
PROJECT ON A SOFT INTRODUCTION TO MEASURE THEORY

In this project you will study collections of subsets (of an ambient set) that satisfy cer-
tain stability properties with respect to some elementary set-theoretic operations that you
have learned and studied in class. Such a collection is called a σ -algebra and is the fun-
damental structure of an abstract mathematical theory called measure theory. Measure
theory has found many applications. In particular, it provides the foundational mathemat-
ical framework for modern probability theory. Your knowledge of set theory learned in
MATH 300 is sufficient to be able to study the basic properties of these σ -algebras and
functions between them.

1. MEASURE SPACES

Definition 1 (σ -algebra). Let X be a set. A collection M of subsets of X is called a
σ -algebra if the following properties are satisfied:

(Σ1) X ∈ M .
(Σ2) For all A ∈ M we have X \A ∈ M (stability under complementation).
(Σ3) For all countable collection {An}n∈N of elements in M (i.e., An ∈M for all n∈N)

we have
⋃

∞
n=1 An ∈ M (stability under countable unions).

A set X equipped with a σ -algebra M is called a measure space and the sets in M
are called measurable sets. In Exercise 1 and 2 we describe some simple examples of
σ -algebras.

Exercise 1. (6 points) Let X be a set.
(1) (3 points) Consider Mtrivial = { /0,X}. Prove that Mtrivial is a σ -algebra on X.
(2) (3 points) Consider Mdiscrete = P(X). Is Mdiscrete a σ -algebra on X? Justify

briefly your answer.

Elements of proof. (1) Property (Σ1) is clearly satisfied.
As for property (Σ2), it is satisfied by looking at the complements of the two

elements of Mtrivial .
Property (Σ3) can be taken care off by distinguishing cases.

(2) Property (Σ1) is also clearly satisfied here by definition of P(X).
Property (Σ2) holds since the complement of a subset of X is a subset of X

(definition of complement and subset).
Property (Σ3) also holds since every countable union of subsets of X is also a

subset of X (definition of arbitrary union with the index set I = N and subset).
□

Exercise 2. (6 points) Let X be a set and A be a non-empty proper subset of X (i.e.,
/0 ⊂ A ⊂ X). Show that M = { /0,A,X \A,X} is a σ -algebra on X.

Elements of proof. Property (Σ1) is clearly satisfied.
Property (Σ2) holds since the complements of /0, A, X \A, and X are X , X \A, A, and /0,

respectively.
Property (Σ3) holds by distinguishing cases. □

In the next exercise you are asked to prove that a σ -algebra is also stable under finite
unions. This result follows by combining in a clever way property (Σ1) with (Σ3).
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Exercise 3. (8 points) Let X be a set and M be a σ -algebra on X. Show that M is stable
under finite unions.

Hint: Formally, you must show that for all k ⩾ 1, and for all finite collection {An}k
n=1

of elements in M (i.e., An ∈ M for all 1 ⩽ n ⩽ k) we have
⋃k

n=1 An ∈ M .

Elements of proof. Property (Σ2) is about infinite unions and the key point is to observe
that we can write a finite union as an infinite union. Let k ⩾ 1 and {An}k

n=1 a finite col-
lection of elements in M (i.e., An ∈ M for all 1 ⩽ n ⩽ k). You need to “extend” the finite
sequence {An}k

n=1 into an infinite sequence {Ãn}∞
n=1 in a way that you do not change the

finite union and that all the sets are in M . It can be done in the following way:

Let Ãn =

{
An if 1 ⩽ n ⩽ k
/0 if n ⩾ k+1.

Since taking the union with the empty set does not change anything it is clear that (if it is
not clear make sure you convince yourself)

(1)
k⋃

n=1

An =
∞⋃

n=1

Ãn.

The An’s are in M by assumption, but what about the empty set? Since /0 = X \X and
X ∈ M it follows (from property (Σ1) and property (Σ2)) that /0 ∈ M . Therefore all the
Ãn’s are in M , and you can now conclude that

⋃
∞
n=1 Ãn ∈M (by property (Σ3)), and finally

equation (1) tells you that
⋃k

n=1 An ∈ M , which is what you wanted to prove. □

Using de Morgan’s laws we can prove that a σ -algebra is also stable under countable
intersections.

Exercise 4. (6 points) Let X be a set and M be a σ -algebra on X. Show that M is stable
under countable intersections.

Hint. Formally, you must show that for all countable collection {An}∞
n=1 of elements in

M (i.e., An ∈ M for all n ∈ N) we have
⋂

∞
n=1 An ∈ M . □

Elements of proof. Let {An}∞
n=1 be a sequence of elements in M (i.e., An ∈ M for all

n ∈ N). You need to show that
⋂

∞
n=1 An ∈ M and you need to rewrite this intersection in

terms of the operations of complementation and union so that you can use the properties
of a σ -algebra. This can be done with the de Morgan’s laws. The key observation is that
the following set equality holds (prove it using de Morgan’s laws):

(2)
∞⋂

n=1

An =
∞⋃

n=1

An.

Remembering that if An ∈M then An ∈M (by property (Σ1)), you can then conclude that⋃
∞
n=1 An ∈ M (by invoking property (Σ2)). Another use of property (Σ1) tells you that⋃
∞
n=1 An ∈ M , and in turn it follows from equation (2) that

⋂
∞
n=1 An ∈ M . □

As in the case of unions, stability by countable intersections implies stability by finite
intersections.

