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1 Warm up
Ezercise 1. Show that a sequence (x,,)22; is convergent to £ € R, if and only if

for every € > 0 there exists N € N such that for all n > N, |z, — ¢| < e.
Hint. Exploit the definition.

Possible solution.

Ezercise 2. Show that a sequence (x,,)22 ; is convergent to £ € R, if and only if

for every € € (0,2) there exists N € N such that for all n > N, |z, — ¢| < e.
Hint. Exploit the definition.

Possible solution.

Ezercise 3. Show that a sequence (x,,)22 ; is convergent to £ € R, if and only if

for every € > 0 there exists N € N such that for all n > N, |z, — ] < 256¢.
Hint. Exploit the definition.

Possible solution.

Ezercise 4. Let (x,)52; and (y,)52; be convergent sequences. Show that

1. the sequence (z, + yn )52, is convergent and that

lim (z, + yn) = lim z, + lim y,.
n—oo n— oo n—oo



2. the sequence (2z,, — 5y, )52, is convergent and that

lim (2z, — 5y,) =2 hm Ty — 5 lim y,.

n—oo n— oo
3. the sequence (x,, - y,)32; is convergent and that

lim (z, - yn) = lim z, - lim y,.
n—oo n— o0 n—oo

Hint. Use the definition of convergence and the algebraic equality, ab — c¢d =
b(a —¢) + ¢(b—d) (for 3) O

Possible solution. Assume that lim, .oz, = {1 < 00 and lim, 0o Yn = fo <
0.

1. Let € > 0, then there exist Ny, Ny € N such that for all n > Ny, |z, —¢1] <
5 and for all n > Ny, |y, — 2| < 5. If follows from the triangle inequality
that |JU»,L +Yn — (51 +€2)| = |1‘n -l +yn —52‘ < |$n —€1| + |yn —€2|, and
hence for n > max{Ny, No}, | +yn — (l1 +42) < 5+ 5 =€

2. If follows from the triangle inequality that |z, -y, —(¢1-€2)| = [(xn—£1)yn+
O (Yn — 02)] < |zn — 1||yn| + |Yn — €2][f1]- Since (y,)52; is convergent,
and thus bounded, there exists M > 0 such that for all n € N, |y, | < M.
Let ¢ > 0. If |¢1] > 0, then there exist Ny, No € N such that for all
n > Ny, |z, — 1] < 557 and for all n > No, [y, — fa] < ﬁ, and hence
for n > max{Ny, No}, |Tn - yn — (b1 - €2)| < 2?v1M + gg7lll = e If
|€1] = 0 then for n > max{Ni, No}, [z, - yn| < 557 M < €, and the proof
is complete.

O
) ) 1
Ezercise 5. Show that (57 );Z; converges and compute lim 3
n—oo 3N
Hint. Try to use the idea of the proof of 3. in Example 1. O

Possible solution. It follows from the Archimedean Principle that for every e > 0
there exists N € N such that 0 < = < N. It can be easily shown by induction
(do it!) thatn<3” for all n € N. For n > N, |3 0l =3 <1< <eand
limy, o0 = 37 =0. O



2 Useful results about sequences

Ezercise 6. Let (z,)2; be a sequence of real numbers and ¢ € R. Show that
limy, 00 &, = £ if and only if lim,, o |z, — £] = 0.

Hint. Simply consider the sequences (,,)2; and (y,)52; = (|xn — £€])52 4, and

apply the definition of convergence. O

Possible solution. Assume that lim,,_,. z, = £. Let ¢ > 0, then there exists
N € N such that for all n > N, |z, — ¢| < e. But ||z, — {| — 0| = |z, — £| and
forn > N, ||&, — €| = 0| < &, and thus lim, . |z, — ¢| = 0.

Assume now that lim,, o |2, —¢] = 0, Let € > 0, then there exists N € N
such that for all n > N, ||z, — {| — 0| <& but ||z, — | — 0| = |z, — {| and for
n > N, |z, — £ < e. Therefore, lim, o 2, = £. O

Ezercise 7. Let (2,)52; and (y,)32; be two sequences of real numbers and
f € R. Assume that lim,,_,o z,, = 0 and that there exists NV € N so that for all
n > N we have |y, — f| < |r,|. Show that lim,, . y, = £.

