MATH 409, Summer 2019,
Practice Problem Set 3

F. Baudier (Texas A&M University)
June 18, 2019

1 Limits
Exercise 1. Use only the definition of the limit of a function to show if
a € R then lim 22 = a.

r—a

Solution. Fix € > 0 and set § = min{2|€+1,1}. Then, if x € R with 0 <
a
| —a| < 4, we have
|z — a®| = |z — a| - |z + a| < §|(z — a) + 2a] < §(5 + 2|a])

<O6(1+2]a]) < (1+42]a]) =e.

_c
2lal + 1

Ezercise 2. Show that the function f(z) = sin(1) does not have a limit at
o = 0.
Hint: Exhibit two sequences (z,,)22; and (y,)52; converging to 0 such that

(f(20))52 1 and (f(yn))S2; do not have the same limit and invoke the sequential
characterization of limits. O

Possible solution. For n > 1 let x,, = % and y, = ﬁ, then both (z,)52,
2

and (y,)22; converge to 0 but lim,,—, f(x,) = 0 while lim,, o f(y») = 1. By
the sequential characterization of limits f does not have a limit at 0. O

Ezercise 3. Let zyp € R and assume that f: (a,b)\{zo} — (¢, d) with 2o € (a,
and g: (¢,d) — R. Show that if f has a limit at z¢ and lim,_,,, f(z) := ¢ € (
and if g is continuous at £ then g o f has a limit at x and lim,—_,,, g o f(z
g(limg ., f(z)).



Hint.

Solution.

Ezercise 4. Let zo € (a,b) and assume that f: (a,b) \ {z0} — R. Assume that
f has a limit at xg. If limg;_,,, f(x) # 0 show that:

1. there exist & > 0 an 6 > 0 such that if |x — 29| < 0 and = # xo then

[f(@)] >,
. 1 . . . L
2. lim = — without using the sequential characterization of
5 f(@) | m f(a)
Tr—xo
limits.

Hint. For 1. find inspiration on the analogous result for sequences and for 2.
use 1.. =

Solution. 1. Assume that lim, ., f(z) =€ #0. Let g9 = %l > 0, then there

exists & > 0 such that if |x — 29| < § and x # xg then |f(z) — ¢| < ¢ and
by reverse triangle inequality |f(z)| > —eo + |¢| = % >0. Soa= % will
do.

2. Assume lim,_,., f(z) = £ # 0, then by (1) there exist « > 0 an 6; > 0
such that if |z — x| < 01 and = # zo then |f(x)] > a. Let ¢ > 0,
then there exists do > 0 such that if |z — 29| < dy and = # z¢, then
|f(z) — ¢ < eall|. For 6 = min{dy,d2}, if |z — x¢| < § and x # x¢, then

1 1] _ 1 4—f(x) Lf(z)—£]
7@ — 2l = Fwr | < e <e

O

Ezercise 5. Prove the comparison theorem for functions without using the se-
quential characterization of limits.

Hint. Find inspiration in the proof of the comparison theorem for sequences. [J

Solution. O

Exercise 6. Prove the squeeze theorem for functions without using the sequential
characterization of limits.

Hint. Find inspiration in the proof of the squeeze theorem for sequences. O

Solution.



sin(6)

Exercise 7. Show that lim =1
0—0
Hint. Show that cos(f) < % < cosl(G) and use the squeeze theorem. O

Solution. By comparing areas of two triangles with ad-hoc side lengths and the
area of a region subtended by and arc of angle € in the trigonometric circle one
can easily get the desired inequalities. We conclude by the squeeze theorem
since limg_,¢ cos(f) = 1. O

Ezercise 8. Prove the Squeeze Theorem for functions.

Hint: Either mimic the proof of the Squeeze Theorem for sequences of use the
sequential characterization of limits together with the Squeeze Theorem for
sequences. O

Ezercise 9. Let f: (a,b) = R, g € (a,b) and ¢ € R. Show that,
lim, ., f(z) = £ if and only if lim,, ¢ flx) = lim,, f(z)=¢.

