
PROJECT ON A SOFT INTRODUCTION TO TOPOLOGY

In this project you will study collections of subsets (of an ambient set) that satisfy certain stability properties
with respect to some elementary set-theoretic operations that you have learned and studied in class. Such a
collection is called a topology and is the fundamental structure of an abstract mathematical theory called abstract
topology (or point-set topology, or simply topology). Abstract topology is the mathematical framework that allows
to discuss rigorously the shape of objects and the deformations that do not tear them apart, but can bend and/or
stretch them. Your knowledge of set theory learned in MATH 300 is sufficient to be able to study the basic
properties of these topological structures and functions between them.

1. Topology on a set

Definition 1 (Topological space). Let X be a set. A collection O of subsets of X is called a topology on the set X
if the following properties are satisfied:

(τ1) ∅ ∈ O and X ∈ O.
(τ2) For all A, B ∈ O, we have A ∩ B ∈ O (stability under intersection).
(τ3) For all index sets I, and for all collections {Ui}i∈I of elements of O (i.e., Ui ∈ O for all i ∈ I), we have⋃

i∈I Ui ∈ O (stability under arbitrary unions).
A set X equipped with a topology O is called a topological space and the sets in O are called open sets.

Exercise 1. (6 points) Let X be a set.

(1) (3 point) Consider Otrivial
def
= {∅, X}. Prove that Otrivial is a topology on X.

(2) (3 point) Consider Odiscrete
def
= P(X). Is Odiscrete is a topology on X? Justify briefly your answer.

Hint: You have to verify whether the collections Otrivial and Odiscrete satisfy the three properties in Definition 1.

Elements of proof. (1) Property (τ1) is clearly satisfied.
As for property (τ2), if A, B ∈ Otrivial you can show by distinguishing various cases that A ∩ B is either

∅ or X.
Another case distinction takes care of property (τ3).

(2) Property (τ1) is also clearly satisfied here by definition of P(X).
Property (τ2) holds since every intersection of two subsets of X is a subset of X (definition of intersec-

tion and subset).
Property (τ3) also holds since every arbitrary union of subsets of X is also a subset of X (definition of

arbitrary union and subset).
□

In the next exercise we show that the intersection of two topologies is a topology.

Exercise 2. (6 points) Let X be a set. Let O1 be a topology on X and O2 be another topology on X . Consider the
collection of subsets of X, denoted O1 ∩ O2, and defined as

O1 ∩ O2
def
= {A ⊆ X : A ∈ O1 and A ∈ O2}.

Show that the collection O1 ∩ O2 is a topology on X.

Elements of proof. Since X ∈ O1 and X ∈ O2 (property τ1 of topologies) then clearly X ∈ O1 ∩ O2. The same
argument works for ∅.

Now if A, B ∈ O1∩O2 our goal is to show that A∩B ∈ O1∩O2. We first show that A∩B ∈ O1. If A, B ∈ O1∩O2
then A, B ∈ O1 and by property (τ2), A ∩ B ∈ O1. Arguing similarly for O2 we get that A ∩ B ∈ O2, and thus
A ∩ B ∈ O1 ∩ O2 (by definition of the intersection).

To verify property (τ3) is not much different besides you start with an arbitrary collection {Ai}i∈I such that for
all i ∈ I, Ai ∈ O1 ∩ O2, and you need to show that ∪i∈I Ai ∈ O1 and ∪i∈I Ai ∈ O2. This can be done using property
(τ3) that is satisfied for O1 and O2. □
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Property (τ2) about the stability under intersection of two sets can be extended by induction to finitely many
intersections.

Exercise 3. (5 points) Let X be a set and O be a topology on X. Show that O is stable under finite intersections.

Hint: Formally, you must show that for all n ⩾ 1 and for every finite collection {Ui}
n
i=1 of elements in O (i.e.,

Ui ∈ O for all 1 ⩽ i ⩽ n), we have
⋂n

i=1 Ui ∈ O; prove this statement by induction on n.

Elements of proof. For the base case n = 1 you need to show that for any set A1 ∈ O you have
⋂1

i=1 Ai ∈ O. This
is definitely true since

⋂1
i=1 Ai = A1 which is in O. For the induction step, let n ⩾ 1 and assume that for any sets

A1, A2, . . . , An in O you have
⋂n

i=1 Ai ∈ O. Then if you are given n+ 1 elements in O, say B1, B2, . . . , Bn, Bn+1, you
have (by associativity of intersection)

n+1⋂
i=1

Bi =
( n⋂

i=1

Bi

)⋂
Bn+1.

Now,
⋂n

i=1 Bi is in O by the induction hypothesis (that applies to intersections with n sets), and Bn+1 ∈ O as well
by assumption. Therefore by property (τ3), you can conclude that

⋂n+1
i=1 Bi is in O since it can be written as the

intersection of two sets in O. The conclusion follows by the principle of mathematical induction. □

With the help of some remarkable set-theoretic identities, we can show that restricting a topology to a subset
generates a topology on the subset.

