€||

Indeed, set n = m+no for any n € £,(G, X(p)) according to the decomposition ¢, (G, X(p)) =
0,(G, X(p))ﬂx,p(G) & L 0(G, X(p)). Then the map 1 + 7, is given by taking the mean of 7.
Because the p-mean of the norm is at least the norm of the mean, we have that ||n|| > ||n]|.
Hence for any ¢ € £,(G, X(,))™#(@ we have that ||¢—C|| > ||¢|| (set n := £—C). Therefore

2 inf 1€ =<l > inf o, €=l [I¢l) = liEll;

CElp (G, X )X # (D CEL (G, X ()X

and we are done.

3.2. Fundamental lemma for Banach spectral gaps of Cayley graphs. The fol-
lowing lemma plays a fundamental role, which relates p-displacement constant on X to
(X, p)-spectral gap for a Cayley graph.

Lemma 3.5. For a Cayley graph I = Cay(G, S) and a pair (X, p), we have that
S
KX,p<G7 S)p < )\l(Fvap) < |2_|/€X,p<G7S>p'

Proof. First note that by Lemma 1.3, \(I'; X,p) = )\I(I‘;f((p),p). Take a nonconstant
map f: V — X, and by replacing f with f —m(f) we may assume m(f) = 0. Then we
may regard f as a nonzero vector £ € £,o(G, X(p)). Therefore

Sea Tores Imxal9)E(0) — €I

1
M Xop) =5 inf
2 0£6€6,0(G. X)) €11
1 _ p
_ 1 it S0 (||7TX7p(S)§ 5||>
2 O7£§€£IJ,O(G7X(p)) ses ||§||
This ends our proof (note that ||7x,(s)€ — €| = ||mxp(s71)E — || because mx ,(s) is an
isometric operator). O

Remark 3.6. If we consider {(Gn,S,)} where sup, |S,| < oo, then Lemma 3.5 gives
the optimal order estimate between kx,(G,,S,) and A\ (Cay(G,,S,); X,p). However
if sup,, |:S,| = 0o, then Lemma 3.5 may not give the precise order.

Nevertheless, if S,,’s have “high symmetry”, then we have more accurate inequalities.
For more precise meaning, we refer the reader to [Mim14, Theorem 3.4], which is based
on the work of Pak and Zuk [PZ02].

4. KEY PROPOSITIONS ON SPHERE EQUIVALENCE

4.1. upper moduli and Sym(F') equivariant homeomorphisms.

Definition 4.1. Let X ~¢ Y, and ¢: S(X) — S(Y) be a uniformly continuous map.
(7) Define M to be the class of all functions d: [0, 2] — Rx( which satisfy the following
three conditions:
e ) is nondecreasing;
e lim.,,od(e) = 0;
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e and, for any x;,z9 € S(X) with |21 — 22| x <€, we have ||¢(z1) — d(x2)|y <
d(€).
We call an element 9 in My an upper modulus of continuity of ¢.
(ii) Define ¢: X — Y to be the extension of ¢ by homogeneity, namely, ¢(x) :=
|z||x(x/||z|x) for 0 # 2 € X and ¢(0) := 0. We call ¢ the natural estension

of ¢.

Note that ¢ is uniformly continuous if we restrict it on a bounded set of X; but that
itself is in general not.

Example 4.2. In Example 2.2, we have seen the definition of the Mazur map M, »: S(¢,) —
S(ls). This map (and also the inverse map) is known to be uniformly continuous, more
precisely,

o If p > 2, then the function d: [0,2] — Ryq; d(¢) := (p/2)0 is in My, (Mye is
Lipschitz).

e If p < 2, then the function §: [0,2] = Rsg; d(€) := 467/ is in My, (Mo is
p/2-Holder).

Surprislingly, these estimations of Holder exponents remain to be optimal even when we
consider the “noncommutative Mazur map” from noncommutative L, spaces associated

with any von Neumann algebra. This assertion has been recently showed by Ricard
[Ric14].

Definition 4.3. Let I’ be an at most countable set. For a map ¢: S({,(F, X)) —
S(L,(F,Y)), we say that ¢ is Sym(F')-equivariant if for any o € Sym(F'), poox, = oy 400
holds true. Here a Banach space Z and r € [1,00), the symbol oz, denotes the isometry
oz, on £,.(F, Z) induced by o, namely, (0z,£)(a) :=&(o7 (a)) for £ € (.(F,Z)and a € F.
Here by Sym(F') we mean the group of all permutations on F', including ones of infinite
Supports.

For instance, if we consider the Mazur map M, as a map from ¢,(N,R) to ¢5(N,R),
then M, - is Sym(N)-equivariant. This is because M, 5 is coordinatewise.

4.2. Key proposition for Theorem A.

Proposition 4.4. Assune that ¢: S(X) — S(Y) is a uniformly continuous map for two
Banach spaces X and'Y. Then for any p € [1,00), the map

P =, S(X(p)) - S(Y(p))S (@:)i = ()
is again a uniformly continuous map that is Sym(N)-equivariant. Here ¢ is the natural
extension of ¢ and we see Xy and Yy, respectively, as (,(N, X) and {,(N,Y).
Furthermore, if ¢ is a-Hélder, then so is ®,. More precisely. if §(t) := Ct* € M, for
some C' > 0 and some a € (0, 1], then 0'(t) := (2C + 2)t* belongs to Mg, .

Proof. By construction, this ®, is coordinatewise and hence in particular Sym(N)-equivariant.
Our proof of the uniform continuity of ®, consists of two cases. Here we only prove the
case where Ct* € M, (for general case, we may need to replace § with larger upper
modulus).

Case 1: forp=1. Let (z;); and (y;); be in S(X)).
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First we consider the case where for all i € N ||z;]|x = ||lvillx. Set r; := ||z;||x and
eri = ||z; — yillx. Observe that ¢ is concave in [0, 2]. By the Jensen inequality, we have
the following:

(@) = @), < D radle) < 83 rie) = (1) = Wil )

— ll=llx

Secondly we deal with the general case. For (x;);, (vi); € X(l), define z; := oY (2 :=

x; if y; = 0). Suppose ||(z;); — (yi)i||)~((l) < e. Because for any i, ||z; — vil|lx > ||z — villx,
we have that ||(z;); — (yi)i||)~((1> < €. Hence we obtain that |(z;); — (zi)iHX(l) < 2e.
Therefore in the first argument, we have that || ®((z;);) — @((zi)i)Hf,(l) < §(2¢). Since

]|<I>((yz)l)—<1>((zz)z)||y(1) < € by homogeneity, we conclude that §'(t) := §(2t)+t = 2°Ct*+t
belongs to Mg, .

Case 2 : for general p > 1. First observe that ¢ € [0, 2'/7], we have that 6(¢)? < CP~1§(¢P).
Then the remaining argument goes along a similar line to one in Case 1. Thus we can
show that 0'(t) := (Cp_lé((2t)p))1/p +t = 2*Ct* 4t belongs to Mg, .

In each case, finally observe that for ¢ € [0,2], (2C' + 2)t* > 2*Ct* + t. O

Lemma 9.9 in [BLOO] showed the first assertion above. However, the estimation of
upper moduli is worse than in this proposition, and did not verify the latter assertions.

4.3. Generalized Mazur map: key proposition for Theorem B.

Theorem 4.5. For any uniformly conver Banach space X and p,q € (1,00), we have that
Xy ~s X(q). Furthermore, we may have a uniform homeomorphism ¢: S({,(N, X)) —
S(ly(N, X)) which is Sym(N)-equivariant.

Proof. Choose 1 < py < min{p, ¢} and oo > p; > max{p, ¢}. Then [BL76, Theorem 5.1.2]
applies to the case where Q = N and Ay = A; = X. This tells us that both of X (p) and
X (q) are, respectively, isometrically isomorphic to some intermediate points of a complex
interpolation pair (X ), X)) Because X, and X(,,) are uniformly convex, the result
mentioned in Example 2.3 applies.

The last assertion follows from the proof of [BL0OO, Theorem 9.12]. Indeed, the definition
of f, for z € £,(N, X)), as the minimizer of a certain norm, in Proposition 1.3 in [BLO00] is
Sym(N)-equivariant in the current setting. O

This map may be regareded as a generalized Mazur map because it coincide with the
usual Mazur map if we consider the complex interpolation pair (¢, £,,) in the proof (for
X = R). However, note that we are only able to define it for p,q > 1, as long as we
employ the complex interpolation.

5. PROOF OF THEOREM A FOR CAYLEY GRAPHS

This part is based on a work of Bader—Furman-Gelander-Monod [BFGMO07]. See Sec-
tion 4.a in [BFGMO7] for the original idea of them. We will show the following proposition
concerning the p-displacement constants.
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Proposition 5.1. Let X ~gY and ¢: S(X) — S(Y) be a uniform homeomorphism. Let
G be a finite group, S # e be a symmetric (finite) subset. Then for any p € [1,00), we
have the following inequality:

1 1
kxp(G,S) > 61 (5521 (5) Ky (G, S)) .
Here 6, € Mg, and 0 € Mq);l.

Proof. By Proposition 4.4, ®,,: X » — Y/(p) is a uniform homeomorphism that is Sym(N)-
equivariant. By coordinate transformation, we may regard ®, as

D, S(6,(G, X(p))) - S(&)(Ga?(p)))

(note that £,(G, X(»)) =~ X(p)), which is Sym(G)-equivariant. We thus have that ®,om , =
my,p o ®,. Note that we consider 7x, and my, as G-representations, respectively, on
(,(G, X,) and £,(G,Y,), not on £, .

Choose any & € S(£,0(G, X)) C S(6,(G, X)) and set 5 := ®,(€) € S(£,(G, Yy))-
We warn that 7 does not belong to S({p0(G,Y(p))) in general. We however overcome
this difficulty in the following argument. Recall that ép(G,f((p)) is decomposed as the
direct sum of £,(G, X(,))™»®) and £, (G, X(»)). Note that the former subspace is sent to
0,(G,Y())™»(@ by @, (again because ®, is Sym(G)-equivariant). Recall the inequality
in Remark 3.4 and get that dist(&, ¢,(G, X(p))”XvP(G)) > %

In particular, from this we have that dist(&, S(£,(G, X())™»™)) > 1. Therefore, by
the uniform continuity of ®;1, we have that dist(n, S(€,(G, Y(,))™=)) > 6, (3).

Decompose 1 as n = 1, + 19 where 1, € Ep(G,f/(p))”Y’P(G) and 1y € £,0(G, 37(1,)). We

claim that . .
> 5 =) .
Il = 555" (5)

Indeed, let 1} := n,/||n;|| (if 71 = 0, then set 1)} as any vector in S(£,(G, Y(,))™*(@)). Then
by the inequality in the paragraph above, we have that ||n—n}{|| > d;" (3). Because ||| >
L=[[noll, we also have that |[gy—mni[| < ||nol| and that [n—m || < ln—mnul+[[n—nill < 2][noll-
By combining these inequalities, we prove the claim.

By the definition of ky,(G,S), we have that

1._,/1
sup ||y, (s)n — 1l = sup |y, (s)i0 — moll = [Inollky, (G, S) = 5d5" (—) ryp(G, 5).
ses ses 2 2
Finally, because ®, o 7x , = 7y, o ®,, we conclude by the uniform continuity of ®, that

sup [y (506 = 1) 2 67 (505 (5) s (G.9)).

By taking the infimum over & € S(£,0(G, X)), we obtain the desired assertion. O

By combining the proposition above, Proposition 4.4, and Lemma 3.5, we obtain the
conclusion in Theorem A for I' a Cayley graph.