Hint. One implication is immediate the other one follows from the definitions.
O

Solution. If lim,_,,, f(x) = £ then by definition of a two-sided limit we imme-
diately have that lim,,_ f(z) = lim,,_, f(z) = £. For the converse, assume

that lim,_,+ f(z) = lim, f(z) = L. Let € > 0, then there exists 6; > 0 and

d2 > 0 such that for all x € (a,b) such that if xg < x < 29431, then |f(x)—{| < &
and if xp — 02 < & < x¢, then |f(z) — £ < e. Now take § = min{dq,d2} > 0. If
|x — xo| < 0 and = # xo, then |f(z) — ] < e. O

2 Continuity

Ezercise 10. Let 2o € R and assume that f: (a,b) — (¢, d) with zg € (a,b) and
g: (¢,d) — R. Show that if f is continuous at xg and if g is continuous at f(z)
then g o f is continuous at xg.

Hint. You can exploit the definitions.

Solution.

We define the notion of open set.



Definition 1 (Open set). A subset U of R is open if for every x € U there
exists € > 0 such that (z — e,z +¢) CU.

Ezercise 11. Let a < b. Show that (a,b) is open.

Hint. Exploit the definitions. O

Ezercise 12 (Characterization of continuity in terms of open sets). Let f: R —
R. Prove that f is continuous on R if and only if for every open subset U of R,
f~Y(U) is open.

Hint. Use the ¢ — § definition of continuity and the previous exercise. O

Solution. Assume that f is continuous and let U be an open subset of R. By
definition f~1(U) = {x € R: f(z) € U}. If f~1(U) = 0 then f~1(U) is trivially
open. Otherwise let z € f~1(U), then f(x) € U and there exists £ > 0 such
that (f(r) — &, /() +¢) C U. Thus, f-X((f(x) — &, f(x) + ) € /- (), but
P () — e f2) +2) = {y € R: f(2) — ¢ < fy) < f(r) +e} = {y €
R: |f(y) — f(x)] < e}. By continuity of f at = there exists § > 0 such that if
|y — x| < 6 then |f(y) — f(x)| < &, which translated in terms of sets means that
{yeR: |ly—z| <} C{y eR:|f(y) — f(z)| < e}. In other words, for every
x € f~Y(U) there exists § > 0 such that (z — 6,z +§) C f~1(U) and f~1(U) is
open.

For the converse, assume that for every open subset U of R, f~1(U) is
open. Let € > 0 and zp € R and consider the set (f(xo) — €, f(xo) + &) which
is open by (1). Note that zo € f~1((f(wo) — &, f(z0) + €)) since f(zo) €
(f(xo) — €, f(xo) + €) and hence there exists ¢ > 0 such that (z¢g — 0,29 + ) C
F72((f(x0) — &, f(x0) +€)), which means that for every x € (x¢ — d, 20 + ) one
has f(z) € (f(zo) —e, f(xo) + &), and f is continuous at zg. Since xy was fixed
but arbitrary f is continuous on R. O

We now define the notion of compact set.

Definition 2 (Compact set). A subset K of R is compact if every open cover
of K admits a finite open subcover, i.e. if K C |J;; U; where U; is open for all
i € I then there exists n € N and i1,...,i, € I such that K C {J;_, U;,.

Ezercise 13 (The continuous image of a compact set is compact). Let f: R — R.
be continuous. Prove that if K is compact, then f(K) is compact.