Exercise 5. (6 points) Let X be a set and M be a σ -algebra on X. Show that M is stable
under finite intersections.

Elements of proof. Exercice 4 says that M is stable under infinite intersections. The de-
duction that the stability under finite intersection follows from the stability under infinite
intersections can be carried in a very similar way as you did for unions. You will need to
“extend” the finite sequence {An}k

n=1 into an infinite sequence {Ãn}∞
n=1 in a way that you
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do not change the finite intersection and that all the sets are in M . This can be done once
you observe that intersecting with the whole set X does not change anything. □

Exercise 6. (4 points) Let X be a set and M be a σ -algebra on X. Show that M is stable
under set differences.

Hint. Formally, you must show that for all A,B ∈ M we have A \B ∈ M . You could
rewrite A\B in terms of intersection and complementation. □

Elements of proof. Let A,B ∈ M . You need to observe (and prove it) that

(3) A\B = A∩B.

Equation (3) is the key point that connects the operation of set difference to the operations
of complementation and intersection for which we can use the properties of the σ -algebra.
Indeed, remembering that B ∈ M it follows from property (Σ2) that B ∈ M , and then A∩
B ∈ M by what you proved for finite intersections (since A ∈ M and B ∈ M ). Therefore,
A\B ∈ M . □

Exercise 7. (4 points) Let X be a set. The symmetric difference between two subsets A and
B of X, is defined as the set

A△B = {x ∈ X : [(x ∈ A)∧ (x /∈ B)]∨ [(x ∈ B)∧ (x /∈ A)]}.
If M is a σ -algebra on X, show that M is stable under symmetric differences.

Hint: Formally, you must show that if A,B ∈ M then A△B ∈ M . You could rewrite
A△B in terms of intersection, union, and complementation.

Elements of proof. The proof goes more or less along the same lines as in the previous
exercise once you make the crucial observation (prove it!) that

(4) A△B = (A\B)∪ (B\A).

You can conclude using what you proved for finite unions and set differences.
Alternatively, you can use the following set equality:

(5) A△B = (A∩B)∪ (B∩A).

In this case you can conclude using what you proved for finite unions, finite intersections,
and property (Σ2). Either way will work so pick your choice.

□

2. CREATING NEW σ -ALGEBRAS OUT OF OLD ONES: THE PULL-BACK PROCEDURE

Let f : X →Y be a function and let C ⊆P(Y ). The collection of sets { f−1(A) : A∈C }
is a collection of subsets of P(X) which we will simply denote by f−1(C ). The next
exercise shows that if Y is equipped with a σ -algebra then there is a natural way to create
a σ -algebra on X using the function f via the inverse image (this σ -algebra is called the
pull-back algebra). This pull-back procedure crucially uses the Hausdorff formulas for
inverse images.

Exercise 8. (5 points) Let f : X → Y be a function and let M ⊆ P(Y ) be a σ -algebra on
Y . Show that f−1(M ) = { f−1(A) : A ∈ M } is a σ -algebra on X.

Elements of proof. Your goal is to show that properties (Σ1), (Σ2), and (Σ3) are satisfied for
the collection f−1(M ) = { f−1(A) : A ∈ M }. The verification of (Σ1) is the easiest. You
need to show that X = f−1(A) for some A ∈ M . Since it is always true that f−1(Y ) = X
(look back at the definition of the inverse image if you are in doubt), it remains to make
sure that Y ∈ M . But this is true by property (Σ1) since M is a σ -algebra on Y .

To verify property (Σ2) for f−1(M ) you need to show that if B ∈ f−1(M ) then X \B ∈
M . Note that X = f−1(Y ), and according to the definition of f−1(M ), B = f−1(D) for
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some D ∈M . So your problem reduces to showing that X \B = f−1(Y )\ f−1(D) is in M .
The key point is to show that following set equality holds:

(6) f−1(Y )\ f−1(D) = f−1(Y \D).

Assuming that you have proved equality (6) (you will need to do it) you can now con-
clude. Indeed, Y \ D ∈ M by property (Σ2) that applies to elements in M , and thus
f−1(Y \D) ∈ f−1(M ) by definition of f−1(M ). Therefore X \B = f−1(Y ) \ f−1(D) =
f−1(Y \D) ∈ f−1(M ), which gives the desired conclusion.

The verification of property (Σ3) is not much different besides that you need to use
a different set equality. Let (An)

∞
n=1 be a sequence in f−1(M ). You need to show that

∪∞
n=1An belongs to f−1(M ), i.e., that ∪∞

n=1An = f−1(C) for some C ∈ M . Since for all
n ⩾ 1, An ∈ f−1(M ) you can argue that An = f−1(Bn) for some Bn ∈ M (by definition
of f−1(M )). The problem boils down to showing that

⋃
∞
n=1 f−1(Bn) = f−1(C) for some

C ∈ M . That is when Hausdorff formulas for inverse images will come to your rescue. If
you can show that

(7)
∞⋃

n=1

f−1(Bn) = f−1
( ∞⋃

n=1

Bn

)
,

then since
⋃

∞
n=1 Bn is in M (by property (Σ3) and since all the Bn’s are in M ) the proof will

be complete. It remains to prove (7), but this is elementary at this point int the semester.
□
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