REAL ANALYSIS MATH 607 HOMEWORK #10

Problem 1 (25 points). (Various useful facts) Let $\mu, \nu: (X, \mathcal{M}) \to \mathbb{R}$ be signed measures.

- (1) (3 points) If μ is a real-measure (i.e. for all $A \in \mathcal{M}$, $\mu(A) \in \mathbb{R}$) show that μ is bounded.
- (2) (2 points) Show that if $\mu \perp v$ and $v \ll |\mu|$ then $v \equiv 0$.
- (3) (5 points) Show that $\mu \perp \nu \iff \mu \perp |\nu| \iff (\mu \perp \nu^+)$ and $(\mu \perp \nu^-)$.
- (4) (5 points) Show that $A \in \mathcal{M}$ is a zero-set for μ iff $|\mu|(A) = 0$.
- (5) (5 points) Show that there exists an extended $|\mu|$ -integrable function $f: (X, \mathcal{M}) \to \mathbb{R}$ such that $\mu(A) = \int_A f d|\mu|$.
- (6) (5 points) If μ is a positive measure. Let $f, g: (X, \mathcal{M}) \to \mathbb{R}$ be μ -integrable functions. Show that if for all $A \in \mathcal{M}$, $\int_A f d\mu = \int_A g d\mu$ then $f = g \mu$ -a.e.

Problem 2 (20 points). (Useful facts about signed measures) Let v be a signed measure on (XM).

- (1) (5 points) Show that for all $A \in \mathcal{M}$, $v^+(A) = \sup\{v(B) \colon B \in \mathcal{M}, B \subset A\}$.
- (2) (5 points) Show that for all $A \in \mathcal{M}$, $v^{-}(A) = -\inf\{v(B): B \in \mathcal{M}, B \subset A\}$.
- (3) (5 points) Show that for all $A \in \mathcal{M}$, $|\nu|(A) = \sup\{\sum_{i=1}^{k} |\nu(A_i)|: n \ge 1, A = \bigcup_{i=1}^{k} A_i \text{ with } A_i \in \mathcal{M}, A_i \cap A_j = \emptyset(i \ne j)\}$
- (4) (5 points) Show that if there are positive measures μ_1 , μ_2 on (X, \mathcal{M}) such that $v = \mu_1 \mu_2$, then $\mu_1 \ge v^+$ and $\mu_2 \ge v^-$.

Problem 3 (25 points). (Useful facts about absolute continuity) Let μ be a positive measure and ν be a signed measure on (X, \mathcal{M}) .

- (1) (15 points) Show that the following assertions are equivalent:
 - (*a*) $v << \mu$,
 - (b) $v^+ \ll \mu \text{ and } v^- \ll \mu$,
 - (c) $|v| \ll \mu$.
- (2) (5 points) If v is moreover finite, show that $v \ll \mu \iff \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \mu(A) \ll \delta \implies |v(A)| \ll \varepsilon$.
- (3) (5 points) Show that if $f: (X, \mathcal{M}) \to \mathbb{R}$ is μ -integrable then $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \mu(A) < \delta \implies |\int_A f d\mu| < \varepsilon$

Problem 4 (15 points). (Extending Radon-Nikodým theorem and Lebesgue decomposition theorem)

- (1) Show that if $v \ll \mu$ then there exists a measurable and extended μ -integrable function $f: (X, \mathcal{M}) \to \mathbb{R}$ such that $v(A) = \int_A f d\mu$ under the assumption that
 - (a) (5 points) v and μ are σ -finite positive measure on (X, M).
 - (b) (5 points) v is a σ -finite signed measure and μ is σ -finite positive measure on (X, M).
- (2) (5 points) Show that if v is a σ -finite signed measure and μ is σ -finite positive measure on (X, M), then there exist unique signed measures v_a and v_s such that

(a)
$$v = v_a + v_s$$
,

(b) $v_a \ll \mu$ and $v_x \perp \mu$.

Problem 5 (15 points). (*Conditional expectation*) Let (X, \mathcal{A}, μ) be a measure space such that $\mu(X) = 1$. Let $f: X \to \mathbb{R}$ be a μ -integrable function and $\mathcal{B} \subset \mathcal{A}$ a σ -algebra.

(1) (5 points) Show that there exists a \mathcal{B} -measurable function $\tilde{f}: X \to \mathbb{R}$, called the conditional expectation of f, such that

$$\int_{B} f d\mu = \int_{B} \tilde{f} d\mu, \text{ for all } B \in \mathcal{B}.$$

Moreover, show that \tilde{f} is unique (up to μ -a.e. equality).

(2) (10 points) Assume now that \mathcal{B} is the σ -algebra generated by a finite \mathcal{A} -measurable partition of X, *i.e.* \mathcal{B} is generated by mutually disjoint sets $A_1, \ldots, A_n \in \mathcal{A}$ such that $X = \bigcup_{i=1}^k A_i$. Give a closed formula for the conditional expectation of f in this situation.