Hint. Use the previous exercise. O



Solution. Assume that K is compact and let (U;);er be an open covering of
f(K), ie. f(K) € U;c;Us where U; is open for all i € I. Then, K C
S Uier Ui) = User f7HU), and ¢, f71(Us) is an open covering of K.
Indeed by (1) f~1(U;) is open since f is continuous. By compactness of K
there exists n € N and i1,...,4, € I such that K C (J,_, f~*(U;,) and
f(K) CUp_, Ui, and f(K) is compact. O

Ezercise 14. [Converse of the Intermediate Value Theorem for increasing func-
tions] Let f: [a,b] — R be an increasing function such that f(a) < f(b) and
whenever f(a) < yo < f(b) there exists zg € (a,b) such that f(zg) = yo. Show
that f is continuous on [a, b].

Hint. Use the definition of continuity and the monotonicity of the function. [

Solution. Assume that f is increasing. Let xg € (a,b) and € > 0. If f(a) >
f(zo) — €, let ¢; = a and notice that if ¢; < = < xg, then 0 < f(xg) —
f(z) < f(xo) — f(a) < e. Otherwise, let yo = f(ro) — € and thus f(a) < yo =
f(zo) — € < f(zo) < f(b). Therefore, by assumption, there exists ¢; € (a,b)
such that f(c1) = yo. Since f(c1) = a = f(xg) — e < f(zg), it must be
the case that ¢; < xp as f is increasing. Furthermore, if ¢; < z < xg, then
0 < flzo) = flx) < fzo) = fler) = fxo) = yo = fl@o) — (f(wo) —€) = .
Hence in either case, there exists ¢; € [a,xg) such that |f(z) — f(zo)| < € for
all z € (c1,m0).

Now if f(b) < f(wo) + &, let co = b and notice that if zg < x < c2 then
0 < f(z) — f(mo) < f(b) — f(xo) < e. Otherwise, f(b) > f(xo) + &, and
let yo = f(xo) + &. Therefore, by assumptions, there exists co € (a,b) such
that f(ce) = yo. Since f(c2) = yo = f(xo) + € > f(xo), it must be the
case that c¢o > x¢ as f is increasing. Furthermore, if co > = > zp, then
0 < f(z) — f(zo) < fle2) = f(zo) = yo — flzo) = flzo) + € — f(zo) = &
Hence in either case, there exists ¢ € (29, b] such that |f(x) — f(zo)| < e for all
x € (xg,c2). Therefore, if we let § = min{zg — ¢1,c2 — 20} > 0 it follows that
for all z € (xg — 0,20 +9), | f(x) — f(x0)| < &, and hence f is continuous at zg.
Continuity at a or b can be shown similarly. O

3 Applications of the Intermediate Value Theo-
rem

Ezercise 15. A function f is said to have a fixed point in [a,b] if there exists
¢ € [a,b] such that f(c) = ¢. Let f: [a,b] — [a,b] be a continuous function.
Show that f has a fixed point in [a, b].

Hint. Consider the function g : [a,b] — R with g(z) = — f(x). O



Possible solution. Define g : [a,b] — R with g(x) = x — f(z). Then g is con-
tinuous as the difference of continuous functions. As the image of [a,b] under
f is contained in [a, b], we deduce f(a) > a and therefore g(a) = a — f(a) < 0.
Similarly, we obtain g(b) =b— f(b) > 0.

If it so happens that g(a) = 0, then f(a) = a and «a is the desired number.
Similarly, if g(b) = 0 then f(b) = b and b is the desired number. If neither of
the above happens to be true, then g(a) < 0 < g(b). Applying the intermediate
value theorem to g, we conclude that there if ¢ € (a,b) so that g(c) = 0, i.e.
fle) =c O

Exercise 16. Let I be an interval and let f: I — R. Assume f is continuous on [
and f is injective. Show that either f is strictly increasing or strictly decreasing
on I.