6. THE GROSS TRICK

In this section, we give the proof of Theorem A for I' arbitrary finite graph. To do this,
our idea is to consider Schreier coset graphs and to reduce all cases to these ones. The
Gross theorem, which we will mention later, enables us to perform the latter procedure.
The author call this trick the Gross trick.
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6.1. Schreier coset graph. In the proof of Lemma 3.5 and Proposition 5.1, it may be
noticed that we have never employed the right regular representation. This means, we
only need group multiplication only on one side, which was used to connect the edges.
From this observation, we encounter with the conception of Schreier coset grpahs.

Definition 6.1. Let GG be a finitely generated group, S be a symmetric finite generating
set, and H be a subgroup of G of finite index. By Sch(G, H,S) we mean the Schreier
coset graph, that is

e the vertex set is the left cosets: V = G/H;
e the edge set F :={(gH,sgH): gH € G/H,s € S}.

Remark 6.2. One remark is that we may take G as a finite group in the definition.

The other remark is that, unlike Cayley grpahs, Schreier coset graphs in general have
no symmetry at all (note that only possible muliplication on G/H is from the left, but
this is used for connecting edges). Moreover, in general Sch(G, H, S) may have self-loops
and multiple edges.

Once we employ the concept of Schreier coset graphs, we have a similar definition of
p-displacement constants for the triple (G, H,S) in terms of the quasi-regular represen-
tation of G on £,(G/H, X (). Furthermore, we have exactly the same inequalities as
ones in Lemma 3.5 and Proposition 5.1 for Schreier coset graphs. In this report, we
omit the precise forms. Instead, we refer the reader to Definition 3.1, Lemma 3.3, and
Proposition 4.2 in [Mim14].

Thus we ends the proof of Theorem A for the case where I' is a Shreier coset graph.

6.2. the Gross trick. Now we explain the main trick on the proof. This employs the
following result of Gross.

Theorem 6.3 ([Gro77]). Any finite connected and regular graph (possibly with multiple
edges and self-loops) with even degree can be realized as a Schreier coset graph.

Remark 6.4. The proof of Gross’s theorem is based on the “2-factorization” of such a
graph (Petersen). This means, for such a graph, we can decompose the (undirected) edge
set as the disjoint union of 2-regular graphs (cycles). From these cycles, we can endow
I' with the structure of a Schreier coset graph. Hence this realization is not just the
existence, but not sufficiently concrete or handlable in general setting.

Also, by passing to apropriate limits, the Gross theorem can be extended to infinite
regular conncected graphs of even degree.

This theorem of Gross roughly asserts that Schreier coset graphs are “more or less
universal” among graphs of uniformly bounded degree (compare with speciality of Cayley
graphs!). More precise meaing of “universal” will be explained in the usage of “Gross
trick”, as below.

The following argument is the Gross trick: Let I' = (V, E) be a finite connected graph.
Then we take the even regularization of I' in the following sense: we let V' unchanged.
We first double each edge in E. Note that then for any v, w € V, deg(v) — deg(w) € 2Z
and that the maximum degree is 2A(T"). Finally, we let a vertex v whose degree is
2A(T") unchanged, and for all the other vertices add, respectively, appropriate numbers
of self-loops to have the resulting degree = 2A(T") for each vertex. We write the resulting
graph as IV = (V) E’). Then by the Gross theorem, I'' can be realized as a Schreier
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coset graph and thus the argument in Subsection 6.1 applies to I'. Finally observe that
M Zp) = 20 (0 Z, p) for any Banach space Z because self-loops do not affect the
spectral gap.

This completes our proof of Theorem A for general graphs T.

7. PROOFS OF THEOREM B AND COROLLARY C

Proof of Theorem B. Let X ~g Y, where Y is uniformly convex and let p,q € (1
By Theorem 4.5, there exists an Sym(N)-equivariant uniform homeomorphism

)
D, 40 S(f/(p)) — S(f/(q)). First we start from the case where I' is of the form Sch(G, H, S
Then we regard ® as an Sym(G/H )-equivariant uniform homeomorphism

O: S(6,(G/H,Yp)) — S(L(G/H, Y ).

).
5).

We thus may apply a similar argument to Proposition 5.1 to the pair ((Y,p);(Y,q)).
Because Proposition 5.1 works for the pairs ((X,p);(Y,p)) and ((Y,q); (X, q)), we are
done.

For general cases, apply the Gross trick. 0

Proof of Corollary C'. The first assertion holds true by Theorem A, Theorem B, and the
fact of that uniformly curved Banach spaces are isomorphic (and in particular sphere
equivalent) to some uniformly convex Banach spaces, see Remark 1.19. The second asser-
tion holds true for the following reason: if X € [(5]g, then by Theorem A and Lemma 1.3,
the (X, p)-ander property is equivalent to the (R, p)-ander property. The original Ma-
tousek extrapolation enables us to extend our results even for p = 1. 0

8. APPLICATION: EMBEDDINGS OF HAMMING GRAPHS INTO NONCOMMUTATIVE L,
SPACES

As an application of our main results, we consider embeddings of Hamming graphs into
noncommutative L, spaces associated with arbitrary von Neumann algebras. For d > 1
and k > 2, the Hamming graph H(d, k) is defined as the following:

e the vertex set V' is the set of the ordered d-tuples of T', |T'| = k;
e the edge set F consists of all pairs which diffres in precisely one coordinate.
In other words, H(d, k) is the product of d copies of the complete graph K on k vertices.

It is easy to see that H(d, k) is d(k — 1)-regular and diam(H (d, k)) = d. As a byproduct
of Theorem A, we have the following:

Theorem 8.1. Let M be a von Neumann algebra. By L,(M), we denote the noncom-
mutative L, space associated with M.

(1) Forp € [1,2), then we have that \(H(d, k); L,(M),p) <, k.

(2) Forp € [2,00), then we have that \(H(d, k); Ly(M),2) <, k.

Note that the multiplicative constants in these estimation do not depend on d, k, and
M; and only depend on p.

Proof. We only prove the case where k is a prime number. For other cases, we use a
similar technique to the Gross trick (namely, we add multiple edges and self-loops to have
better graph) in order to apply [Mim14, Theorem 3.4].



GROSS TRICK AND SPHERE EQUIVALENCE 15

Note that H(d, k) = Cay(Gap, Sax), where G = (Zy)? and Sy consists of vectors
whose exactly one coordinate is non-zero. Then we can apply [Mim14, Theorem 3.4] (see
also Remark 3.6) with v = 1 and we have that

M(H(d k); X, q) = wﬁX,q(Gd,k; Sar)?.
Recall that by the result of Ricard [Ricl4] (see also Example 4.2) the noncommutative
Mazur map, which we also write M, o, is
e p/2-Holder if p € [1,2];
e and Lipschitz if p > 2.
(Note that multiplicative constants do not depend on M in direct sumargument.) By
spectral calculus, it is not difficult to show that A;(H(d, k);R,2) = k, and so

2k \/?
KX,Q(Gd,hSd,k) = (m) -

Therefore by Proposition 5.1, we have that

o M(H(d, k); Lp(M),p) Zp k for p € [1,2];

o and \(H(d,k); L,(M),2) =, k for p > 2.
(For the former inequalities, see that ¢,(N, L,(M)) is again a noncommutative L, space.)
Finally, we will prove the converse order inequalities. For p € [1, 2], consider the following
mapping

for H(d, k) = £,(d, 6,(T,R));  (a1,..-aa) = (X{a1}s - - - s X{au})-

Here T is the base set (|T'| = k) of H(d, k), and x stands for the characteristic function.
Then simple calculation shows that

EZUEVd,k Ze:(v,w)EEdJc ||fp(w) - fp('U) ||p kP

2 Z’UEVd,k [ fp(v) —m(fp)[? (k=11 +1 o
(note that & > 2). Because (,(N, L,(M)) contains ¢, this shows that A\, (H(d, k); L,(M),p) =<,
k for p € [1,2]. For p > 2, because {5 is an isometric subspace of L,((0, 1)), we can approx-
imately embed H(d, k) into ¢5(N, L,(M)) by using f» by approximating (finitely many)
elements in L,((0,1)) by step functions in ¢,. This gives that \{(H(d, k); L,(M),2) 2, k
and therefore A\ (H(d, k); L,(M),2) =, k. O

k

Corollary 8.2. In the setting of Theorem 8.1, the following hold true.
(1) (1) Forp € [1,2), cr,omy)(H(d, k)) <, d'~'/P.
(2) Forp € [2,00), e, (H(d, k)) =<, d'/%.
(1i) For an infinite sequence {H(d, ky)}n with lim,_,. d, = 0o, the following hold:
(1) For p € [1,2), the supremum of the exponents a € [0,1] such that there exists
C > 0 such that (t*,Ct) can be a control pair of [], H(dy, ky) into L,(M) is
1/p.
(2) For p € [2,00), the supremum of the exponents « € [0, 1] such that there exists
C > 0 such that (t*,Ct) can be a control pair of [], H(dy, k) into L,(M) is
1/2.

Proof. On (i), in both cases, inequalities from below follow from Theorem 1.11 and Theo-
rem 8.1. Inequalities from above can be deduced from the special embeddings of H(d,,, k)
indicated in the proof of theorem 8.1.
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On (ii), inequalities from above follow from the estimations on distoritons in (i) and
Lemma 1.13. Ones from below are again from the special embeddings above. 0
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Fglner type sets, Property A and coarse
embeddings

Thibault Pillon
November 2, 2014

Abstract

Our goal is to expose amenability as a tool to produce good em-
beddings of metric spaces into Banach spaces. After introducing
amenability, focussing on Fglner’s isoperimetric criterion, we show
how Yu’s property A generalizes the notion to uniformly discrete
metric spaces. We show how to produce proper isometric actions of
amenable groups and coarse embeddings of metric spaces with Prop-
erty A. Finally, by keeping track of the size of Fglner sets, we obtain
lower bounds on the compression functions of those embeddings.

1 Amenability and proper actions on Hilbert
spaces

1.1 The Hausdorff-Banach-Tarski paradox and von Neu-
mann’s definition

The Hausdorff-Banach-Tarski paradox states that it is possible to cut a
sphere into finitely many pieces and reassemble them with no deformations
into two spheres of the same size as the original one. It is called a paradox
only because it contradicts our geometrical intuition in a very strong sense.
What makes such a cutting possible lies in the use of the axiom of choice and
of non-Lebesgue-measurable pieces. In the study of that theorem, the notion
of amenability arose as a fundamental group theoretic property forbidding
such decompositions.

Theorem 1.1 (Hausdorff, 1914 [Hau] - Banach, Tarski, 1924 [BT]). Let X=S?
denote the two dimensional unit sphere in R® and let G = SO3(R) be its group



of isometries. There exists a non-measurable partition of X into four subsets
Ai, Ay, and By, By and rotations oy, as, 51, B2 € G such that

(Oél . Al) L (042 . AQ) = G, and (51 . Bl) (] (ﬁg . BQ) =G.

Proof: Consider the subgroup F' = F(a, ) of G generated by the two
matrices

3/5 —4/5 0 1 0 0
a=14/5 3/5 0| andB= [0 3/5 —4/5
0o 0 1 0 4/5 3/5

and admit that this subgroup is free. Consider the following partition of F
into four subsets :

A, = {reduced words starting with the letter o}

>
I

{reduced words starting with the letter o'}
{reduced words starting with the letter 5} U {5™", n > 0}
B_ = {reduced words starting with the letter '} \ {87, n >0}

o8
+
I

These sets satisfy the following :
A, UaA =G and By UBB_ =G.

