REAL ANALYSIS MATH 607 HOMEWORK 1

Problem 1. Let $f: X \to Y$

- a) For $A, B \subset Y$, prove that $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$ and $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$
- *b)* For a family $\{A_i\}_{i \in I} \subset \mathcal{P}(Y)$, show that

$$f^{-1}(\bigcup_{i\in I}A_i) = \bigcup_{i\in I}f^{-1}(A_i) \text{ and } f^{-1}(\bigcap_{i\in I}A_i) = \bigcap_{i\in I}f^{-1}(A_i).$$

Give examples for the following situations:

- c) $f^{-1}(f(A)) \neq A$, for some $A \subset X$,
- d) $f(f^{-1}(B)) \neq B$, for some $B \subset Y$,
- e) $f(\cap_{i \in I} A_i) \neq \cap_{i \in I} f(A_i)$, for some family $\{A_i\}_{i \in I} \subset \mathcal{P}(X)$.

Zorn's Lemma (**ZL**): Let (X, \leq) be a partially ordered set. If every linearly ordered subset of *X* has an upper bound then *X* has a maximal element, i.e. there exists $x_0 \in X$ such that if $x_0 \leq x$ then $x = x_0$.

Well Ordering Principle (WOP): Every set can be well ordered.

Hausdorff Maximal Principal (HMP): Every partially ordered set (X, \leq) has a maximal linearly ordered subset, i.e. there exists $S \subset X$ such that (S, \leq) is linearly ordered but for all $S' \supseteq S$, (S', \leq) is not linearly ordered.

Axiom of Choice (AC): For any nonempty collection $\{X_i\}_{i \in I}$ of nonempty sets, $\prod_{i \in I} X_i$ is nonempty.

Problem 2. Show the following implications:

- (1) WOP implies AC
- (2) HMP implies ZL
- (3) ZL implies WOP

Problem 3. Prove that any partial order \leq on a set X can be extended to a linear order on the set.

Problem 4. Assume that a set X is not finite. Show that $card(X) \ge card(\mathbb{N})$.

Hint: Use recursion to define an injective map $f : \mathbb{N} \to X$.

Problem 5.

- (1) Prove Schröder-Bernstein theorem which states that if there is an injection from X into Y and an injection from Y into X then there is a bijection between X and Y.
- (2) Show that there is no Schröder-Bernstein theorem for continuous functions on metric spaces, i.e. find two metric spaces (M_1, d_1) and (M_2, d_2) , admitting continuous injective functions: $f: M_1 \to M_2$ and $g: M_2 \to M_1$, such that there is no bijective function $h: M_1 \to M_2$, so that h and h^{-1} are continuous.

Problem 6. Find a sequence of Riemann integrable functions (f_n) , defined on [0,1], so that for all $\varepsilon > 0$ there is an $n_0 \in \mathbb{N}$ so that

$$\int_{0}^{1} \left| f_m(x) - f_n(x) \right| dx < \varepsilon \text{ whenever } m, n \ge n_0,$$

but there is no Riemann integrable function f so that

$$\lim_{n \to \infty} \int_0^1 \left| f(x) - f_n(x) \right| dx = 0.$$