Hint. Try a proof by contradiction. The key point is a correct negation of the
statement “f is strictly increasing or strictly decreasing on I”. O

Solution. Assume that f is continuous and injective on I. Assume by contradic-
tion that f is neither strictly increasing nor strictly decreasing then there exist
x1 < T3 < xz in I such that f(x1) < f(x2) and f(x3) < f(z2) (or f(z1) > f(z2)
and f(z3) > f(x2)) (why?). Since the proof for the latter case is similar to
the proof of the former case we only treat the case where f(x1) < f(x2) and
f(z3) < f(ze2). Since f is injective f(x1) < f(x2) and f(z3) < f(z2). Let «
such that f(z1) < a < f(z2) and f(z3) < a < f(z2) (why such an « exists?).
Since f is continuous on [x1, z2], the IVT implies that there exists ¢ € (z1, z3)
such that f(c) = a. Similarly, since f is continuous on [z3,x3], the IVT implies
that there exists d € (z2,x3) such that f(d) = « and thus f(c) = f(d) for some
1 < ¢ < x93 < d < x3 which contradicts the injectivity of f. Therefore f is
either strictly increasing or strictly decreasing. O

Ezercise 17. Let f: [a,b] — R be continuous and injective on [a, b], then f([a, b]
is a closed bounded interval and the inverse of f onto its image, f~*: f([a,b]) —
[a, b], is continuous.

Hint: Show that f~! is strictly monotone using Exercise [L6| and then use Exer-
cise [[4l O

Proof. Note that f is either strictly increasing or strictly decreasing by Exercise
[[6] We will assume that f is strictly increasing as the proof in the case f is
strictly decreasing will follow by similar arguments (or by considering g = —f).
Since f is strictly increasing, we obtain f(a) < f(b). Since f is continuous,
we obtain by the Intermediate Value Theorem that f([a,b]) = [f(a), f(b)]. We
claim that f~! is strictly increasing. To see this, suppose y1,y2 € f([a,b]) are



such that y; < y2. Choose x1,z2 € [a,b] such that f(z1) = y1 and f(z2) = yo.
Since f(x1) < f(z2), it must be the case that x1 < xo as f was strictly increas-
ing. Hence f~(y1) = f~!(f(21)) = z1 < @2 = [~ (f(22)) = f~(y2). Hence
f~1 is strictly increasing. Therefore, f=1: [f(a), f(b)] — [a,b] is a strictly in-
creasing function such that f=1([f(a), f(b)]) = [a,b]. Therefore £~ is continu-
ous by the converse of the Intermediate Value Theorem for monotone functions
as f~! satisfies the conclusions of the Intermediate Value Theorem. O

4 Uniform Continuity

Ezercise 18. Show that the function f(z) = z? is uniformly continuous on
(—1,1) but not on R.

Solution. Let ¢ > 0 and let 6 = §. If z,y € (—1,1) are such that |z —y| <4,
then [2? — y?| = |z — yllz +y| < [z — yl(|z[ + |y|) < 2z —y| < 20 < ¢ and
the function z ~— 22 is uniformly continuous on (—1,1). Now for every n € N,

let @, = n and y, = n — L. Then, |z, —yo| = [n— (n — L) = L but
|72 — 92| = |n2—(n—%)2| = |n2—(n2—2+#)| :2—$ > 1 and f is not
uniformly continuous on R. O

Ezercise 19. Show that the function f(z) = sin(2) is not uniformly continuous
on (0,2).

and y,, = =%—, for all n € N. Then for all n € N,

1
27 (n+1) Z42mn?
1 1 1

_ 1 _ 4
TnyYn € (0,2), and |2, —yn| = Tiomn  2n(ndD) — n(ifAn)  2n(ndD) S Zwm T
o = 7=, but \Sin(i)—sin(yinﬂ = [sin(27(n+1))—sin(54+27mn)| = [0-1] = 1.
Therefore, f is not uniformly continuous on (0, 2) O

Solution. Let x,, =

Ezercise 20. A function f: [a,b] — R is Lipschitz if there exists C' > 0 such
that |f(z1) — f(x2)| < Clzy — 22| for all x1, x5 € [a,b]. Show that f is uniformly
continuous on [a, b].