Now fix a set of representatives {z;};cz of the F-orbits in X and define

A = {g-m,ge Ay, iely, A = {g-m,geA icT},
B = {g-w,9€By,i€l}, By = {g-wm,geB,icI}
WeobtainthatX:All_J(owAQ):Bll_l(B-Bg). O

Such a decomposition is called a paradozical decomposition. From his
study of the Banach-Tarski Paradox, Von Neumann came up with the fol-
lowing definition :

Definition 1.2 (von Neumann, 1929 [vN]). Let G be a discrete group, a
mean on G is a linear functional M : £>°(G) — R which satisfies

1. M(f) > 0 whenever f >0,
2. M(1)=1.
A mean is called left-invariant if additionally

3. M(g-f)=M(f), for every g € G, f € {>(G).

2



G is called amenable if it admits a left-invariant mean.

Remark 1.3. To get a intuitive understanding of the notion, it is important
to note that evaluating a left-invariant mean on indicator functions of subsets
of G will give us a left invariant finitely-additive measure on G.

The crucial observation of von Neumann is that the existence of para-
doxical decompositions of the group is an obstruction to amenability. Tarski
later proved that it is actually the only obstruction.

Theorem 1.4 (Tarski, 1938 [Tal]). A discrete group G admits a paradozical
decomposition if and only if it is not amenable.

In a modern view-point, theorem 1.1 uses non-amenability of a certain
isometric action of the free group on the sphere to produce a paradoxical
decomposition of that sphere. It is difficult to prove amenability or non-
amenability of a group using this definition but let’s see some examples.

Example 1.5. 1. Every finite group is amenable. Averaging a function
amongst the elements of the group provides a left-invariant mean.

2. Free groups are non-amenable. The case of two generators follows from
the proof of Theorem 1.1 and the argument for more generators is
completely similar.

3. The group Z of all integers is an amenable group. Providing an explicit
left-invariant mean is impossible since it relies on the axiom of choice.
One such mean could be given by taking the limit of bounded functions
along a Z-invariant ultrafilter.

1.2 Fglner’s criterion

The most surprising fact about the concept of amenability is that it admits
many equivalent definitions coming from very diverse areas of mathematics
: measure theoretic, geometric, dynamical, analytic, spectral, etc. The most
important for our exposition is the Fglner geometric characterization in terms
of sets with small boundaries.

Definition 1.6. Let G be a finitely generated group equipped with the word
metric associated to some finite generating set, let A be a subset of GG, and
let R > 0. Define the R-boundary of A as

OrA={ge G\ A|d(g,A) < R}.



Fix € > 0, a finite subset A of G is called an (R, e)-Folner set if it satisfies

#0rA <.
#A T
This definition is well-suited to give an intuitive notion of Fglner sets as

sets with small boundaries, however it is almost always more practical to
work with the following :

Definition 1.5 (revisited). A finite subset A C G is called an (R, €)-Fplner

set if it satisfies
#(g- AN A)

#A
for every g € G such that |g| < R.

<e

The equivalence between the two definitions relies on the fact that the
size of the symmetric difference between A and one of its close translates is
roughly equal to the size of its boundary. Note that in order to pass from
one definition to the other we may have to multiply € or R by some fixed
constant.

Theorem 1.6 (Fglner, 1955 [Fol]). A finitely generated group G is amenable
if and only if, for every € > 0 and for every R > 0, G contains an (R,¢)-
Folner set.

Remark 1.7. Fixing R = 1 in the theorem would give the exact same class
of groups. This is due to the fact that R-boundaries for large R can be
controlled in terms of 1-boundaries. So to obtain an (R, e)-Fglner set, one
can choose a (1,d)-Folner set for a sufficiently small §. In this setting, a
sequence of (1,e,)-Folner sets (F),) is called a Folner sequence if €, — 0. It
will always satisfy

nee  #F,

However, it is very convenient to keep the flexibility of fixing R

0

Proof: We only give a sketch.
Suppose that G satisfies Fglner’s criterion and let F,, C G be (n, =)-Fglner
sets. Define functionals M,, on ¢>°(G) by

o 3 o)

geF,

M, (p) =

The M,, are unit functionals on £>°(G), and by compactness of the unit sphere
in £°(G)* we can assume that the sequence (M,,) converges to a weak-* limit

4



M. 1t is easy to check that M is a mean, and left-invariance is a consequence
of the asymptotic invariance of the F},’s.

For the converse, we use that £*(G) is dense in its bidual £*(G)*. Given
M a left-invariant mean, choose a sequence ¢, € (1(G) of finite support
functions converging to M. Moreover, choose each ¢, so that there exist
N > 0 such that ¢, takes value in {0, + , 54,1}, By left-invariance

I T
of M, g - ¢, — ¢, must become small as n goes to infinity. Considering the
sets Frlf = {z € G| ¢,(z) < £}, we see that by a pigeon-hole principle, at
least one of them must be close to its translate by g. 0

Let us now revisit our previous examples from Fglner’s point of view.

Example 1.8. 1. Every finite group is amenable. Indeed, the group itself
is an (R, ¢)-Folner set for any R and e.

2. Free groups are non-amenable. Indeed, the Cayley graph of a free group
of rank k is a 2k-regular tree. We can easily check that any connected
sub-tree containing n points has a 1-boundary of size n(2k — 2) + 2
forbidding the existence of (1, e)-Fglner sets for small values of .

3. The group Z of all integers is an amenable group. Intervals of the form
[0,n] are (R, ¢)-Folner at least when n > ¢/R.

4. One goes easily from Z to Z? and to any abelian finitely generated
group.
Fglner’s criterion naturally raises the following question : when does an

infinite sequence of balls form a Fglner sequence? The following gives a
complete answer to this question.

Corollary 1.9. All groups with subexponential growth are amenable.

Proof: We'll prove the converse statement, i.e. that non-amenabe groups
have exponential growth.

Let G be a finitely generated group. Denote by B(n) the ball of radius n
and by S(n) the sphere of radius n in G. We have

#B(n) = #B(n—1)+#5(n)

= #B(n—1) (H%)
— #B(n—2) (1+%> <1+$@1))

(5 5)

=1



It is immediate that 0B (n) = S(n + 1), so by non-amenability of G, the
general term of the product must be uniformly bounded away from 1. This
implies exponential growth. O

Note that the proof also tells us that in a non-amenable group of sub-
exponential growth, at least a subsequence of the balls forms a Fglner se-
quence.

1.3 Gromov’s a-T-menability

Let us recall a few facts about groups actions on Hilbert spaces.

Definition 1.10. An affine isometric action o of G on a Banach space FE
is a homomorphism of GG into the group of affine isometric transformations
Aff(E).
Such an action is called proper if moreover for some (equivalently for all)
Eek
|la(g)€]| — oo whenever |g| — oo

Definition 1.11 (Gromov, 1988 [?]). A group G is called a-T-menable if it
admits a proper affine isometric action on a Hilbert space.

A-T-menability was introduced by Gromov as a strong negation of Kazh-
dan’s property (7') which requires that every affine isometric action of the
group on a Hilbert space has bounded orbits. The terminology follows from
the fact that a-T-menability is a weak form of amenability, although this is
not clear from the definition.

Example 1.12. 1. Z% is a-T-menable. Indeed, the action
Oé(ml,...,md)(.fl,...,l'd) = (1'1 +m1,...,$d+md)
is proper.

2. The free group on two generators Fy = F'(a,b) acts properly on a
Hilbert space.

Proof: Consider the action of Fy on its Cayley graph I' = (V| E)
for the standard generating set. Equip I' with the natural orientation
where edges have positive orientation from g to ag or bg and negative
orientation otherwise. Consider now the Hilbert space H = (*(E) of
square summable functions on the edges of I'. The left-action of G on
' lifts to a unitary representation of H. Define now b: G — H by

1 ifedled]
b(g)(e) = § —1 ifedlg el

0 otherwise



where [z,y] denotes the oriented geodesic from z to y. It is easily
checked that the formula

a(g)§ =g-&+b(g)
defines a proper affine isometric action of G. O

The following theorem shows that amenable groups are a-T-menable, it is
essential to us since it gives an explicit construction of a proper action given
Fglner sets on the group. The same approach will be applied in the non-
equivariant setting and in both cases we will be able to obtain quantitative
information about the actions (resp. coarse maps) obtained this way.

Theorem 1.13 (Bekka-Cherix-Valette, 1993 [BCV]). Any amenable group
admits a proper affine isometric action on a Hilbert space.

Proof: Let G be an amenable group, and let F,, be (n,1/n?)-Fglner sets
in G. Consider the Hilbert sum H = ;- (*(G) equipped with the natural
diagonal action of G. Now define &, € EQ(G) by

1

—\/Z#Fn)XFn’

where xg denotes the indicator function of F),, and define b(g) € H by
b(g) =D, 9 (& — &,). Note that b(g) belongs to H since

gn:

lbo(a)lI* = Z|!g-£n—£n\|2
Z#g Fy AF)

and by Fglner’s condition when n becomes large enough, the summand is
dominated by 1/n? which insures that the series converges. Define o : G — Aff(H)
by

a(g)v=g-v+b(g).
This is a well-defined affine isometric action of G. To see that it is proper,
notice that as |g| grows larger and larger, so does the amount of indices n
sucht that g - F,, and F}, are disjoint. Hence

bl = 2-#{n | Fung- F. =0}
— o0 asl|g] = 0.



2 Property A and coarse embeddings

2.1 Property A

Definition 2.1 (Yu, 2000 [Yu]). Let X be a uniformly discrete metric space.
We say that X has Property A if for every ¢ > 0 and R > 0, there exists a
collection (A;),y of finite subsets of X x N and S > 0 such that

A N A
(a) % < e whenever d(z,y) < R, and
T y

(b) A, C B(z,S) x N.
Such subsets are called (R, ¢)-Folner type sets.

Observe that condition (a) is similar to Fglner’s condition; sets associ-
ated to close points are close. Condition (b), however, replaces equivariance.
Indeed, in group it is always the case that finite subsets are disjoint from
their far translates. Here, we make it a requirement.

The use of the extra dimension N allows us to count points with multi-
plicity and is necessary for technical reasons.

Example 2.2. Amenable groups, seen as uniformly discrete spaces have
property A. Indeed, fix R,e > 0 and let F' be a (R,d)-Fglner set for a
suitable 0. Then the family of sets A, = gF x {1} satisfies property A for R
and ¢.

The question whether Property A for groups is equivalent to amenability
is natural and the following example shows that it isn’t. Indeed, free groups
have trees as Cayley graphs.

Example 2.3. Infinite trees have property A.

Proof: Let T be such a tree and choose zy a root in T. From any x € T
there exists a unique minimal path from x to zy. Fix n > 0 and build a set
A, C T x N in the following way : assign weight 1 to x (meaning put the
point  x {0} in the set A,) then follow the path to z( to the next vertex.
Assign weight 1 to this vertex and keep going until either #A, = n or you
reach xy. If xg is reached, assign the correct weight to xq so that #A4, = n.
Computations show that #A4, A A, < 2d(z,y) and #A4, N A, > n —
2d(x,y). Hence
. #HANA,
lim ——— =
n—00 #Ay N Ay

which is enough to insure the existence of (R,¢)-A sets fo any R and e. O
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2.2 Asymptotic dimension

Since proving Property A is not easy in general, we give one important cri-
terion which insures it.

