REAL ANALYSIS MATH 607 HOMEWORK 2

Problem 1. Let $\mathcal{B}(\mathbb{R})$ be the Borel σ -algebra of \mathbb{R} . Show that:

 $\mathcal{B}(\mathbb{R}) = \mathcal{M}(\{[p,\infty): p \text{ rational}\}).$

Hint: You can use the fact that $\mathcal{B}(\mathbb{R})$ is generated by the open intervals.

Problem 2 (Problem 1/Page 24.). A family of sets $\mathcal{R} \subset \mathscr{P}(X)$ is called a ring if it is non-empty and closed under finite unions and differences. A ring that is closed under countable unions is called a σ -ring. Show the following assertions.

- (1) Rings (resp. σ -rings) are closed under finite (resp. countable) intersections.
- (2) If \mathcal{R} is a ring (resp. σ -ring), then \mathcal{R} is an algebra (resp. σ -algebra) iff $X \in \mathcal{R}$.
- (3) If \mathcal{R} is a σ -ring, then $\{E \subset X : E \in \mathcal{R} \text{ or } E^c \in \mathcal{R}\}$ is a σ -algebra.
- (4) If \mathcal{R} is a σ -ring, then $\{E \subset X : E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R}\}$ is a σ -algebra.

Problem 3 (Problem 5/Page 24.). Let $\mathcal{E} \subset \mathscr{P}(X)$. Show that if \mathcal{M} is the σ -algebra generated by \mathcal{E} , then \mathcal{M} is the union of the σ -algebras generated by \mathcal{F} as \mathcal{F} ranges over all countable subsets of \mathcal{E} .

Problem 4. Let Ω be a set. $\mathcal{E} \subset \mathcal{P}(\Omega)$ is called an elementary system if

- (1) $\emptyset \in \mathcal{E}$,
- (2) $E, F \in \mathcal{E} \Rightarrow E \cap F \in \mathcal{E}$,
- (3) $E \in \mathcal{E}$ then E^c is the finite union of disjoint elements of \mathcal{E} .
- Let $(\Omega_j, \mathcal{M}_j)$ be measurable spaces for j = 1, 2, ..., n. Show that

$$\mathcal{E} = \bigg\{ \prod_{j=1}^{n} E_j \colon E_j \in \mathcal{M}_j, \ j = 1, 2, \dots, n \bigg\},\$$

is an elementary system of $\Omega = \Omega_1 \times \cdots \times \Omega_n$.

Problem 5. Show that every σ -algebra has either finite or uncountably many elements.

Hint: Construct a sequence of mutually disjoint sets in the σ -algebra.