Hint. Exploit the definition of convergence. O

Possible solution. Assume that lim,,_,o T,, = 0 and that there exists N € N so
that for all n > N we have |y, — ¢| < |x,|. Let € > 0. Then there N7 € N such
that for all n > Ny, |z,] < e. If n > max{N, N1} then, |y, — ¢ < |z,| < e
Therefore, lim, oo y, = £. O

Ezercise 8. Let (2,)5, and (y,)52, be sequences of real numbers. Assume
that (2,)52; is bounded and that lim, oo yn = 0. Let (2,)°2; = (2 - Yn)S ;.
Show that lim,,_oc 2, =0

Hint. Exploit the definitions of convergence, boundedness, and the properties
of the absolute value. O

Possible solution. Assume that there exists M > 0 such that for all n € N,
|xn] < M and that lim, ooy, = 0. If M = 0 |z,y,| = 0 and the conclusion
clearly holds. Otherwise, if € > 0, then there exists N € N such that for all
n > N, |yn| < 57. This yields that |z,yn| = |zn|lyn] < Mly,| < M55 = €
whenever n > N. Therefore, (z,,)22; converges to 0. O

Ezercise 9. Let (z,)52; be a sequence of real numbers. Show that (z,)52; is
increasing if and only if for alln € N, z,, < z,41.



Hint. One implication follows directly from the definition. The other one can
be proven using an induction. O

Possible solution. Assume that (z,,)22 is increasing, i.e. for all k < m, z; <

Tm. Let n € N, then by simply taking k = n and m =n+1, one has x,, < xp41.

Assume now that for all n € N, z,, < x,41. Since when k£ < m one can
always write m = k + r for some r € N, the conclusion will follow if one can
prove that for all k,r € N, 2y < xp4,. Let k € N and for r € N let P(r) be the
statement: xj, < xpi,. Our assumption says that P(1) is true. Assume now
that P(r) is true. On one hand, xx < ki, by our induction hypothesis. On
the other hand, x4, < 24,41 by our assumption, and hence by transitivity
of the order relation zy < xpy,4+1 and P(r + 1) is true. By the Principle of
Mathematical Induction P(r) is true for all » € N. Since k was fixed but
arbitrary, one just proved that for all k,r € N, x}, < x4, and the conclusion
follows. O

3 Around the Monotone Convergence Theorem

Ezercise 10. Let (2,)52; be a sequence of real numbers. Show without using
the Monotone Convergence Theorem that if (z,,)22 ; is decreasing and bounded
below then (x,)22 ; is convergent.

Hint. You could mimic the proof of the increasing version and use the ap-
proximation property of infima to show that (z,)5%; converges to inf{z,: n €
N}. O

Possible solution. O

Ezercise 11. Show that if |a| < 1 then lim " = 0.
n— oo

Hint. Use the Monotone Convergence Theorem. O

Possible solution. Assume that |a| < 1, then |a|"™' = |a|® - a < |a|® and
(la]™)22, is strictly decreasing. It is clear that (Ja|™)$%, is bounded below by 0,
and by the Monotone Convergence Theorem, (|a|™)52; is convergent. Denote ¢
the limit. Then lim,_ |a|® = lim, o |a|**! = £ and since |a|"*! = |a|" - a
by the basic manipulations of limits ¢ satisfies the equation ¢ = £- |a|. The only
solutions are £ = 0 or |a| = 1 and the second alternative is impossible, thus
lim,, , |a|™ = 0. We conclude with the Squeeze Theorem since for all n € N,
—la|™ < a™ < |al|™. O



Ezercise 12. Let (x,)52; be a bounded sequence of real numbers. For all n € N,
let t,, ;= inf{zy: k > n}. Show that (¢,)52 is convergent.

n=1

Hint. You could use the Monotone Convergent Theorem and mimic the proof
of Lemma 7 in the lecture notes. U

Possible solution. Let n € N. Since {zy: k > n} D {xxg: k > n+ 1}, t, =
inf{xy: k >n} < inf{zg: &k > n+ 1} = t,y1, and (¢£,)52, is increasing. Since
()22, is bounded, (£,)52; is also bounded. By the Monotone Convergence

Theorem (t,,)22 ; is convergent. O

Ezercise 13 (The Nested Interval Theorem). Recall that a sequence of set
(Ap)nen is nested if for all n € N, A, 11 C A,. Recall also that a closed
interval is a subset of R of the form [a, b]. Show that a nested sequence of closed
intervals has a non-empty intersection.