Definition 2.4 (Gromov, 2000 [Gro2]). Let U = {U,}ier be a cover of the
metric space X. Given R > 0, the R-multiplicity of U is the smallest integer
n such that every ball of radius R in X intersects at most n elements of U.

The asymptotic dimension of X, AsDim(X) is the smallest integer n
such that for any R > 0 there exists a uniformly bounded cover of X with
R-multiplicity n + 1.

Asymptotic dimension is suited to the large scale point of view. Intu-
itively, we want to associate a dimension to a metric space which corresponds
to the topological dimension of the space seen from afar. It shares many fea-
tures with more classical notions of dimension and gives intuitive results on
familiar objects (see items 1. 2. and 3. below)

Example 2.5. 1. Compact metric spaces have asymptotic dimension 0.
2. Real trees have asymptotic dimension 1.
3. AsDim(Z") = n.

4. Hyperbolic metric spaces have finite asymptotic dimension, but there
exist hyperbolic spaces with arbitrarily large asymptotic dimension.

5. Z*) and the wreath product Z1Z bith have infinite asymptotic dimen-
sion.

The following result gives a practical criterion for having property A, we
state if without proof.

Theorem 2.6 (Higson-Roe, 2000 [HR]). Let X be a uniformly discrete met-
ric space. If X has finite asymptotic dimension, then X has property A. [

2.3 Coarse embeddings
Recall the following definitions :

Definition 2.7. A map F': X — Y is callled coarse if there exist control
functions py,p_ : Ry — R, with limy , p— = +00, such that

p—(d(z,y)) < d(F(z), F(y)) < py(d(z,y)), for all v,y € X.

Furthermore, the maximal map p_ for that condition (namely p_(t) =
inf{d(F(z), F(y)) | d(z,y) < t}) is called the compression function of F.

9



The study of spaces, especially groups, which admit embeddings into
Hilbert spaces (or more general Banach spaces) has been very important in
connection with conjectures coming from index theory and geometry. Prop-
erty A was designed by Yu as a tool to produce such embeddings.

Proposition 2.8 (Yu, 2000). Let X be a uniformly discrete metric space. If
X has property A then X embeds coarsely into a Hilbert space.

Proof: The construction is very similar to the proof of theorem 1.13. We'll
define an embedding in @ ¢*(X x N). First, for each n > 0 fix a family

(A:(r”)> of (n, #)—F@lner type sets. Then define 550”) € (X x N) by

X 4lm
V#AD)

Now fix a base point z € X and define F: X — @, (*(X x N) by

D -e)

We need to check that this map is well-defined and is indeed a coarse em-
bedding. Fix z,y € X and choose k minimal so that d(x,y) < k + 1, we
have

& =

IF() = Fll* = > [jg — ¢
n=1
o 4 (A;") AA@”)

n=1 #Aﬂ(ﬁn)

: #(Ai")AA§")> x
< _
= ; #Ag(gn) ; n2

< 2k 48 < 2d(z,y) + 10.

In the case y = z this gives us that F'(z) is well-defined. The general state-
ment gives an upper control function for the map F. For the lower control
function, note that by condition (b) in definition 2.1, there exists a sequence
S,, such that

supp(Ay"”) C B(z,n)

It is straightforward that in order to satisfy condition (a), the sequence (.S,,)
must tend to infinity. Without loss of generality suppose (S,) is increasing

10



and define ¢(k) = max{n | 25, < k < d(z,y)}, this ensures that Al and
Aé") are disjoint whenever n < ¢(k) We obtain

(A(”AA“‘) #(A % )

>

n=¢(k)+1

Pk
1F(x) = Fy)ll = Z
2¢(

v

k).

OJ

This proposition gives us the first obstruction to property A. A space
which doesn’t embed coarsely into a Hilbert space can not satisfy Property
A, hence families of expander graphs don’t have A. Giving more examples
of spaces without this property is difficult and whether the last proposition
admits a converse is even harder. See A. Khukhro’s notes and talk for more
about the subject.

3 Quantitative properties and compression func-
tions

The purpose of this section is to sharpen the notions of Fglner and Fglner
type sets to obtain lower control on the compression functions of the embed-
dings we constructed. All following material is due to Tessera [Tel, Te2].

Definition 3.1. Let G be an amenable group, a Fglner sequence (F},),>1 of
G is called controlled if there exists C' > 0 such that

C
diam F; < —
€

whenever F, is (1,¢)-Fglner.

So, in addition to the existence of sets with small boundaries, we require
that such sets can be chosen small enough. For combinatorial reasons, the
condition above is the sharpest one can ask for. In other words, groups with
controlled Fglner sequences are as good as it gets. The following proposition
shows that these groups embed in L” spaces with very good compression
functions. We provide it without proof.

Theorem 3.2 ([Te2]). Let f : Ry — R, be an increasing function satisfying

[eyes
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and let G be a amenable group with controlled Folner sets. Then there exists
an affine isometric action of G on a Hilbert space whose compresion function
p salisfies
p(t) = a(t).
OJ

Example 3.3. Groups with polynomial growth have controlled Fglner se-

quences. Indeed if #B(n) &~ n® it is easily checked that % ~ 1/n. So

the family of all balls form a controlled Fglner sequence.

Proposition 3.4. The following classes of groups have controlled Folner
sequences:

1. Polycyclic groups.
2. Amenable connected Lie groups.

3. Some algebraic semi-direct products, in particular amenable Baumslag-
Solitar groups.

4. Wreath products of the form F1Z with F finite.
O

The same idea applied to Fglner type sets gives the following definition:

Definition 3.5. Let X be a uniformly discrete metric space, let J : R, —

R, be some increasing function and fix 1 < p < oco. We say that X has
quantitative property A(J,p) if for each n > 0 there exists a family (Aé”))

reX
such that

1. #AM > J(n)?,
2. # (A & AP < d(a,y),

3. supp A" C B(x,n).

Theorem 3.6. Let X be a metric space with property A(J,p) as above and
let f be an increasing function satisfying

[ (o) 7 ==

Then there exists a large scale Lipschitz coarse embedding of X into an LP
space with compression function p satisfying

p= I

12



Proof: Fix a base point z € X and fix families (Aé”)) as in the definition.
Define F,, : X — ¢*(X) by

F(z) = (ﬁgi;) (XAg;n) - XAngw)

and set I : X — (D P(X)),, F(x) = D Fu(r) We need to prove that F' is
well-defined and that it satisfies the requirement of the theorem. We have

1E(@) = F)lp = Y I1F(@) = Fw)lly

= () g (a  a

n=1

This both shows that F' is well-defined (set y = 2) and that it is Lips-
chitz. On the other hand, fix x,y € X and choose N maximal such that

d(x,y) > 2W+D_ This condition ensures that A§;2N) and AézN) are disjoint.
We obtain

[1F(z) = FW)lly = Fv(z) = Fnvll;
f(QN) : 2N 2N
(Fmy) # (a0 02)
- (&
= 2f(2") > 2f (d(z,y))
which shows that pgr = f. O

We expose some classes of metric spaces for which this approach is fruitful.
As in the equivariant case, looking at balls as potential controlled Fglner type
sets gives us results linking growth and compression functions.

Theorem 3.7. 1. Let X be a quasi-geodesic metric space with subexpo-
nential growth v i.e.

#B(x,r) <v(r), Ve e X,r > 0.

Then X has A(J,,p) for every 1 < p < oo, where J,(t) = (t/logv(t))'/?.

13



2. Moreover, if we assume homogeneity on the size of balls, namely that

#B(xz,n) < Cv(n) for some C > 0,

one can choose J,(t) = t/logv(t) for all 1 <p < 0.

3. Moreover, is X is a uniformly doubling metric space, i.e such that v
satisfies

v(2r) < C'v(r),

then one can choose J(t) = t.

Theorem 3.8. Let X be an homogeneous Riemannian manifold. Then
X has property A(J,p) for allp > 1 and J =~ t.
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ON RAMSEY TECHNIQUES IN QUANTITATIVE METRIC GEOMETRY:
THE MINIMUM DISTORTION NEEDED TO EMBED A BINARY TREE INTO ¢p

DANIEL GALICER

ABSTRACT. Itis commonly said that a result is typical of the Ramsey theory, if in any finite col-
oring of some mathematical object one can extract a sub-object (usually having some kind of
desired structure), which is monochromatic. In this essay we discuss in detail a clever Ramsey-
type argument due to Jifi MatousSek utilized in the context of embedding theory. Namely, to
study the smallest constant C = C(n) for which a complete binary tree of height n can be C-
embedded into a given uniformly convex Banach space. As a consequence, the quantitative
lower bound of const - (logn)™n(1/21/P) in the distortion needed to embed this space into ¢,

(for 1 < p < o0) is explained.

1. A GLIMPSE TO RAMSEY-TYPE RESULTS AND BOURGAIN’S WORK ON BINARY TREES

Let us begin with a seemingly banal but enlightening question: How many people should be
on a party to ensure that three of them are either mutual acquaintances (each one knows the
other two) or mutual strangers (each one does not know either of the other two)? This query
is usually known as the problem of friends and strangers. For our purposes, it is convenient to
phrase this question in a graph-theoretic language. Denote by n the number of people at the
party and suppose that each person is represented by a vertex of a complete graph (a simple
undirected graph in which every pair of distinct vertices is connected by a unique edge) K,
of order n. Given two partygoers (or vertices), we paint in red the edge that links them if they
know each other and in blue otherwise. Therefore, our problem translates into the following:
How big n must be to assert the existence of a complete subgraph of order 3 in K, painted
entirely in red or blue?

Ramsey’s classical theorem [Ram30] points in the same direction as this question. Collo-
quially speaking, it states that in any coloring of the edges (using a palette with a finite num-
ber of colors) of a sufficiently large complete graph, one will find monochromatic (i.e., of the
same color) complete subgraphs. This foundational tool in combinatorics initiated a new per-

spective that is now framed as part of the Ramsey theory. But what exactly do people mean

Key words and phrases. Graph trees, bi-Lipschitz structure, Ramsey techniques, Uniformly convex Banach

spaces.



2 DANIEL GALICER

when they refer to a statement as of Ramsey-type? Perhaps the most popular result of this
type (although quite naive) is the well-known pigeonhole principle: if f: {1,...n} — {1,... m}
and n > m then f can not be injective (if you have fewer pigeon holes than pigeons and you
put every pigeon in a pigeon hole, then there must result at least one pigeon hole with more
than one pigeon). The typical scenario of the Ramsey theory starts with some mathematical
object which is divided into several pieces. The question that arises in this context is how big
should be the original object in order to affirm that at least one of the pieces has a given in-
teresting property. Going back to our friends and strangers’ example, we wanted to know how
big had to be our study set (n = the number of partygoers) to ensure the existence of a certain
structure (three “friends” or three “complete strangers”). By the way... the answer is n = 6 and
it is an interesting challenge to prove this, but this is another matter.

Summarizing, a statement has essentially a Ramsey-type flavor if it ensures the existence of
some kind of rigid substructure in a given set having enough members. Being a bit extreme,
Ramsey-type results give certain regularity amid disorder. These techniques have proven to be
extremely useful in various contexts alien to it (allowing to solve, for example, long-standing
problems in analysis; see [AT06] for a proper treatment on several important applications).
Of course, Ramsey theory may be labeled undoubtedly as a part of combinatorics or discrete
mathematics, and in general these branches seem to be quite distant, at least at first glance,
from embedding theory or metric geometry. The aim of this note is to show how to apply this
kind of discrete techniques to study the smallest distortion needed in a particular embedding
problem. Before going into details, let us start with a couple of definitions in order to clarify all
the notions we deal with.