Hint. Tt is straightforward from the definition. O

Solution. Let € > 0 and let § = &, then if 2,y € [a,b] are such that |z —y[ <4
then |(x) ~ ()| < Cle — | < Cg =< 5

Ezercise 21. Let f: (a,b) — R be uniformly continuous and (x,)%2; a Cauchy

sequence of elements in (a,b). Show that (f(z,))2, is a Cauchy sequence.



Hint. It follows from the definitions. O

Solution. Let (z,)52; be a Cauchy sequence of element in (a,b) and £ > 0.
By uniform continuity of f, there exists § > 0 such that for all x,y € (a,b), if
|z —y| < d then |f(x) — f(y)| < e. Since (x,)22 is Cauchy there exists N € N

such that for all n,m > N, |x,, — z,,| < § and thus |f(z,) — f(zm)] < e. O

Ezercise 22. Let f: (a,b) — R. Show that f is uniformly continuous on (a,b)
if and only if there is a continuous function g¢: [a,b] — R which extends f, i.e.
g satisfies g(x) = f(x) for all = € (a,b).

Hint. Use the previous exercise. O

Solution. Assume that there is a continuous function g: [a,b] — R which ex-
tends f. Then g is uniformly continuous on [a, b] and thus on (a,b) and f being
the restriction of g on (a,b) it is also uniformly continuous on (a,b). Assume
now that f is uniformly continuous on (a,b). Define g: (a,b) — R by g(z) =
f(x). The function g is clearly continuous on (a,b). It remains to show that
lim,_,q+ f(x) and lim,_,;— f(z) exist and are finite and set g(a) = lim,_, .+ f(x)
and ¢(b) = lim,_,;,— f(x) to complete the proof. Let (2,)32; be a sequence in
(a,b) that is convergent to a. Then (z,)52 ; is Cauchy and by the previous exer-
cise (f(zn))22, is also Cauchy. Since every Cauchy sequence of real numbers is
convergent (f(z,))22; converges to some real number £,. At this point we still
need to justify that the limit does not depend on the sequence. Let (z,)2; and
(yn)$2; be sequence in (a,b) that converge to a and such that (f(z,))5; con-
verges to some real number ¢, and (f(yn))ne; converges to some real number £,.
Let = > 0, and note that |6 — (| < €2 — F ()| + |F(za) — £ () |+ | F(3a) — b
But there exists N1 € N such that for all n > Ny, [£, — f(z,)| < §, N2 € N such
that for all n > Na, [€, — f(yn)| < §. There is also N3 € N such that for all
n > N3, [f(zn) — f(yn)| < §. Indeed, since f is uniformly continuous on (a, b)
there exists § > 0 such that if |z —y| < ¢ then |f(z) — f(y)| < §. Let K1 > 1
such that for all n > K1, |, —a| < § and K> > 1 such that |y, —a| < § then
for n > max{K;, K2} one has |z, — y,| < ¢ and thus |f(z,) — f(y.)] < §. So
if N3 = max{Ky, Ko} then for all n > N3, |f(z,) — f(yn)| < §. Therefore, if
n > max{Ny, No, N3}, [€. — £, < §+ 5§+ 5 = ¢e. We just proved that for all
e >0, |, — ¢, < e which implies that ¢, = {,. By sequential characterization
of limits, lim,_,,+ f(x) exists and is finite and we set g(a) = lim,_,,+ f(z). The
case of b is identical. O



5 Applications of the Extreme Value Theorem

Ezercise 23. Let f : [0,1] — R be a continuous function and let € > 0. Prove
that there exists n € N so that for k = 1,...,n we have

n n n

suP{f(x):k_l Sxéi}—inf{f(x):k_lgxgk}<€_

Hint. Use the Extreme Value Value Theorem and uniform continuity. O

Solution. Since f is continuous on [0,1], it is uniformly continuous on [0, 1].
Hence, there exists § > 0, that for all z, y € [0,1] with |x — y| < J, one has
|f(z) — f(y)| < e. By the Archimedean Property, there exists n € N, such that
1/n < §. We will show that this n satisfies the desired property.