Hint. You could use the Least Upper Bound Theorem or the Monotone Con-
vergent Theorem. U

Possible solution. O

Ezercise 14. Let 0 < 1 < y; and set for all n € N,

Ty + Y
Tl = VTnUn and yp 11 = %

i) Prove that for alln € N, 0 < z,, < yp.
ii) Prove that (z,)52, is increasing and bounded above.
ili) Prove that (y,)52, is decreasing and bounded below.
iv) Prove that for all n € N, 0 < g 41 — Tpy1 < L5775

) Prove that lim,, 00 &, = limy, 00 Yn.

This common limit a := lim,, 00 p = lim, o0 Y, in v) above is called the
arithmetic-geometric mean of x; and y; and has many applications.

Hint. For i) use induction. For ii)-iii) use i). For iv) use induction. For v) use
the Monotone Convergence Theorem and the Squeeze Theorem. O



Possible solution. (i) For n = 1 the inequality holds by assumption. If n > 2,

4

then n
Tpn—1 T Yn—-1
Tn = \/Tn-1Yn—1 and Yn = %a
and one needs to show that the geometric mean is smaller that the arith-

metic mean i.e. /Tp_1Yn_1 < I"‘%y"‘l or equivalently, (2, —1+¥yn_1)? >
4xn—1yn—l- BUta

(Tn—1 4+ Yn—1)? —ATp_1Yyn—1 =22 1 +20p_1Yn—1+ Y21 — ATp_1Yn—1

s
=22 = 2T -1+ Yi
= (Tn-1— yn—1)2 > 0.

The conclusion follows since one can easily prove by induction (and we
omit the details) that for all n € N, z,,y, > 0 and z,, # yy.

By (i) for all n € N, 211 = \/Tnln > /Tnln = |Tn| = z, and (2,)22, is
strictly increasing.

Similarly for all n € N, y,11 = % < w = y, and (y,)22,; is
strictly decreasing.

The first inequality was proven in (i) already. We now look at the second
inequality. For n = 1, one simply needs to prove that yp — zy < £57.
But,

Yy1—x1

—x —+x
R e malis sl AVAITE

=+/T1Y1 — T1

Since z1 < y1, /T1y1 — 21 > 0 and this yields that yp — 2o < 57

Assume now that y,41 — rpq1 < £577. We need to show that 451 —
Yn+2 — Ty > 0. But,

y1—x _lyi—=x Ynt1t+Tnt1
2171,+11 — Yn+2 + Tn+2 Y ylgn L — P} + \/xn-l-lyn-l-l
1 Yn+1+tTny1
> 5(Ynt1 = Tpg1) — PEGTE 4 T 1Unt
= /Tn+1Yn+1 — Tn41 > 0;

and the induction is complete.

oo

By (ii), (iii) and the Monotone Convergence Theorem both (z,,)32; and
(yn)S2, are convergent. By (iv) and the Squeeze Theorem lim,, o (yn —
Zn) = 0 and thus lim, 00 Z, = limy, 00 Yn.

O

Subsequences

Ezercise 15. Let (z,)5%; be a sequence of real numbers and a € R. If the
sequence (x,)%2; does not converge to a, prove that there exists an 9 > 0 and
a subsequence (x,, )%, of (z,)5%,, so that |z,, —a| > o for all kK € N,



Hint. Negate the definition of convergence and construct the subsequence re-
cursively. O

Possible solution. Assume that ()22, does not converge to a. Then, there
exists g9 > 0 so that

for every k € N, there exists ny, > k with |z, — a| > €. (%)

We shall now construct the subsequence recursively. In particular, for k£ = 1,
there exists ny € N with |z,, — a] > 9. Assume now that there exist ny <
o < ny, and (zp,) ) with |2, —a| > g for 1 <i < k. By (), there exists
N > ny + 1 with |2y — a| > €. Define ngy1 = N. Then, ngi1 > ng + 1 > ng,
|#n, . —a| > o and the recursive construction is complete. O

Ezercise 16. Let (2,,)22; be a sequence of real numbers and £ € R. Assume that
for every subsequence (y,)52; of ()52, there exists a further subsequence
(2n)22 of (yr )22, that converges to £. Prove that the original sequence (x,,)22
converges to /.