Given two metric spaces (M, dys), (N,dy), and a mapping f : M — N, we denote the Lips-

ANGO.F )

chitz constant of f by || fllLip := sup{ IVIERD)

:x # y}. If f is injective then the (bi-Lipschitz)
distortion of f is defined as dist(f) = || fllLip* Il f -1 [l Lip- Informally, the distortion is a measure of
the amount by which a function warps distances. Note that a function with distortion 1 does
not necessarily preserve mutual distances but it may re-scale them in the same ratio. We write
M & N if there exist an embedding f: M — N with dist(f) < C (such an embedding is called
a C-embedding or a C-isomorphism). The smallest distortion with which M embeds into N is

denoted cy (M), namely,

en(M) = infiC: M N,

We say that f : M — N is non-contracting if dp;(x, y) < dn(f(x), f(3)) for every x,y € M (i.e.,

I f -1 lLip < 1). In this working we focus on the case where the target space N is a Banach
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space (X, || - [1), so we can compute cx (M) (by re-scaling if necessary) as inf{|| fllLip : f: M —
X non-contracting}. If X = £, for some p > 1 we use the shorter notation ¢, (M) = ¢, ) (M). The
parameter ¢, (M) is usually known as the Euclidean distortion of X.

Lipschitz (or uniform and coarse) embeddings of metric spaces into Banach spaces with
“good geometrical properties” have found many significant applications, specially in com-
puter science and topology. The advantages of low distortion embeddings are based on the
fact that for spaces with “good properties” one can apply several geometric tools which are
generally not available for typical metric spaces. The most significant accomplishments through-
out these lines were obtained in the design of algorithms (the information obtained from con-
crete geometric representations of finite spaces is used to obtain efficient approximation al-
gorithms and data structures). In this context, the spaces with “good geometrical features” are
mostly separable Hilbert spaces (or certain classical Banach spaces such as L, spaces).

The bi-Lipschitz structure of arbitrary trees and its applications to different context have
been studied extensively during the last years. We refer to [Dre84, Mat90, Bar98, JLPS02, L.S03,
Dra03) [FRT03, BS05, NPS™06] and the references therein for a detailed treatment. Recall that
a (graph-theoretical) tree is an undirected graph T = (V, E) in which any two vertices are con-
nected by exactly one path. In other words, any connected graph without simple cycles is a
tree. The present essay is devoted to the study of the Euclidean (and L) distortion of com-
plete binary trees.

Just to be in tune, we denote by B, the complete rooted binary tree of height (or depth) n.
This is a graph defined as follows: By is a single vertex (the root), and B, arises by taking
one vertex (the root) and connecting it to the roots of two disjoint copies of B;,. We also con-
sider k-ary trees of height h (each non-leaf vertex has k successors), which we denote by T} ;.
These spaces are metric space endowed with the path-metric: the distance between two ver-
tices is the number of edges in the path connecting them (i.e., we consider the graph-theoretic
distance on the vertex set, with edges of unit length).

A famous result in embedding theory due to Bourgain [Bou86]| states the following.

Theorem 1.1. Let1 < p < oo, for any embedding f : B, — ¢, we havedist(f) = clog(n)™n1/21/p),

where c is a constant depending only on p.

In other words, he showed that c,(B,) = Q) (log(n)™"1/21/P)

. Among Bourgain’s contri-
butions we find a noteworthy characterization (in terms of their metric structure) of a linear

property of Banach spaces. Namely, he showed that a Banach space X is superreflexive (see
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definition below) if and only if lim,, . cx(B;) = co. He also established the following interest-
ing dichotomy: For a Banach space X either cx(B;) =1 for all n, or there exists @ > 0 such that
cx(Bn) = Q((logn)®). Bourgain used this result to solve a question posed by Gromov, showing
that the hyperbolic plane does not admit a bi-Lipschitz Euclidean embedding. The arguments
involved in his work are based on the use of some technical probabilistic tools (diadic Walsh-
Paley martingales). We highlight that Bourgain derived Theorem (1.1)as a particular case of a
much more general result involving structural properties of Banach spaces. We recall some
classic definitions from Banach space theory in order to state all this.

The modulus of (uniform) convexity 6 x (¢) of a Banach space X endowed with norm || - || is

defined as
ox(e)i=inf{1- ||| nxi =1y = 1and 1x -y > e},

for € € (0,2]. The space X is said to be uniformly convex of type g = 2 if § x (¢) = ce? for some
¢ > 0. Put simply, the modulus of convexity measures how deep inside (in the unit ball of X)
must lie the midpoint of a line segment with extremes in the sphere of X in terms of the length
of the segment. Intuitively, if a space has a “big” modulus of convexity then the center of a line
segment included in the unit ball must lie very deep inside the ball (i.e., has small norm) unless
the segment is short. If the function 6 x(:) is never zero, we say that X is uniformly convex
(or uniformly rotund). Spaces with this property are common examples of reflexive Banach
spaces (this is a consequence of the classical Milman-Pettis theorem [Mil38,[Pet39]). Since the
converse does not hold, this justifies the name given to those spaces that are isomorphic to
uniformly convex spaces; that is, superreflexive Banach space.

It is well-known that, for 1 < p < oo, the £), space (or any L,-space) is uniformly convex. The

asymptotic behavior of its moduli (as computed by Hanner [Han56]) is given by

(p—l)g2 2 .
——+o0(%) ifl<p=2,
(1) Gpe)=4 °
ﬁ+o(£p) if2<p<oo.

In particular, 6 ,(¢) = ce™*@P) where ¢ = ¢(p).
Now that we have the definition of uniform convexity in mind, we are able to state Bourgain’s

embedding theorem on binary trees.

Theorem 1.2. Let X be a uniformly convex Banach space whose modulus of uniform convexity

satisfies 6 x () = ce? for some q = 2 and ¢ > 0 (i.e., X uniformly convex of type q = 2). Then
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the minimum distortion necessary for embedding B, into X is at least ¢, (logn)''9 for some

c1=c(cq)>0.

Observe that Theorem|[I.1]becomes a direct consequence of this theorem since, by Equation
(), any LP-space (1 < p < o0) is uniformly convex of type g = max(2, p). It should be noted
that Bourgain’s bound in Theorem [I.1]is optimal, as proven by Bourgain himself in his seminal
work for the Euclidean case (p = 2) and by Matous$ek [Mat99] for every 1 < p < oo. Thus,
cp(By) =© (log(rmymin@/21/p)).

Several proofs of Theorem[1.2have been published over the years (e.g., [Bou86, Mat99} LS03)
LNP09, MN13, Klo14]). This note aims to present an elementary proof (due to Matousek in

[Mat99]), where a shrewd use of a Ramsey-type result is displayed.

2. MATOUSEK’S PROOF OR THEOREM[L.2]

MatouS$ek’s argument has a geometric ingredient and a combinatorial one. The former is
the simplest and relates uniform convexity to embeddings of some special trees. Consider the
four-vertices tree with one root vy which has one son v; and two grandchildren v», vé. We
denote by S this tree (with edges of unit length). We say that a subset F = {xo, X1, X2, X3} of
a metric space (M, dy) is an 6-fork if there exist a function f : S — F mapping v; to x; (for
i =0,1,2) and v, to xj, such that the restricted functions f|yy,v,,0} : {V0, V1, V2} — {0, X1, X2}
and f| {wo,v1, U} - {vo, 11, vé} — {xp, X1, xé} are (1 +0)-isomorphisms. Qualitatively, for small §, the
mutual distances between elements of the sets {xg, x1, X2} and {xg, x1, xé} are similar to those
of {0,1,2} = R. It should be noted that in this definition, no information about the distance
between the vertices v, and v, is inherited by F. We call the points x, and x;, the tips of F. The
name “fork” (which is obviously given by mnemonic purposes) comes by understanding how
this object should look like in the Euclidean space R for a small §. The following lemma states
that if a fork F in a uniformly convex Banach space has a rigid structure (i.e. 6 is small) then its

tips are very close to each other.

Lemma 2.1. (Fork Lemma) Let X be a uniformly convex Banach space whose modulus of uni-
form convexity satisfies 0 x (€) = ce for some q = 2 and c > 0, and let F = {xy, X1, X2, xé} c X be

an &-fork. Then || xz — x| = O(6Y9) [l x0 — x1 .

Proof. (of Lemmal2.1) By translating and re-scaling if necessary, we may presume that xo = 0

and ||x;]| = 1.
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Set

X2 — X
Zi=X] + ——.
[l X2 — X1l

Obvious computations show [z — x| =1, [x2 —x1/| £ 1+26, [[z— x2|| <26 and | z|| =2 —-26. Put

u = z—2x;. Observe that x = x; and y := x; + u lie on the unit sphere of X, and for the midpoint

X+ u z
Y X+—=—
2 2 2
we have
X+
0 Xy H >1-6.
2
Using the uniform convexity condition we obtain ||y — x|l = [l ull = O(6 14y thus

lxo —2x11| < llxo — zll + | 2= 2x; | < 26 + O3V 9) = 05 9),
——

u

for 6 small. Note that the constant of proportionality in the last O(:) notation depends only on ¢
and g. Analogously (by symmetry), we also get ||x£ —2x1|l = 019, hence || x, — xé =06V,

concluding the proof. U

For our purposes it will be useful to compute the smallest distortion needed to embed
complete k-ary trees into uniformly convex spaces instead of dealing with complete binary
trees. Any complete k-ary tree can be 2-embedded into a complete binary tree of height large
enough. This is stated in the following lemma. Recall that the level of a vertex of T} j, is just its

distance from the root.

Lemma 2.2. Let Ty j, be a complete k-ary tree of height h. Then Ty ; can be 2-embedded into

the complete binary tree B, for height n = 2h[log, k1.

Proof. Note that it is sufficient to demonstrate this for powers of 2 (i.e., k = 2%). We obviously
map the root of Tys 5, into the root of Byj;. We now follow an inductive procedure. If a vertex v
of Tys ;, has already being mapped to a vertex u at some level / of By, we map the 2° successors
of v to 2° vertices above u at level [ + 2s whose mutual distances are all between 2s and 4s.
Indeed, without loss of generality we can assume that / = 0, now note that By is constructed
by gluing to each leaf of B; another disjoint copy of B;. For each of these copies we select a leaf

and map the successors of v to them. U

Given a rooted tree T, we denote by SP(T) the set all pairs of vertices {x, y} of T such that x
lies in between the way from y to the root. The following Ramsey-type result, whose proof is

simple and short, can be regarded as the cornerstone towards the proof of Theorem[1.2]
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Lemma 2.3. Suppose that each of the pairs of the set SP(Ty ) is painted with a color from a
palette of r colors. If k = rD* " then there exist a subtree T' < Ty, which is a copy of the
complete binary tree By, such that the color of any pair {x, y} € SP(T') depends exclusively on

the levels of x and y.

Proof. We start proving the following simple claim: Suppose that all the leaves of Ty j, (i.e.,
vertices at level h) are colored by r’ colors and k > r’ then there exist a copy of By, in T} j, such
that all its leaves have the same color. The case h = 0 is trivial. For i = 1, consider all the k
subtrees isomorphic to Ty ;—; connected to the root of Ty ;. By inductive hypothesis we can
pick a copy of Bj,_; with monochromatic leaves. Since k > r’ by the pigeonhole principle, two
of this copies have the same color of leaves. If we connect this copies to the root we get the
copy of By, with the desired property.