Let 1 < k < n. By the Extreme Value Theorem, there exist zg, yo in
(k= 1)/n,k/nl, so that f(zo) = sup{f(z) : =L < = < L} and flyo) =
inf{f(z) : =2 <o < £} As mo,y0 € [(k — 1)/n,k/n], we have |zg — yo| <
1/n < 6 and therefore |f(zo) — f(yo0)| < €. In conclusion,

sup{f(ac)zk_1 <x<§}—inf{f(w):_<x<}

= f(zo) = f(yo) < |f(wo) = flwo)| <e.

For the next exercise we recall the following definition.

Definition 3. Let f : R — R. We say that f diverges to +0o when z tends to
+oo if for all M > 0 there exists zp € R such that for all x > xg, f(z) > M.
And we say that f diverges to 400 when x tends to —oo if for all M > 0 there
exists g € R such that for all z < zg, f(z) > M.

Exercise 24. Let f : R — R be a continuous function and assume that

lim f(z)= lim f(z)=+o0.

r—+00 T——00
Prove that there exists z,, € R such that f(z,,) = inf{f(z) : z € R}.
Hint. Use the Extreme Value Value Theorem. O

Solution. Let yo = f(0). Since lim,_,_ f(z) = 400, there exists z; € R such
that for all x < x1, f(z) > yo and since lim, ,~ f(xz) = +oo, there exists
2 € R such that and for all > 3, f(z) > yo. One can clearly assume
that 1 < x2 and f being continuous on the sequentially compact interval
[x1,x2], by the EVT f attains its minimum, say ¢t € R, at z; € [z1,22]. Let
m = min{yo, t} = min{f(0),¢}, then for all z € R, f(x) > m and there exists



T € R such that f(2,,) = m. Indeed, if ¢ < f(0) then m = ¢ and we simply
take x,, to be x;. Otherwise, t > f(0) and m = f(0) and we take z,, to be
0. It remains to check that m is actually the infimum of f. Note that m is
a lower bound. Assume that r is another lower bound, i.e. for all z € R,
f(z) > r, then m = f(z,,) > r and m > r. By definition of the infimum,
m = inf{f(x): v € R}. O

6 Pathological functions

We start with a preliminary result that will be needed in a later exercise.

Ezercise 25 (Density of the irrationals in the reals). 1. Prove that /2 is ir-
rational.

2. Prove that the irrational are dense in R, i.e. for every real number x < y
there exists & € R\ Q so that x < o < y.

Hint. For (2) use (1). O
Solution. 1. By contradiction.

2. Let z < y. Then % < % and by the density of the rational in R, there

exists ¢ € Q such that % <q< % and z < v2¢ < y. Let o = v/2¢ then

a € R\ Q (why?) and the conclusion follows.
O

Ezercise 26 (A function discontinuous everywhere). The Dirichlet function is
defined on R by
{ 1 ifzeQ

Xol@) =1 if xR\ Q.

Prove that every point 2 € R is a point of discontinuity of xq.

Hint. Use the density of the irrationals to prove that every rational is a point
of discontinuity. Use the density of the rationals to prove that every irrational
is a point of discontinuity. O

Solution. Let x € Q. By density of the irrationals in R, for every § > 0, there
exists y € R\ Q such that z —§ <y <z +J but |xo(y) — xo(z)| =10—1] = 1.
Therefore xg is not continuous at any rational point.
Let € R\ Q. By density of the rationals in R, for every § > 0, there exists
y € Q such that © — 0 <y < x4+ d but |xo(y) — xo(z)| = |1 — 0] = 1. Therefore
X is not continuous at any irrational point.
O

10



Ezercise 27 (A function discontinuous at every rational point but continuous at
every irrational in (0,1)). Let g be the Thomae’s function, defined on R by

ifzeR\Q
if x =0,
if =% €Q\{0} (in reduced form).

g(x) =

Q== O

Prove that g is discontinuous at every rational point but continuous at every
irrational in (0, 1).

