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1 Differentiability

Exercise 1. Let x0 ∈ (a, b) and f, g : (a, b)→ R differentiable at x0. Show that
f + g is differentiable at x0 and (f + g)

′
(x0) = f

′
(x0) + g

′
(x0).

Hint. Exploit the definition.

Exercise 2. Let λ ∈ R, x0 ∈ (a, b) and f, g : (a, b) → R differentiable at x0.
Show that λf is differentiable at x0 and (λf)

′
(x0) = λf

′
(x0).

Hint. Exploit the definition.

Exercise 3. Let x0 ∈ (a, b) and f, g : (a, b)→ R differentiable at x0. Show that
f · g is differentiable at x0 and (f · g)

′
(x0) = f

′
(x0)g(x0) + f(x0)g

′
(x0).

Hint. Exploit the definition.

Exercise 4. Let f : [a, b]→ R be continuous and injective on [a, b]. Let g : f([a, b])→
[a, b] be the inverse of f onto its image. Show that if x0 ∈ (a, b) and f
is differentiable at x0 with f

′
(x0) 6= 0, then g is differentiable at f(x0) and

g
′
(f(x0)) = 1

f ′ (x0)
.

Hint: Use the sequential characterization limit and the fact the g is continuous.
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Exercise 5. Let f : R → R be a periodic function with period T ∈ R (i.e.
f(x) = f(x + T ) for all x ∈ R). If f is differentiable, show that f ′ is periodic
with period T .

Hint: Exploit the definition of differentiability together with the periodicity
property.

2 Differentiability and uniform continuity

There are functions that are differentiable on some interval but not uniformly
continuous. Under certain circumstances uniform continuity can be proven from
differentiability and various addictional assumptions. Here are two examples.

Exercise 6. Let f : R → R be a differentiable function. If f ′ : R → R is
bounded, show that f is uniformly continuous.

Hint: You could show that f is Lipschitz.

Exercise 7. Let f, g : R→ R be differentiable functions so that g′(x) 6= 0 for all
x ∈ R and and the function h : R → R with h(x) = f ′(x)/g′(x) is bounded. If
g is uniformly continuous, show that f is uniformly continuous as well.

Hint: You could observe (and justify) that |f(x)−f(y)| = |f(x)−f(y)|
|g(x)−g(y)| |g(x)−g(y)|

and use Cauchy’s mean value theorem.

3 Applications of the Mean Value Theorem

Exercise 8. Let f : (a, b)→ R. If f is differentiable on (a, b) with f
′
(x) = 0 for

all x ∈ (a, b), show that there exists α ∈ R such that f(x) = α for all x ∈ (a, b).

Hint. Use the Mean Value Theorem.

Exercise 9 (Decreasing function test). Let f : [a, b]→ R be continuous on [a, b]
and differentiable on (a, b). If f

′
(x) ≤ 0 for all x ∈ (a, b), then f is decreasing

on [a, b]. If f
′
(x) < 0 for all x ∈ (a, b), then f is strictly decreasing on [a, b].

Hint: Mimic the proof of the increasing function test.

Exercise 10 (First Derivative Test (existence of local maxima)). Let f : (a, b)→
R be differentiable on (a, b). Suppose c ∈ (a, b) has the property that there
exists δ > 0 such that
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1. f
′
(x) exists and f

′
(x) ≥ 0 for all x ∈ (c− δ, c) ⊆ (a, b), and

2. f
′
(x) exists and f

′
(x) ≤ 0 for all x ∈ (c, c+ δ) ⊆ (a, b).

Show that f has a local maximum at c.

Hint: Mimic the proof of the First Derivative Test (existence of local minima).

Exercise 11 (Taylor’s Theorem for n = 2.). Let x0 ∈ (a, b) and f : (a, b) → R.
If f is 3 times differentiable on (a, b) and if x ∈ (a, b) \ {x0}, then there exists
cx ∈ (a, b) \ {x0} such that

f(x) = f(x0) + f
′
(x0)(x− x0) +

f
′′
(x0)

2
(x− x0)2 +

f (3)(cx)

6
(x− x0)3.

Hint. Consider the functions g(t) = f(x) − f(t) − f ′(t)(x − t) − f
′′
(t)
2 (x − t)2

and h(t) = g(t)− ( x−t
x−x0

)3g(x0) and apply Rolle’s Theorem.

Exercise 12. If 0 < α ≤ 1, show that (1 + x)α ≤ 1 + αx for all x ∈ [−1,∞).

Hint. Consider the function f(t) = tα, t ∈ [0,∞).

Exercise 13. If α ≥ 1, show that (1 + x)α ≥ 1 + αx for all x ∈ [−1,∞).

Hint. Consider the function f(t) = tα, t ∈ [0,∞).

4 Other applications

Exercise 14 (Bernoulli’s Inequality and approximation of e). Let α be a positive
real number.

1. Let (xn)∞n=1 be the sequence where xn = (1 + 1
n )n for all n ∈ N. Show

that (xn)∞n=1 is increasing.

2. Show that (xn)∞n=1 is bounded above by 3.

3. Show that (xn)∞n=1 is convergent to ` ∈ [2, 3].

4. Show that limx→0+
ln(1+x)

x = 1.
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5. Show that limn→∞(1 + 1
n )n = e.

Hint. 1. You could use Exercise 12 with x = 1
n and α = n

n+1 .

2. You could use the Binomial Formula (x+ y)n =
∑n
k=0

(
n
k

)
xkyn−k and the

fact that 1
k! ≤

1
2k−1 .

3. You could use (1) and (2).

4. You could use L’Hôpital’s Rule.

5. You could use the sequential characterization of limits and (4).

The next exercise is Darboux’s Theorem, which can be seen as an interme-
diate value theorem for derivatives (which might not be continuous!).

Exercise 15 (Darboux’s Theorem). Let f : [a, b]→ R be a differentiable function
with f ′(a) < f ′(b). Show that for all y ∈ (f ′(a), f ′(b)) there exists c ∈ (a, b)
such that y = f ′(c).

Hint. You could consider the function ϕ(t) = f(t) − ty, and invoke the EVT,
together with Fermat’s Theorem.

Exercise 16. Let f : (a, b) → R be a differentiable function, x0 ∈ (a, b), and
λ ∈ R. If lim

x→x0

f ′(x) = λ, prove that f ′ is continuous at x0 and f ′(x0) = λ.

Hint. You could use Darboux’s Theorem.
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