Going back to our problem... Label each leaf z € Ty ;, by a vector having the colors of the
pairs {x, y} € SP(T 1) lying on the path form z to the root (we write the coordinates of the
vectors using a predetermined order common for all leaves). We want show the existence of
subtree T’ c Ty ;,, which is a copy of By, such that the color of the pair {x, y} € SP(T') depends
only on the levels of x and y. This can be rephrased into finding a copy of B, in T} ; whose
all leaves are labeled with the same vector. Note that each of this vector have (hgl) < (h+1)?

. . 2 .
coordinates; hence, the leaves of Ty j, are colored with r’ < rth+D) possible colors. The result

now follows from our preliminary claim. U

The following lemma states that if a copy of the metric space Py, =1{0,1,..., h} c R is embed-
ded with a constant-bounded distortion into a given metric space, and h is large enough, then
we can find a 3-term arithmetic progression such that the restriction of our embedding to this

set has distortion near 1.

Lemma 2.4. (Path embedding Lemma) For any given constants a > 0 and f € (0,1) the exists a
constant C = C(a, p) with the following property: for every non-contracting mapping | defined
in the metric space P, = {0,1,..., h} € R into some metric space (M, dyy) with h = 2°K°, for K =
I flLip, there exists an arithmetic progression Z = {x, x + a, x + 2a} < Py, such that the restriction

of f onto Z is a (1 + €) -isomorphism with

dy(f(x), fx+a)\™ ¢
” )

e=p

The proof of the lemma is a bit cumbersome. Maybe should put it aside on a first read.
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Proof. (of Lemma[2.4) We define, for a € {1,..., h} the number

K(a)::max{wzx,yeﬁplx—yl=61}-

|x =yl
By the triangle inequality K(a) = K(2a) for every a.
We also define an decreasing sequence of numbers xy > x; > x» > ... by setting xy = K and

Xjy1 = (x—’ We denote by ¢ the first index with x; < 1. It can be seen that t = O(K?%),

1+4x—a)
J

and therefore we can assume that 2! < h (by picking C large enough). Observe that in the
sequence K(2%) = K(2!) = K(2%) = --- = K(2"), there must be two consecutive values, say K(2¢)

and K(21*1), belonging to the same interval [x;41, x;). Thus,

K2
< — < 1+n,
K(21+1)
wheren = 4K([;-)a . We consider the number a := 2! and we fix the points x, x+2a € P}, such that

K(2a) = K(2%) is attained. This means that, d;( f(x), f(x+2a)) =2aK(2a). We therefore have
dy(f(x), f(x+a) <aK(a)<a(l+n)KQ2a),

and also

dy(f(x+a), f(x+2a)) <a(l+n)K(2a).

In addition, we have

dy(f(x), f(x+a) =dy(f(x), f(x+2a) —dy(f(x+a), f(x+2a))
=2aK2a)—a(l+n)K2a)

=a(l-nK2a).
From the equations above, the result easily follows. U

We are now able to display Matousek’s proof of Theorem|[1.2] First we sketch the main steps
of his argument. We pick k, h adequate natural numbers such that T 2 B, (according to
Lemma and consider a non-contracting mapping f : Ty, , — X such that || f||.ip is is smaller
than our expected bound (i.e., | fllLp = ¢1(log n)Y4, for ¢; small enough), we will get to an
absurdity. Using cunningly Lemma[2.3|we are able to find a complete binary tree inside T} j,
for which f embeds “identically” every path between a root to a leaf (this is the key point and
is based heavily on mixing combinatorics with distortion). This fact, together with Lemma|2.4]
allow us to find a 0-fork in T} ;, (for some a € N) mapped by f to an §-fork in X for § small. But,

according to Lemma(2.1} this can not happen: the tips of the 0-fork in T} j, are far apart.
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A rigorous and detailed proof is the following.

Proof. (of Theorem|I.2) First we declare the parameters involved in the proof, their values will
be fixed later. Let § > 0 be small enough (depending on g and c), suppose n is large and let
k, h be natural numbers (depending on n). Fix f: Ty, — X a non-contracting mapping with

I fllLip =K =c1(log n) Y4 for c¢; small, we will get a contraction.

Let r = [ZKZH], and suppose k = r(itD® We label the pairs in SP(T%, ;) according to the
distortion of their distance by f; that is to say, each pair {x, y} € SP(T} ) is colored with the

number
K_q If(x)=fI
B dr.,(x,y)

where dr, , stands for the path-metric in Ty, ,. By our Ramsey-type result, Lemma|2.3} we can

J €{0,1,...,r=1},

find a subtree 7’, which is a copy of By, inside T} j such that the color of each pair {x, y} €
SP(T') depends exclusively on the levels of x and y. This is the core of Matousek’s argument:
we manage to find a binary tree on which the mutual distances induced by f only depend on
the position of the vertices.

Fix P a path from a root to aleaf in T’ (note that this path, is isometric to Pj, = {0,..., h} c R).
If 11 is big enough, say h = 2°K? where C = C(q, ) isas in Lemma we can pick three vertices
Yo, Y1, ¥2 of P whose levels form an arithmetic progression with common difference a (i.e., this
vertices are at levels [, + a, [ + 2a, respectively), such that the restriction of f to this triple

becomes a (1 + §) isomorphism for

I f (o) —f(J/l)”)_q

0= ﬁ( -
Let yé be avertexat T’ at the same level as y; (i.e, [+2a) and at distant 2a from y, (note that this
also implies that y) is at distant @ and 2a from y; and yy, respectively). By the level dependence
of the colors we have that the pairs {y;, y»} and {y;, y5} in SP(T") are equally labeled (i = 0,1).
Precisely, for i = 0,1 we have
o {K_q 1) - F2) ||J _ {K_ﬂi 1) = FG)) ||J |

B dr.,(yi,y2) B dr., i, y;)

This implies that the restriction of f to the triple {yo, y1, y5} is a (1 + 28)-isomorphism (a priori
we can not ensure to be a (1+9) isomorphism since the equality in Equation (2) is given only for
the integer parts). Therefore, the set {f (), f(11), f(2), f (¥3)} is a 36-fork in X. By Lemma

we obtain

2a<|If(y2) - fFIl=006Ya) = 0 BY DIl f (yo) - FyDIl = OB a).
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Recall that the constant of proportionality in the last O(-) notation depends only on ¢ and g
(and not on ). Thus, by choosing  small enough we have a contradiction.

We have made several assumptions... [tis time to see how to choose properly the parameters
involved. We had h = 2€K?  hence if ¢; in the expression K = ¢; (logn)'/4 is small enough, we
can ensure that i < n!/%. On the other hand, we had k = r**V*, thus log, k = (h+1)?log, r =

O(v/n(loglogn)), therefore
3) hlog, k= O(n°'% < n,

for n large enough. Equation (3) and Lemmal2.2)ensures that the tree T} ;, with which we have
dealt can be embedded with distortion at most 2 into the complete binary Bj,. This completes

the proof. U
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NON-EMBEDDABILITY OF THE URYSOHN SPACE INTO
SUPERREFLEXIVE BANACH SPACES

ADRIANE KAICHOUH

ABSTRACT. We present Pestov’s proof that the Urysohn space does not embed uniformly into a
superreflexive Banach space ([P]). Its interest lies mainly in the fact that the argument is essentially
combinatorial. Pestov uses the extension property for the class of finite metric spaces ([S2]) to build
affine representations of the isometry group of the Urysohn space.
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1. UNIFORM EMBEDDINGS

We recall the notion of uniform embedding of metric spaces.

Let X and Y be two metric spaces. A uniform embedding of X into Y is an embedding of X
into Y as uniform spaces. Equivalently, a map f : X — Y is a uniform embedding if there exist
two non-decreasing functions p; and ps from R, to Ry, with 0 < p; < po and lim,_,q po(r) = 0,
such that for all z, 2’ in X, one has

prldx(z,2)) < dy (f(2), f(2') < pa(dx (2, 2)).

In particular, a uniform embedding is uniformly continuous.
Uniform embeddings transpose the local structure of metric spaces: what matter are small
neighborhoods of points. We are interested in the existence of uniform embeddings into nice

Banach spaces, where niceness begins at reflexivity.
1
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2. THE URYSOHN SPACE

The Urysohn space U is a universal Polish space: it is a complete separable metric space that
contains an isometric copy of every (complete) separable metric space. Moreover, the Urysohn
space is remarkable for its strong homogeneity properties: up to isometry, it is the unique Polish
space that is both universal and ultrahomogeneous.

Definition 2.1. A metric space X is ultrahomogeneous if every isometry between finite subsets
of X extends to a global isometry of X.

The space U was built by Urysohn in the early twenties (JU1]), but was long forgotten after
that. Indeed, another universal Polish space, C([0,1],R) (Banach-Mazur, see [B| and [S1]), put
the Urysohn space in the shade for sixty years. It regained interest in the eighties when Katétov
(IK2]) provided a new construction of the Urysohn space. From this construction, Uspenskij (|[U2])
proved that not only is U universal but also its isometry groupE] is a universal Polish group (every
Polish group embeds in Iso(U) as a topological subgroup).

We will see that in fact, the Urysohn space enjoys a much stronger homogeneity property than
ultrahomogeneity. In the next section, we will present this strengthening of ultrahomogeneity:.

First, let us present Katétov’s construction of the Urysohn space and explain how it yields the
universality of its isometry group.

2.1. Katétov spaces. Let X be a metric space.

Definition 2.2. A Katétov map on X is a map f : X — R* such that for all z and 2’ in X,
one has

|[f () = f(2)] < d(x,2) < f(z) + f().

A Katétov map corresponds to a metric one-point extension of X: if f is a Katétov map on X,
then we can define a metric on X U {f} that extends the metric on X by putting, for all z in X,

d(f,z) = f(x).

This will indeed be a metric because Katétov maps are exactly those which satisfy the triangle
inequality.

Example 2.3. If x is a point in X, then the map J, : X — R* defined by d,(z') = d(z,2’) is a
Katétov map on X. It correspond to a trivial extension of X: we are adding the point x to X.

We denote by E(X) the space of all Katétov maps on X. We equip the space E(X) with the
supremum metric, which geometrically represents the smallest possible distance between the two
extension points.

The maps 6, of example define an isometric embedding of the space X into F(X). We
therefore identify X with its image in F/(X) via this embedding. This observation will allow us
to build towers of extensions in the next section. The essential property of those towers is the
following.

Proposition 2.4. Every isometry of X extends uniquely to an isometry of E(X).
In particular, the uniqueness implies that the extension defines a group homomorphism from

Iso(X) to Iso(E(X)).

Hsometry groups are endowed with the topology of pointwise convergence. Basic open sets are the sets of all
isometries that extend a given partial isometry between finite subsets. When X is a complete separable metric
space, its isometry group Iso(X) is a Polish group.
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Proof. Let ¢ be an isometry of X. If ¢ extends ¢, we must have d(¢(f),d,) = d(f,0,-1(2)) =
f(p7(z)) for all z in X and f in E(X), hence the uniqueness.

Thus, we extend ¢ to the space E(X) by putting ¢(f) = fo¢~! for all fin E(X). It is easy
to check that the map 1 is an isometry of F(X) that extends ¢. O

In general, the space E(X) is unfortunately not separable. Since we are interested only in Polish
spaces, we circumvent this problem by considering only Katétov maps with finite support.

Definition 2.5. Let S be a subset of X and let f be a Katétov map on X. We say that S is a
support for f if for all x in X, we have

f(x) = gifégﬂy) +d(z,y).

In other words, S is a support for f if the map f is the biggest 1-Lipschitz map on X that coincides
with f on S.