Hint. Argue by contradiction using Exercise O

Possible solution. If (x,,)22; does not converge to ¢, then by Exercise [L5| there
exist g > 0 and a subsequence (2, )72, of (z,)52; so that

|z, —£] = go for all k € N. ()

By assumption, (z,, )72, has a further subsequence (x,, )pv—; that converges
to £ and therefore there is mo € N so that for all m > myg, |z,, —f| <eo. As
km,, for instance, is still in N, by , |xnk_mo — ¢ > gp. This contradiction
completes the proof. O

Ezercise 17. For this exercise we will define a top point of a sequence (x,)5

as follows: we say that x, is a top point of the sequence if for all n > p, z,, < z,.
Prove the monotone subsequence lemma using the notion of top point.

Hint. Consider the following three cases: the sequence has infinitely many top
points, or finitely many top points, or no top points. O

Possible solution. Assume first that (x,)%2; has no top points. Let ky = 1.
Since xg, is not a top point there exists k2 > k; such that xp, > xp,. But
Tk, is not a top point either and there exists ks > ko > kj such that zp, >
Tk, > T,. If we continue this process indefinitely we can construct recursively
a subsequence (g, )22 ; that is strictly increasing. Now, assume that a sequence
(2,,)22; has infinitely many top points then there exist py < pa < -+ < pp < -



such that for all m < n, z,, > x,, and the subsequence (zp, )7 is decreasing.
If (x,,)52; has finitely many top points and let x,, the largest of those top points.
Let k1 = p+ 1, then zy, is not a top point and hence there exists ks > k; such
that z, > xx,. Since z, is not a top point there exists k3 > ko > k1 such that
Ty > Tky > Ty, and we can construct recursively a subsequence (z, )5 that
is (strictly) increasing. In all three cases, we were able to show the existence of
a monotone subsequence. O

Ezercise 18. Let (x,)22; be a bounded sequence of real numbers. Let ¢t :=
liminf, o 2. Show that there exists a subsequence (y,,)%; of (x,)22; such
that lim, _co yn = t.

Hint. Construct the subsequence recursively using the approximation property
for suprema and conclude with the Squeeze Theorem. O

5 Constructing sequences

Ezercise 19. Prove that for every real number x there exists a sequence of
rational numbers (g, )52, with lim, o ¢, = .

Hint. Use the density of Q in R and the Squeeze Theorem. O

Possible solution. Let x be a real number. Then by density of Q in R, for every
n € N there exists ¢, € Q such that z < ¢, < z + % By the Squeeze Theorem
lim,, 00 gn = . O

Exercise 20. Let X be a non-empty subset of R that is bounded above. Assume
that sup(X) ¢ X. Prove that there exists a strictly increasing sequence (z,,)%
of X so that lim, e 2 = sup(X).

Hint. Construct the sequence recursively using the approximation property for
suprema. ]

Possible solution. Set s = sup(X). We will recursively choose for each n € N a
number z, € X, so that 1 < -+ < z, and |z, — s| < % This will yield the
desired sequence. To do this rigorously we will use the Principle of Mathematical
Induction. Let P(n) be the statement: there exist 21 < -+ < z,, elements in X
such that s — % < xp, <S.

By the approximation property for suprema (for ¢ = 1), we may choose
x1 € X with s — 1 <27 < s and P(1) is true.

1

Assume now that there exist 1 < --- < x,, elements in X such that s — =<

T, < s. Since z, < s and s ¢ X, we have z,, < s, i.e. s—x, > 0. Set



e = min{n%rl,s — Zp}, which is positive. By the approximation property of
suprema we may choose x,+1 € X with s —e < 41 < 5. Since s —€ < 41 <
s < s+¢, we conclude |z,41 — $| < e < 1/(n+1). Furthermore, observe that
Tp =85—(s—xp) < $—& < Tpy1, therefore x,, 11 satisfies the desired properties.
By the Principle of Mathematical Induction for all n € N P(n) is true, i.e. for
every n € N there exist 1 < --- < z,, elements in X such that s — % < xp < S.
The sequence (x,)52 is the desired sequence, since by the Squeeze Theorem
lim,, o0 Tp, = . O

Ezercise 21. Let X be a non-empty subset of R that is bounded below. Assume
that inf(X) ¢ X. Prove that there exists a strictly decreasing sequence (x,,)22 ;
of X so that lim,,_,, z, = inf(X).

Hint. Mimic the proof of Exercise 20} O

6 Cauchy Sequences

Ezercise 22. Show that a Cauchy sequence is bounded.