Hint. Use the density of the irrationals to prove discontinuity at every rational.
To prove continuity at every irrational in (0,1) consider the set F' = {%: 0<
g <1 and 2 < g < N} for some well chosen N. O

Solution. Assume r = £ € Q (in reduced form with ¢ > 1). Then for every
d > 0, there exists y € R\ Q such that r —§ < y <7+ ¢ but |g(y) — g(r)| =
|0 — é| = 1> 0. Therefore g is not continuous at any rational point.

Now if zp € (R\Q)N(0,1). We will show that lim,_,,, g(x) = 0 and hence g
will be continuous at any irrational point in (0, 1) since by definition g(xg) = 0.
Let € > 0, then by the Archimedean Principle there exists N € N such that
+ < e. Define F = {£:0< 2 <1land2<q< N} Remark that F'is finite,

indeed F = {%, %, %, el %, %, ce %} Therefore 6 = min{|xg — 2| : z € F}
exists and it is strictly positive. We will show that it is the desired number.
Let 2 € (0,1) with |z — o] < 4, with 2 # zy. We will show that |f(z)| < e.
If z is irrational, then by definition f(z) = 0 and hence the conclusion holds.
Otherwise, x is rational, and then x = §~ We will show that ¢ > N. If this
were not the case, then x € {% :0 < % < land 2 < ¢ < N} = F and therefore
| — o] = min{|zo — 2| : 2 € F'} = 4, which is absurd. We finally conclude that
|f(@)| =11/l <1/N <e.
O

Ezercise 28 (A function discontinuous at every rational point but continuous
at every irrational point). Let Q = {g, : n € N} be an enumeration of the set
of rational numbers (i.e. for each ¢ € Q there is exactly one n € N such that
q=¢qn). Let f: R — R be the function defined by the rule

f(x):{ 0 ifzeR\Q

% ifx € Qand z = q,.

Prove that f is continuous at « if and only if z € R\ Q.

Hint. Show that for all g € R\ Q we have lim,_,,, f(z) = 0. You might want
to consider the set Fiy = {g, : 1 < n < N} for some well chosen N. O
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Solution. We will show that for all 29 € R\ Q we have lim,_,,, f(z) = 0. By
the definition of f, this will yield that f(z¢) = lim,_,., f(z) and thus f will be
continuous at every irrational point.

Fix 29 € R\ Q and let £ > 0. We will find 6 > 0 so that for all x € R with
0 < |z —xo| < § we have |f(x) — 0] < e. By the Archimedean property of R,
there exists N € N with N € Nand 0 < 1/N <e.

Define Fy = {g, : 1 < n < N}. Then Fy is a non-empty finite set not
containing zy and therefore 6 = min{|zo — 2| : z € Fn} exists and it is strictly
positive. We will show that it is the desired number.

Let z € R with 0 < |z — 29| < 0, in particular x # zy. We will show
that |f(x)| < e. If x is irrational, then by definition f(z) = 0 and hence the
conclusion holds. Otherwise, z is rational and hence there exists a unique index
m with © = ¢q,,,. We will show that m > N. If this were not the case, then
z € {qn:1<n<NIN(R\{x0}) = F and therefore |x —x¢| > min{|zo—2|: z €
F} =6, which is absurd. We finally conclude that |f(z)| =|1/m| < 1/N < e.

It remains to prove discontinuity at every rational point. Let x € Q then
x = qp for some n € N. Then for every § > 0, there exists y € R\ Q such that
-0 <y<wz+4 (by density of the irrationals) but |g(y) — g(z)] = |0 — 1| =
% > 0. Therefore g is not continuous at any rational point. O
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