Exercise 4. (8 points) Let X be a set.
(1) (1 point) Let A, B,Y ⊆ X. Show that

(A ∪ B) ∩ Y = (A ∩ Y) ∪ (B ∩ Y).

(2) (4 points) Let I be an index set, (Ai)i∈I be collection of subsets of X, and Y ⊆ X. Show that(⋃
i∈I

Ai

)
∩ Y =

⋃
i∈I

(Ai ∩ Y).

(3) (3 points) Let O be a topology on X and Y ⊆ X . Consider the collection of subsets of X, denoted OY , that
is defined as

OY
def
= {A ⊆ X : A = B ∩ Y for some B ∈ O}.

Show that the collection OY is a topology on Y.

Hint: For (3) you might want to use (2) at some point in your proof.

Elements of proof. (1) Once you observe that by definition

x ∈ (A ∪ B) ∩ Y ⇐⇒ ((x ∈ A) ∨ (x ∈ B)) ∧ (x ∈ Y)

you can then use the properties of the logical connectives to deduce (after a couple of intermediate steps)
that this is equivalent to x ∈ (A ∩ Y) ∪ (B ∩ Y).

(2) You can write a double-inclusion proof or proceed as in the question above.
(3) You must verify that the three defining properties of a topology hold. You first task is to make sure that Y

can be written as an intersection of itself with an element in O. This is indeed true since Y being a subset
of X, we have Y = Y ∩ X and X ∈ O by definition of O. A similar argument shows that ∅ ∈ OY .

The stability by intersection goes as follows. Let A1, A2 in OY . Then by definition, A1 = Y ∩ B1 and
A2 = Y ∩ B2 for some B1, B2 ∈ O. By drawing a Venn diagram, you might convince yourself that (but this
is not a proof and you need to provide one!)

(1) A1 ∩ A2 = (Y ∩ B1) ∩ (Y ∩ B2) = Y ∩ (B1 ∩ B2).

Equation (1) is of great importance here since it will allow you to conclude. Indeed, B1 ∩ B2 is in O by
property (τ2) for O and thus equation (1) tells you that A1 ∩A2 can be written as the intersection of Y with
a set in O. Therefore, A1∩A2 is in OY (by definition of OY ). To complete the proof it remains to prove the
set equality (1) which you can easily do by writing a double inclusion proof or using the basic properties
of the intersection.
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For the last property, you can use (2). Let {Ai}i∈I such that for all i ∈ I, Ai ∈ OY . Then by definition
of OY you have Ai = Y ∩ Bi for some Bi ∈ O. The set of interest here is

⋃
i∈I Ai =

⋃
i∈I

(
Y ∩ Bi

)
, which

according to (2) is equal to Y ∩
(⋃

i∈I Bi

)
. Since

⋃
i∈I Bi is in O by property (τ3) which is valid for O,

you have just showed that
⋃

i∈I Ai can be written as the intersection of Y with a set in O, and the proof is
complete.

□

2. Continuity in the abstract topological context

The classical notion of continuity that you know for real-variable real-valued functions (i.e., functions from R
to R) can be extended to the more abstract context of topological spaces using inverse images.

Definition 2 (Topological continuity). Let (X,OX) and (Y,OY ) be two topological spaces. A function f : X → Y is
said to be topologically continuous from (X,OX) to (Y,OY ) if the inverse image of every open set of Y is an open
set of X.

Formally,
f is topologically continuous from (X,OX) to (Y,OY ) if and only if ∀U ∈ OY , f −1(U) ∈ OX .

The goal of the next exercise is to show that topological continuity is preserved under composition.

Exercise 5. (5 points) Let X,Y,Z be sets equipped respectively with topologies OX ,OY ,OZ . Let f : X → Y and
g : Y → Z be functions. Show that if f is topologically continuous from (X,OX) to (Y,OY ) and if g is topologically
continuous from (Y,OY ) to (Z,OZ) then g ◦ f is topologically continuous from (X,OX) to (Z,OZ).

Elements of proof. According to Definition 2 the goal is to show that for all A ∈ OZ , (g ◦ f )−1(A) ∈ OX . If you
were to show that the following set equality holds

(2) (g ◦ f )−1(A) = f −1(g−1(A))

then you would be done. Indeed g−1(A) ∈ OY by topological continuity of g since A ∈ OZ , but then by topological
continuity of f , f −1(g−1(A)) would be in OX (since g−1(A) ∈ OY as we just showed). Therefore equality (g ◦
f )−1(A) = f −1(g−1(A)) will tell you that (g ◦ f )−1(A) ∈ OX which was the desired conclusion. The proof of the set
equality (2) is an elementary double inclusion proof that you can easily write yourself. □
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