REAL ANALYSIS MATH 607 HOMEWORK 1

Problem 1. Let $f: X \rightarrow Y$
a) For $A, B \subset Y$, prove that $f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$ and $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$
b) For a family $\left\{A_{i}\right\}_{i \in I} \subset \mathcal{P}(Y)$, show that

$$
f^{-1}\left(\bigcup_{i \in I} A_{i}\right)=\bigcup_{i \in I} f^{-1}\left(A_{i}\right) \text { and } f^{-1}\left(\bigcap_{i \in I} A_{i}\right)=\bigcap_{i \in I} f^{-1}\left(A_{i}\right) .
$$

Give examples for the following situations:
c) $f^{-1}(f(A)) \neq A$, for some $A \subset X$,
d) $f\left(f^{-1}(B)\right) \neq B$, for some $B \subset Y$,
e) $f\left(\cap_{i \in I} A_{i}\right) \neq \cap_{i \in I} f\left(A_{i}\right)$, for some family $\left\{A_{i}\right\}_{i \in I} \subset \mathcal{P}(X)$.

Zorn's Lemma (ZL): Let (X, \leqslant) be a partially ordered set. If every linearly ordered subset of X has an upper bound then X has a maximal element, i.e. there exists $x_{0} \in X$ such that if $x_{0} \leqslant x$ then $x=x_{0}$.

Well Ordering Principle (WOP): Every set can be well ordered.
Hausdorff Maximal Principal (HMP): Every partially ordered set (X, \leqslant) has a maximal linearly ordered subset, i.e. there exists $S \subset X$ such that (S, \leqslant) is linearly ordered but for all $S^{\prime} \supsetneq S,\left(S^{\prime}, \leqslant\right)$ is not linearly ordered.

Axiom of Choice (AC): For any nonempty collection $\left\{X_{i}\right\}_{i \in I}$ of nonempty sets, $\Pi_{i \in I} X_{i}$ is nonempty.
Problem 2. Show the following implications:
(1) WOP implies $A C$
(2) HMP implies ZL
(3) ZL implies WOP

Problem 3. Prove that any partial order \leqslant on a set X can be extended to a linear order on the set.

Problem 4. Assume that a set X is not finite. Show that $\operatorname{card}(X) \geqslant \operatorname{card}(\mathbb{N})$.
Hint: Use recursion to define an injective map $f: \mathbb{N} \rightarrow X$.

Problem 5.

(1) Prove Schröder-Bernstein theorem which states that if there is an injection from X into Y and an injection from Y into X then there is a bijection between X and Y.
(2) Show that there is no Schröder-Bernstein theorem for continuous functions on metric spaces, i.e. find two metric spaces $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$, admitting continuous injective functions: $f: M_{1} \rightarrow M_{2}$ and $g: M_{2} \rightarrow M_{1}$, such that there is no bijective function $h: M_{1} \rightarrow M_{2}$, so that h and h^{-1} are continuous.

Problem 6. Find a sequence of Riemann integrable functions $\left(f_{n}\right)$, defined on $[0,1]$, so that for all $\varepsilon>0$ there is an $n_{0} \in \mathbb{N}$ so that

$$
\int_{0}^{1}\left|f_{m}(x)-f_{n}(x)\right| d x<\varepsilon \text { whenever } m, n \geqslant n_{0}
$$

but there is no Riemann integrable function f so that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f(x)-f_{n}(x)\right| d x=0
$$