We denote by E(X,w) the space of all Katétov maps that admit a finite supportﬂ If the metric
space X is separable, then F(X,w) is separable, it still embeds X isometrically, and isometries of
X still extend uniquely to isometries of E(X,w). Moreover, the extension homomorphism from
Iso(X) to Iso(E(X,w)) is continuous (see [M2, proposition 2.5]).

2.2. Tower construction of the Urysohn space. The construction of the Urysohn space we
present highlights its universality: we start with an arbitrary Polish space and we build a copy of
the Urysohn space around it. Besides, the construction keeps track of the isometries of the original
Polish space, which points to the universality of its isometry group as well.

Let X be our starting Polish space. We build an increasing sequence (X,,) of metric spaces
recursively, by setting

o Xy =X;
e X, 11 = E(X,,w).
The discussion above guarantees that isometries extend continuously at each step: every isometry
of X, extends to an isometry of X, and the extension homomorphism from Iso(X,,) to Iso(X,1).
Thus, if we write X, = U X,, we obtain a continuous extension homomorphism from Iso(X) to
neN
Iso(Xoo).

Now, consider the completion j(; of Xo. Since all the X,, are separable, the space j(; is
Polish. Moreover, isometries of X, extend to isometries of )/(; by uniform continuity, so we get a
continuous extension homomorphism from Iso(X) to Iso()/(;).

It remains to explain why the space )/(; is the promised ultrahomogeneous and unique Urysohn
space. The key defining property of j(; is that every one-point metric extension of a finite subset
of )/(; is realized in )/(; over this finite set.

Definition 2.6. A metric space X is said to have the Urysohn property if for every finite subset
A of X and every Katétov map f € FE(A), there exists z in X such that for all a in A, we have

d(z,a) = f(a).
Theorem 2.7. (Urysohn) Let X be a complete separable metric space. If X has the Urysohn
property, then X is ultrahomogeneous.

Proof. We carry a back-and-forth argument. Let i : A — B an isometry between two finite subsets
of X. Enumerate a dense subset {z,, : n > 1} of X. Recursively, we build finite subsets A, and
B,, of X and isometries 4, : A,, — B,, such that

2The letter w is the set-theoretic name for N.
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e Ay = A and By = B;
® g =1;
L An g An+1 and Bn g Bn—l—l;
e v, € A,N By
® i, extends i,.
To this aim, assume A, and B, have been built. Consider the metric extension of A, by x,i1:
the corresponding Katétov map is d,, ,. We push it forward to a Katétov map on B, via the
isometry i,. Now, since the space X satisfies the Urysohn property, we can find an element y,,11
that realizes it; we add it to B,, and extend i, by setting i, (Zn+1) = Yns1. This constitutes the
forth step.
For the back step, we apply the same argument to the inverse of the isometry i/, to find a
preimage to x,41.
In the end, the union of all the isometries i, defines an isometry of a dense subset of X, so it

extends to an isometry of the whole space X (because X is complete). This is the desired extension
of 1. O

Another back-and-forth argument shows that any two complete separable metric spaces with
the Urysohn property are isomorphic (see |G, theorem 1.2.5]). Thus, we may for instance define
the Urysohn space U to be the space obtained from X = {0} by applying the tower construction
above. This uniqueness result guarantees that U indeed embeds every Polish space isometrically.
Moreover, the construction also yields that its isometry group Iso(U) embeds all isometry groups of
Polish spaces. A beautiful result of Gao and Kechris (|[GK]) states that these actually encompass
all Polish groups, so we conclude that Iso(U) is a universal Polish group.

In particular, Iso(U) contains the group Homeo, [0, 1] of orientation-preserving homeomorphisms
of the unit interval. In the proof of theorem [7.I} we will use this fact, together with the follow-
ing result of Megrelishvili (|]M1]), to show that the Urysohn space does not admit any uniform
embedding into a superreflexive Banach space.

Theorem 2.8. (Megrelishvili) The only continuous representation of Homeo [0, 1] by linear isome-
tries on a reflexive Banach space is the trivial representation.

3. THE EXTENSION PROPERTY

In 1992, Hrushovski (|H2|) proved that for every finite graph, there exists a bigger finite graph
such that every partial graph isomorphism of the smaller graph extends to a global graph automor-
phism of the bigger graph. It turns out that this phenomenon occurs in several other structures,
and in particular for metric spaces.

Definition 3.1. A metric space has the extension property if for every finite subset A of X,
there exists a finite subset B of X that contains A such that every partial isometry of A extends
to a global isometry of B.

The extension property is indeed a strengthening of ultrahomogeneity.

Proposition 3.2. Let X be a complete separable metric space. If X has the extension property,
then X is ultrahomogeneous.

Proof. Let i : A — B be an isometry between two finite subsets A and B of X. We wish to extend
i to a global isometry of X. First, the extension property gives a finite subset Yy of X containing
A and B such that the partial isometry ¢ extends to a global isometry jy of Y.

Enumerate a dense subset {z,, : n > 1} of X. Recursively, we build an increasing chain of finite
subsets Y,, of X, with Y,,,; D Y, U{z,}, and an increasing chain of global isometries j, of Y;, by
applying the extension property.
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Let now Y be the union of all the Y;,’s. The map j defined by j(x) = j,(z) if z € Y}, is a global
isometry of Y. Since Y contains all the points z,, it is dense in X, so j extends to an isometry of
the whole space X (because X is complete). O

Independently, Vershik (|V|) announced and Solecki ([S2|) proved that the Urysohn space sat-
isfies the extension property. Consequently, the extension property is sometimes also called the
Hrushouvski-Solecki- Vershik property. Note that this is really a result about the class of all metric
spaces. It means that for every finite metric space, there exists a bigger finite metric space such
that every partial isometry of the smaller metric space extends to a global isometry of the bigger
metric space.

In fact, the Urysohn space satisfies an even stronger form of extension property ([S3|): we can
choose the extension of those partial isometries to be compatible with the group structure. Thus,
the extension will provide a group homomorphism from the isometry group of the smaller metric
space to the isometry group of the bigger one. This coherent extension property has a very
powerful consequence on the isometry group, which is the heart of the argument for theorems

and 5.9

Proposition 3.3. Let X be a complete separable metric space. If X satisfies the coherent exten-
sion property, then its isometry group Iso(X) contains a dense locally finite subgroup.

A group is said to be locally finite if every finitely generated subgroup is finite.

Proof. We carry the same construction as in the proof of proposition [3.2} we recursively build
finite subsets Y,, of X such that

o Yn g YnJrl;

e every partial isometry of Y,, extends to a global isometry of Y,,,1;

e (coherence) moreover, the extension defines a group embedding from Iso(Y},) to Iso(Y,,11);

e the union Y = U Y, of all the Y,,’s is dense in X.

neN

Since the extension is coherent, the union G = U Iso(Y,) is an increasing union of subgroups of

neN
Iso(Y'). Thus, as the increasing union of finite groups, it is a locally finite group. We show that

the group G is dense in Iso(Y'). By density of Y in X, the group Iso(Y) is dense in Iso(X), so this
will complete the proof.

Consider a basic open set in Iso(Y'). It is given by a partial isometry i : A — B between finite
subsets of Y. Since A and B are finite, there exists an integer n such that both A and B are
contained in Y,,. But then the partial isometry i of Y,, extends to a global isometry of Y,,,;, which
is in G. Thus, the basic open set contains an element of G, and G is indeed dense in Iso(Y). O

Remark 3.4. In [P|, Pestov states the above result for metric spaces which satisfy only the
extension property, without any coherence assumption. It is not clear, then, how to build a dense
locally finite subgroup recursively, as the groups Iso(Y},) need not even be subgroups of Iso(Y),
nor be included in one another.

4. ULTRAPOWERS OF BANACH SPACES

4.1. Ultrafilters. Dually to ideals giving a notion of smallness, ultrafilters give a way to declare
some sets as large. More precisely, a filter on a set I is a collection F of subsets of I such that

e (non-triviality) the whole set I is in F but the empty set is not in F;
e if Aisin F, then any subset B of I containing A also is in F;
e the intersection of two elements of F is again in F.
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An ultrafilter is a maximal filter (with respect to inclusion). Equivalently, a filter & on I is an
ultrafilter if and only if for each subset A of I, either Aisin Y or I\ A is in U.
The point of ultrafilters, aside from brewing ultracoffee, is to make arbitrary sequences converge.

Definition 4.1. Let X be a topological space. Let I be a set (of indices) and let F be a filter
on I. Let (x;);e; be a family of elements of X and let x be a point in X. We say that z is the
limit of (z;);c; along F, and we write x = lim x;, if for every neighborhood V of x in X, the set

i—F
{iel:z;eV}isin F.

The usual notion of convergence for sequences indexed by the integers thus corresponds to the
convergence along the filter of cofinite subsets of N: this filter contains all the intervals [n; ool

Proposition 4.2. Let (z;);c; be a family of elements of reals and let & be an ultrafilter on I. If
(x;)ier is bounded, then the family (z;);c; has a limit along U.

Proof. We use the classical Bolzano-Weierstrass cutting-in-half argument. Assume that the family
takes its values in the bounded interval [a,b]. Cut the interval in two and look at which elements
of the sequence fall in which half: consider the two sets

L:{iGI:miE [a,aT—i_b]} andR:{iEI:xiG [GTM,I)}}.

Since U is an ultrafilter, exactly one of the sets L and R belongs to U, say L.
Then we do that again in L: we consider the sets

b b b
L’:{ie[:xie {a,gaj ]} andR/:{iGI:xiE FMH_ @t ]}

4 7 2
This time, either L' is in U, or its complement, which is R’ U R is. But we know that L is in the
ultrafilter U too, so the intersection L N (R’ U R) = R’ belongs to U; and so on.

Thus, inductively, we find a decreasing sequence of intervals [a,,, b,] of length ¢ such that

n
for all n, the set {i € I : x; € [a,, by} is in the ultrafilter U. It follows that the intersection point
of all those intervals [ay, b,] is the limit of the family (x;);c; along the ultrafilter U. O

The same argument readily adapts to families in any compact space (see e.g. [E2, theorem
3.1.24]).

4.2. Ultraproducts of metric spaces. Let (X;);c; be a family of metric spaces. We choose a
distinguished point x; in each X;. We consider the following subset of the product of the X;’s:

(X i, 1) = {y € HXi rsup dx, (i, yi) < 0o}
icl el
Let U be an ultrafilter on /. The boundedness assumption above allows us to equip ¢>°(X;, z;, I)
with the following pseudometric:
d<y7 Z) = lim dXi (y’La Zi)'
i—U

The metric space ultraproduct along U of the family (X;);c; centered at (x;);c; is the metric
quotient of the pseudometric space (¢>°(X;,x;, I),d). We denote it (HieI(XZ-, xz))u

Remark 4.3. Any ultraproduct of complete metric spaces is easily seen to be complete.

In a normed space, the origin is a canonical choice for a distinguished point. The ultraproduct
of a family of normed spaces, centered at the family of origins, comes with a natural structure
of normed space. If all the normed spaces are Banach spaces, then by the above remark, their
ultraproduct also is a Banach space. This normed space then induces a structure of affine normed
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space on the ultraproduct of normed spaces centered in an arbitrary family of points. Moreover,
the choice of distinguished points does not matter too much.

