REAL ANALYSIS MATH 607 HOMEWORK \#11

Problem 1. (Old Qualifier) Let f be increasing on $[0,1]$ and

$$
g(x)=\limsup _{h \rightarrow 0} \frac{f(x+h)-f(x-h)}{2 h}, \quad \text { for } 0<x<1
$$

Prove that if $A=\{x \in(0,1): g(x)>1\}$ then

$$
f(1)-f(0) \geqslant \lambda(A)
$$

where λ is the Lebesgue measure.

Problem 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be an increasing function. Using Vitali's lemma, show that

$$
\lambda\left(\left\{x \in(a, b): D^{+} f(x) \neq D^{-} f(x)\right\}\right)=0
$$

where where λ is the Lebesgue measure and for $x \in(a, b)$,

$$
D^{+} f(x)=\limsup _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h} \text { and } D^{-} f(x)=\liminf _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h}
$$

Problem 3. Let μ be a positive measure on (X, \mathcal{M}). A collection of functions $\left(f_{\alpha}\right)_{\alpha \in A}$ is called uniformly integrable if for every $\varepsilon>0$ there is a $\delta>0$ such that $\int_{E}\left|f_{\alpha}\right| d \mu<\varepsilon$ for all $\alpha \in A$ whenever $\mu(E)<\delta$. Show that:
(a) Any finite subset of $L_{1}(\mu)$ is uniformly integrable.
(b) A sequence $\left(f_{n}\right)_{n}$ which is convergent in $L_{1}(\mu)$ is uniformly integrable.

Problem 4. Let $X=[0,1], \mu_{c}$ be the counting measure on $[0,1]$. Show that:
(a) $\lambda \ll \mu_{c}$ but there is no measurable and nonnegative function f so that $\lambda(A)=\int_{A} f d \mu_{c}$, for all $A \in$ $\mathcal{B}([0,1])$.
(b) μ_{c} has no Lebesgue decomposition with respect to λ.

Problem 5. Assume that v is a σ-finite signed measure, and λ and μ are σ-finite positive measures on (X, \mathcal{M}). Assume that $v \ll \lambda$, and $\lambda \ll \mu$. Define for any $h \in L_{1}(|v|)$

$$
\int_{X} h d v=\int_{X} h d v^{+}-\int_{X} h d v^{-}
$$

(1) Show that $h \cdot \frac{d v}{d \lambda} \in L_{1}(\lambda)$ and

$$
\int_{X} h(x) d \nu(x)=\int_{X} h(x) \frac{d v}{d \lambda}(x) d \lambda(x)
$$

(2) Show that $v \ll \mu$ and

$$
\frac{d \nu}{d \mu}=\frac{d \nu}{d \lambda} \cdot \frac{d \lambda}{d \mu}
$$

