MATH 663
Introduction to Probability in Banach Spaces
Spring 2026
Instructor: Florent Baudier
Office: Blocker 525J
Office hours: MW 3-4 p.m. by appointment
Lectures: MW 5:45-7:00 p.m., Blocker 148
Textbook: no textbook is required but the following material will be useful for the course

Hervé Queffelec and Daniel Li, Introduction to Banach Spaces: Analysis and Probability: Volume 1, Cambridge University Press, 2017.
Hervé Queffelec and Daniel Li, Introduction to Banach Spaces: Analysis and Probability: Volume 2, Cambridge University Press, 2017.
Michel Ledoux and Michel Talagrand, Probability in Banach Spaces, Springer, 2014.
Jan van Neerven, Mark Christiaan Veraar, Tuomas Hytönen, and Lutz Weis, Analysis in Banach Spaces: Volume I: Martingales and Littlewood-Paley Theory, Springer, 2016.
Jan van Neerven, Mark Christiaan Veraar, Tuomas Hytönen, and Lutz Weis, Analysis in Banach Spaces: Volume II: Probabilistic Methods and Operator Theory, Springer, 2017.
Schedule
Date of Class Material covered
01/13 lecture 1: the one about Khintchine-Kahane inequalties, probabilistic proof cof Khintchine's inequalities, Borell's proof of Kahane's inequalities