Proposition 4.4. Let (E;);c; be a family of normed spaces. Let (z;);c; and (2});cr be two families
of distinguished points. Let U be an ultrafilter on I. Then the ultraproducts of (HZE (B xi)ie 1)

and ([T,c;(E:, @) f)u are affinely isomorphic and isometric.

u

Proof. Consider the linear translation (y;)ier — (y; — @i + })ics in the product [[.., ;. It sends
0°°(X;, x;, I) to 0°°(X;, o}, I) and preserves the pseudometric. Hence, it defines an isometry between
the two ultraproducts.

Moreover, since the isometry comes from a translation, the two ultraproducts are affinely iso-
morphic. ([l

When all the normed spaces E;’s are equal, say to a Banach space F, an ultraproduct of the fam-
ily (E;);es centered at the family of origins is a Banach space, called a Banach space ultrapower
of F.

5. SUPERREFLEXIVE BANACH SPACES

A Banach space F is said to be superreflexive if every Banach space ultrapower of E is
reflexive. Enflo exhibited a characterization of superreflexivity in terms of convexity properties
(|[E1, corollary 3|): a Banach space is superreflexive if and only if it admits an equivalent norm
that is uniformly convex.

Remark 5.1. In Enflo’s theorem, superreflexivity is defined a bit differently; see [HM, theorem
2.3] and [S4, proposition 1.1] for the equivalence of the two definitions.

Definition 5.2. A Banach space (£, |-||) is uniformly convex if for every ¢ > 0, there exists
d > 0 such that for every z, y in F with ||z| =1, |ly|]| = 1, one has

||x—y||>e:,H°””T+yH<1—5.

In other words, a Banach space is uniformly convex if and only if its unit ball is strictly convex,
this in a uniform way.

Examples 5.3. The following Banach spaces are superreflexive.

e Hilbert spaces.
e [P gpaces, for 1 < p < oo. This is a consequence of the Clarkson inequalities (|C| theorem

2]).

Superreflexivity is preserved under taking ¢*-type sums (the key argument is the Minkowski
inequality).

Proposition 5.4. (Day, |[D| theorem 2|) Let E be a superreflexive Banach space and X an arbitrary
set. Then the Banach space ¢*(X, F) is superreflexive too.

Though uniform convexity is more workable a notion, it is intrinsically metric and it is not
stable under Banach space isomorphisms, whereas superreflexivity is. Hence, since both uniform
and coarse structures are invariant under isomorphisms, we state the embeddings results with
superreflexivity rather than with uniform convexity.

The result we will present the proof of in the next two sections is the following.

Theorem 5.5. (Pestov) The Urysohn space does not admit any uniform embedding into a super-
reflexive Banach space.
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Remark 5.6. Just around the same time Pestov’s paper was published, a stronger result was
proven by Kalton in [K1|: that the space ¢y does not admit any uniform embedding into a reflexive
Banach space. Since ¢y is a Polish space, it embeds isometrically into the Urysohn space, so it
follows that U does not admit any uniform embedding into a reflexive Banach space either. Still,
Pestov’s proof is based on very different techniques and is worth presenting.

Superreflexivity is a strengthening of reflexivity that invites ultraproducts constructions. The
next section contains the main argument of Pestov’s proof, an ultraproduct construction designed
to smoothen actions on Banach spaces.

6. AVERAGING DISTANCES

Theorem 6.1. Let GG be a locally finite group acting by isometries on a metric space X. Suppose
that X admits a mapping ¢ into a normed space E such that for some functions py, po : Ry — Ry

prldx (z,2')) < [lo(x) = ()] < paldx (z, 2')).

Then there is a map 1 of X into a Banach space ultrapower of some *(U, E), satisfying the same
inequalities

(1) pr(dx (z,2')) < [ (x) — (@) < p2(dx (2, 27)),

and such that the action of G on ¥(X) extends to an action of G by affine isometries on the affine
span of 1(X).
Proof. Let = be the set of all finite subgroups of GG. For every finite subgroup F' in =, we define a
map Yr : X — (*(F, E) by

1

e — _1 .
rMdFs@(f ),

Vr(x)(f) =

for every x in X and f in F.
Since GG acts on X by isometries, the maps ¥ satisfy the inequalities :

pr(dx(z,2')) < [[¥r(x) — vr@)] < paldx (2, 27)).

Indeed, let 2 and 2’ be two elements of X. Then we have:

1/2
[or(z) = e = | D _lvr(x)(f) - ¢F(w’)(f)||%>

fer

1/2

1

=\ GordF > lle(f ™t x) — o I’)H%)
feF

1/2
cm;azwiijpadx<f—l-x,f—1~xv>>
fer

VAN

1/2
1 /
:CMFzémmmﬂ
!

= pa(dx(z, 1))
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and similarly

1/2
1
Io(x) = 0@l = | e LU )=l w’)ll%)

WV

1/2
1
g DA (e x’>>>
fer

1/2
1 /
by DL, >>>
f

= p(dx(z,)).

We would like to find a map that is compatible with the action of G. The group F' acts on
(*(F, E) by isometries, via the left regular representation: for r € £2(F, E) and f, g in F, we define

r(f)=r(g~"f).

Then the map 1 becomes F-equivariant:

N r())(f) = r() (g™ f)

1
= —WQO(f_lg )

=4r(g-=)(f).

Now we are average out all the maps 1r’s. Choose an ultrafilter 4 on = with the property that
for each F in =, the set {H € Z: FF C H} is in U. The local finiteness of the group G guarantees
that such an ultrafilter exists.

Choose a point z* in X . This yields distinguished points ¢r(z*) in the £*(F, E)’s. More precisely,

let
V= (HW(F, E>,wF<x*>>>
Fe= u
be the ultraproduct of the spaces (*(F, E) along U centered at the family (¢p(z*))rez.
We now prove that for every x in X, the family (¢p(x))pez is at finite distance from the

distinguished family (¢g(2*))re=, hence its class defines an element of V. Let = be an element of
X.

suplj e () — Vr(a*)| < sup pa(d (a.))

= p2(dx(z,27)).
This implies we can define a map ¢ : X — V by

1/1(55) = [(¢F)F65]u .

Moreover, the action of G on the space V is well-defined: let g be an element of GG. Since G is
locally finite, the subgroup of G generated by g¢ is finite, hence in Z. We chose the ultrafilter I/ in
such a way that the set of all F' in = that contain (g) is in ¢/. From this, it follows that g acts on
(*(F,E) for U-every F in Z.

Since the action of F' on each ¢*(F, E) is an action by isometries, so is the action of G on V.
For this action, the map v is G-equivariant as desired.

It remains to identify the ultraproduct V with a Banach space ultrapower of /U, E). First,
note that ¢?(U, E) contains every ¢*(F, E) as a normed space (this embedding is not canonical;
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this is just because F is finite and U is bigger). Thus, V is contained in a suitable ultraproduct
of (?(U, E), which is isometrically and affinely isomorphic to the corresponding Banach space
ultrapower of ¢*(U, E') by proposition .

O

7. OBSTRUCTION TO A UNIFORM EMBEDDING

Theorem 7.1. The Urysohn space U cannot be uniformly embedded into a superreflexive Banach
space.

Proof. Suppose it can and let ¢ : U — E be a uniform embedding of U into a superreflexive Banach
space E. Let also p; and ps be two decreasing functions from R, to R, with 0 < p; < p2 and
lim,_, p2(7) = 0, witnessing that ¢ is a uniform embedding: such that for all z, 2’ in U, one has

pi(du(z,2")) < [le(z), o(2)lle < paldu(z, 2)).

Let G be a dense locally finite subgroup of Iso(U) (such a subgroup exists by proposition .
By proposition , there exists a mapping v of U into a Banach space ultrapower V of (*(U, E)
such that for all z, 2’ in U, one has

(2) pi(dy(z,2)) < [[o(z), () lv < paldu(z, ),

and such that the action of G extends to an action by affine isometries on the affine span S of
¥(U) in V, making ¢ G-equivariant.

Note that V is reflexive as an ultrapower of the superreflexive space £2(U, E), as to proposition
b4l

The inequalities guarantee that v is a uniform isomorphism on its image. In particular,
¥ is a homeomorphism. So the topology on G of pointwise convergence on U coincides with the
topology of pointwise convergence on 1 (U), and consequently, on S as G acts by affine isometries.

Moreover, since 1) is a uniformly continuous, so is the representation of G on S. Thus, by density
of G in Iso(U), the action of G extends to a uniformly continuous action of Iso(U) on S for which
the map 1 remains equivariant. It follows that the representation of Iso(U) on S is faithful: if g
and h are isometries such that for all z in U, one has g-¢(z) = h-¢(x), then by equivariance, one
has (g - ) = ¢(h - x) for all z in U. But since ¢ is an isomorphism, this implies that for all z in
U, one has gz = h - z, hence g = h.

Write this affine representation of Iso(U) on S is a continuous homomorphism from Iso(U) to
the group Iso(S) = Llso(S) x S, where S, is the additive group of S (group of translations) and
LIso(.S) the group of linear isometries of S. Let also m denote the standard (continuous) projection
from Llso(S) x Sy onto LIso(.S).

Now recall that the group Iso(U) is a universal Polish group (Uspenskij [U2], see section [2).
In particular, it contains Homeo, [0, 1] as a topological subgroup. Therefore, we have a faithful
continuous affine representation of the group Homeo, [0, 1] in the reflexive Banach space V.

But Megrelishvili proved in |[M1] that the only continuous representation of Homeo, [0, 1] by
linear isometries on a reflexive Banach space is the trivial representation (see theorem . There-
fore, the linear part of the restriction of 7 to Homeo [0, 1] is trivial. Homeo [0, 1] then has to act
by translations, but by faithfulness of the representation, this implies that Homeo, [0, 1] is abelian,
a contradiction. OJ

8. CONCLUDING REMARKS

Let us mention which (non-)embeddability properties of the Urysohn space remain when we
relax or sharpen our notion of embedding.



NON-EMBEDDABILITY OF THE URYSOHN SPACE 11

8.1. Coarse embeddability. Whereas the uniform structure gives the local behavior of metric
spaces, the coarse structure, or large-scale structure, of a metric space describes its geometry at
mfinity.

A map f: X — Y is a coarse embedding of X into Y if there exist two non-decreasing
unbounded functions p; and p, from R, to R, , with 0 < p; < po, such that for all z, 2’ in X, one
has

p1(dx(z,2") < dy(f(z), f(2') < pa(dx(z,2")).

In particular, for a fixed #’ in X, the distance dx (z, 2") tends to infinity if and only if dx (f(z), f(z'))
does. Note that a coarse embedding is not necessarily continuous.

Pestov also applies the techniques of theorem|[6.1]to coarse embeddings to prove that the Urysohn
space does not admit any coarse embedding into a superreflexive Banach space either. The proof is
way more technical thoughﬁ. Moreover, it is based on a strengthening of theorem ([P}, corollary
4.4]), the proof of which T did not understand. It states that if the locally finite group G acts
almost transitively on the space X, then the image ¢(X) we build is a metric transform of X,
meaning that the distance ||¢(z) — ¥ (2)|| depends only on d(z, x').

In [K1], Kalton proved a stronger result: the Urysohn space does not even admit any coarse
embedding into a reflexive Banach space. It follows from the same result for the space ¢, (see also

remark .

8.2. Isometric embeddability. We could also simply consider isometric embeddings of the
Urysohn space, which are a very special case of uniform embeddings. However, this proves to
be too restrictive: there is only one way to embed the Urysohn space isometrically into a Banach
space. Whenever U embeds isometrically into a Banach space, then the span of its image is the
Holmes space (|[H1, theorem 6]).

In conclusion, it is quite hard to embed U nicely into Banach spaces!
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