REAL ANALYSIS MATH 607 HOMEWORK #11

Problem 1. (Old Qualifier) Let f be increasing on [0,1] and

$$g(x) = \limsup_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}, \quad \text{for } 0 < x < 1.$$

Prove that if $A = \{x \in (0, 1) : g(x) > 1\}$ *then*

$$f(1) - f(0) \ge \lambda(A),$$

where λ is the Lebesgue measure.

Problem 2. Let $f : [a,b] \to \mathbb{R}$ be an increasing function. Using Vitali's lemma, show that $\lambda(\{x \in (a,b) : D^+ f(x) \neq D^- f(x)\}) = 0,$

where where λ is the Lebesgue measure and for $x \in (a, b)$,

$$D^{+}f(x) = \limsup_{h \to 0^{+}} \frac{f(x+h) - f(x)}{h} \text{ and } D^{-}f(x) = \liminf_{h \to 0^{+}} \frac{f(x+h) - f(x)}{h}$$

Problem 3. Let μ be a positive measure on (X, \mathcal{M}) . A collection of functions $(f_{\alpha})_{\alpha \in A}$ is called uniformly integrable if for every $\varepsilon > 0$ there is a $\delta > 0$ such that $\int_{E} |f_{\alpha}| d\mu < \varepsilon$ for all $\alpha \in A$ whenever $\mu(E) < \delta$. Show that:

- (a) Any finite subset of $L_1(\mu)$ is uniformly integrable.
- (b) A sequence $(f_n)_n$ which is convergent in $L_1(\mu)$ is uniformly integrable.

Problem 4. Let X = [0, 1], μ_c be the counting measure on [0, 1]. Show that:

- (a) $\lambda \ll \mu_c$ but there is no measurable and nonnegative function f so that $\lambda(A) = \int_A f d\mu_c$, for all $A \in \mathcal{B}([0,1])$.
- (b) μ_c has no Lebesgue decomposition with respect to λ .

Problem 5. Assume that ν is a σ -finite signed measure, and λ and μ are σ -finite positive measures on (X, \mathcal{M}) . Assume that $\nu \ll \lambda$, and $\lambda \ll \mu$. Define for any $h \in L_1(|\nu|)$

$$\int_X h d\nu = \int_X h d\nu^+ - \int_X h d\nu^-.$$

(1) Show that $h \cdot \frac{d\nu}{d\lambda} \in L_1(\lambda)$ and

$$\int_X h(x) d\nu(x) = \int_X h(x) \frac{d\nu}{d\lambda}(x) d\lambda(x).$$

(2) Show that $v \ll \mu$ and

$$\frac{d\nu}{d\mu} = \frac{d\nu}{d\lambda} \cdot \frac{d\lambda}{d\mu}.$$