REAL ANALYSIS MATH 607 HOMEWORK 3

Problem 1 (5 points). Show that if an algebra $\mathscr{A} \subset \mathscr{P}(X)$ is stable under countable disjoint unions then \mathscr{A} is a σ -algebra.

Problem 2 (10 points (Problem 11/Page 27.)). Assume μ is finitely additive on a σ -algebra M. Show the following assertions.

(a) μ is continuous from below $\implies \mu$ is σ -additive.

(b) Assume $\mu(X) < \infty$. Then μ is continuous from above $\implies \mu$ is σ -additive.

Problem 3 (15 points). Let $\liminf_{j\to\infty} E_j \stackrel{\text{def}}{=} \bigcup_{k=1}^{\infty} \bigcap_{n \ge k} E_n$ and $\limsup_{j\to\infty} E_j \stackrel{\text{def}}{=} \bigcap_{k=1}^{\infty} \bigcup_{n \ge k} E_n$. For $\{E_j\}_{j\ge 1} \subset \mathcal{M}$, show that

(a)

$$\mu(\liminf_{j\to\infty} E_j) \leq \liminf_{j\to\infty} \mu(E_j)$$

(b)

$$\mu(\limsup_{j\to\infty} E_j) \ge \limsup_{j\to\infty} \mu(E_j),$$

provided that $\mu(\bigcup_{j=1}^{\infty} E_j) < \infty$

Problem 4 (20 points). Suppose (X, \mathcal{M}, μ) is a measure space. We call

 $\mathcal{N}_{\mu} \stackrel{\text{def}}{=} \{ A \subset X \colon \exists B \in \mathcal{M} \quad A \subset B \text{ and } \mu(B) = 0 \}$

the nullset of (X, \mathcal{M}, μ) whose elements are called nullsets. We will now show how to extend μ to the σ -algebra generated by \mathcal{M} and the nullsets.

(a) (10 points) Show that

$$\mathcal{M} \stackrel{\text{def}}{=} \{A \cup N : A \in \mathcal{M} \text{ and } N \in \mathcal{N}_{\mu}\}$$

is a σ -algebra.

(b) (10 points) Show that

$$\overline{\mu}: \mathcal{M} \to [0, \infty], \quad A \cup N \mapsto \mu(A), \text{ if } A \in \mathcal{M}, N \in \mathcal{N}_{\mu}$$

is well-defined and a measure.

The space $(X, \overline{\mathcal{M}}, \overline{\mu})$ is called the completion of (X, \mathcal{M}, μ) .

Problem 5 (20 points). Assume that the algebra \mathcal{A} generates the σ -algebra \mathcal{M} and assume that μ is a finite measure on \mathcal{M} . Show that for any $\varepsilon > 0$ and any $A \in \mathcal{M}$ there is an $\tilde{A} \in \mathcal{A}$ so that $\mu(A\Delta \tilde{A}) < \varepsilon$.

Problem 6 ((30 points) Halmos monotone class theorem). Let X be a nonempty set. A class $\mathscr{C} \subset \mathscr{P}(X)$ is monotone *if*

- (1) $(A_n)_{n \ge 1} \subset \mathscr{C}, A_n \subseteq A_{n+1} \text{ for all } n \ge 1 \implies \bigcup_{n=1}^{\infty} A_n \in \mathscr{C}.$ (2) $(A_n)_{n \ge 1} \subset \mathscr{C}, A_n \supseteq A_{n+1} \text{ for all } n \ge 1 \implies \bigcap_{n=1}^{\infty} A_n \in \mathscr{C}.$ (a) (5 points) Show that for any $\mathscr{C} \subset \mathscr{P}(X)$ there exists a smallest monotone class, denoted mon(\mathscr{C}), that contains C.
- (b) (10 points) Show that a monotone algebra (i.e. an algebra that is monotone) is a σ -algebra.
- (c) (15 points) Show that if \mathscr{A} is an algebra, then $mon(\mathscr{A}) = \mathcal{M}(\mathscr{A})$.

Hint: Find inspiration in the proof of Dynkin theorem.