Hint. The proof is similar to the proof of the fact that a convergent sequence is
bounded. O

Possible solution. Assume that (z,)52; is Cauchy. Then for € = 1 there exists
N € N such that for all n,m > N, |z, — z,,| < 1. In particular for m = N
and by reverse triangle inequality |z,| < 1+ |zy| for all n > N. Let M :=
max{|z1],|z2],...,|xN-1],1 + |zn|}, then for all n € N, |z,,| < M and (x,)52,
is bounded. O

Ezercise 23. Let (2,)22, and (y,)52; be two Cauchy sequences such that |y, | >

a> 0 for all n € N. Show that the sequence ()72, is Cauchy.

Hint. Use the Triangle Inequality and ad-hoc algebraic manipulations. O

Possible solution. If follows from the triangle inequality and the assumptions
Ty _ Tm| — [TnYm—YnTm | _ |(Zn=Tm)Ym—(YUn—Ym)Tm . lynl|
that |f2 — Jo| = [Sadm—infn| — | - | < fon — 2|55 +

|yn — ym\l%l‘ Since a Cauchy sequence is bounded (cf Exercise there exists
M > 0 such that for all n € N, max{|ys|, |xn|} < M. Let € > 0. Then there

exist N1, Ny € N such that for all n,m > Ny, |z, — x| < % and for all

n,m > Na, |yn — Ym| < %, and hence for n,m > max{Ny, N2}, |z—" - z—’"| <
N . : m
[ = o 15+ g — ym| 25 < 2557 + 2557 <o O



Ezercise 24. Let (x,)52; be a sequence of integers, i.e. x, € Z for all n € N.

(i) If (z,)22, is Cauchy, show that it is eventually constant (i.e. there exists
ng € N so that for all n > ng we have x,, = ).

(i) If (z)52, converges to some £ € R, then £ € Z.

Hint. For i) use the definition of Cauchy sequence for a well chosen ¢ and derive
a contradiction if the sequence is not eventually constant. For ii) use i). O

Possible solution. (i) Fix e = 1/2 (or any other number in (0,1)). As (2,)52,
is Cauchy, there exists N € N, so that for all m,n € N with m > n > N we
have |z,, — x,,| < e = 1/2. In particular, for all n > N we have |z, —zn| < 1/2.
For n € N with n > N, as x,, — xn is in Z, it is either zero or |z, — zy| > 1.
Since the second case is impossible, we conclude that x, = z for all n > N.
(ii) If (z,)5%, converges to some ¢ € R, it is Cauchy. By (i), there exists
N so that z, = zy for all n > N. This yields lim,,_,o, , = =y and hence
{=xN € Z. O

Ezercise 25. Let ()52, be a sequence. Suppose that for every € > 0 there
exists N € N such that for all m > n > N, |Y]" x| < e. Prove that

n
lim ka exists and is finite.

n— 00
k=1

Hint. If you introduce a well chosen sequence it is a one line argument. O

Possible solution. Consider the sequence defined as s, = Y ,_; xx, for n € N.
Then if m > n, |$my, —sn| = | Z?:nﬂ x|, and our assumption says that (s,)5%
is Cauchy. Since every Cauchy sequence is convergent (s,,)52; is convergent. [

Ezercise 26. Let (z,)52; be a sequence of real numbers. Suppose that for all
n €N, [zn41 — 2,| < 3. Show that (2,)32, is convergent.

Hint. Show that (z,)52, is Cauchy. O

Possible solution. Let m,n € N. Without loss of generality we can assume that
m > n. Then

‘xm - In| = |xm —Tm—-1t+Tm-1— "+ Tnt2 — Tnt2 + Tnt1 — mnl
1
m m—
= | Zi:nfrl Ti— D ey Til
i=n
=[>is, (@ip1 — )]
=S Vi) — 2] (by triangle inequality)
m—1 1

=) i, 3¢ (by our assumption)

10



It remains to show that ZZ;} % is small than whenever m, n are large enough.

By induction one can show that

=0
Therefore,
m—1 m—n—1
1 1 1
FoF Lo
i=n =0
13 1
— 1 _
3n 2( 3"“”)
3.1 1
=55 )

Now let € > 0. Since (55)5; converges to 0, there exists N € N such that

foralln > N, |3 < § and if m >n > N,

|Tm — 5] < 27511 ?11

3,1 1
< Z(— _
- 2(3” 3m)
3.1 1
< Z(—
- 2(3”+3m)
3. €
<333
<e,
and (x,)2 ; is Cauchy. O

11



	Warm up
	Useful results about sequences
	Around the Monotone Convergence Theorem
	Subsequences
	Constructing sequences
	Cauchy Sequences

