REAL ANALYSIS MATH 607 HOMEWORK 4

Problem 1. (5 points) If $E \in \mathscr{L}(\mathbb{R})$ (the Lebesgue σ-algebra) and $\lambda(E)>0$ (λ is the Lebesgue measure), show that there is for any $\alpha \in(0,1)$ an open interval I such that $\lambda(E \cap I)>\alpha \lambda(I)$.

Hint: First show that you can assume that E has finite measure and then use the definition of the Lebesgue measure as an outer measure.

Problem 2. (15 points) Let

$$
\mathcal{A}^{(\mathbb{Q})} \stackrel{\operatorname{def}}{=}\left\{\begin{array}{l}
\left.\bigcup_{i=1}^{n}\left[a_{i}, b_{i}\right) \cap \mathbb{Q}: \begin{array}{c}
n \in \mathbb{N},\left\{a_{i}, b_{i}: 1 \leqslant i \leqslant n\right\} \subset \mathbb{Q} \cup\{ \pm \infty\} \\
\text { and } a_{1}<b_{1}<a_{2}<\ldots b_{n}
\end{array}\right\} . ~ . . ~ . ~
\end{array}\right.
$$

For $A=\bigcup_{i=1}^{n}\left[a_{i}, b_{i}\right) \cap \mathbb{Q}$ with $-\infty \leqslant a_{1}<b_{1}<a_{2}<\ldots b_{n} \leqslant \infty$ put

$$
\mu_{0}(A) \stackrel{\text { def }}{=} \sum_{i=1}^{n}\left(b_{i}-a_{i}\right) .
$$

(a) (5 points) Show that $\mathcal{A}^{(\mathbb{Q})}$ is an algebra on \mathbb{Q}
(b) (5 points) Show that μ_{0} is a finitely additive measure on $\mathcal{A}^{(\mathbb{Q})}$.
(c) (5 points) Show that μ_{0} is not a premeasure.

Problem 3. (20 points) Let μ be a finite measure on $(\mathbb{R}, \mathscr{B}(\mathbb{R})$). Given $A \in \mathscr{B}(\mathbb{R})$, show that for all $\varepsilon>0$, there exist K compact and U open such that $K \subset A \subset U$, and $\mu(U \backslash K)<\varepsilon$.

Hint: Introduce the set

$$
\mathcal{D} \stackrel{\text { def }}{=}\{A \in \mathscr{B}(\mathbb{R}): \forall \varepsilon>0, \exists K \text { compact, } \exists U \text { open, } K \subset A \subset U, \mu(U \backslash K)<\varepsilon\} .
$$

Problem 4. (20 points)
(1) (10 points) Let $A \in \mathscr{L}(\mathbb{R})$ be bounded. Suppose there is a bounded countably infinite set $\Gamma \subset \mathbb{R}$ for which $\{\gamma+A\}_{\gamma \in \Gamma}$ is a disjoint collection. Show that $\lambda(A)=0$.
(2) (10 points) Show that any set $A \subset \mathbb{R}$ with $\lambda(A)>0$ contains a subset B that is not in $\mathscr{L}(\mathbb{R})$.

Problem 5 (Cardinality of $\mathscr{L}(\mathbb{R})$). (20 points) Let $\mathscr{L}(\mathbb{R})$ be the collection of Lebesgue sets.
(1) (5 points) Show that if there exists a Borel set C with $\operatorname{card}(C)=\operatorname{card}(\mathbb{R})$ and $\lambda(C)=0$, then $\operatorname{card}(\mathscr{L}(\mathbb{R}))=$ $\operatorname{card}(\mathscr{P}(\mathbb{R}))$
(2) (15 points) Construct a Borel set C such that $\operatorname{card}(C)=\operatorname{card}(\mathbb{R})$ and $\lambda(C)=0$.

Hint: You might want to look at Cantor middle-third set.

Problem 6 (One-dimensional Lyapunov theorem). (20 points) Let (X, \mathcal{M}, μ) be a measure space. We say that $A \in \mathcal{M}$ is an atom, if it satisfies the two properties below:
(1) $\mu(A)>0$.
(2) If $A=A_{1} \cup A_{2}$, with $A_{1}, A_{2} \in \mathcal{M}$ disjoint, then $\mu\left(A_{1}\right)=0$ or $\mu\left(A_{2}\right)=0$.

Assume now that (X, \mathcal{M}, μ) is an atomless measure space, i.e. there are no atoms, with $\mu(X)=1$. Show that for all $r \in[0,1]$ there exists $A \in \mathcal{M}$ such that $\mu(A)=r$.

Hint: A solution of the problem goes along the following lines:
(a) Show that for all $A \in \mathcal{M}$ with $\mu(A)>0$ there exists $B \in \mathcal{M}$ satisfying $B \subset A$ and $0<\mu(B)<\mu(A)$.
(b) Show that for all $A \in \mathcal{M}$ with $\mu(A)>0$ and all $\varepsilon>0$ there exists a measurable set $B \subset A$ such that $0<\mu(B)<\varepsilon \mu(A)$.
(c) Show that if $A \in \mathcal{M}$, then there is a measurable subset $B \subset A$, so that $\mu(A) / 3 \leqslant \mu(B) \leqslant \mu(A) / 2$
(d) Show that for each $0 \leqslant r \leqslant 1 / 2$, each $A \in \mathcal{M}$, and each measurable subset $B \subset A$ with $\mu(B) \geqslant \mu(A) / 2$ there is a measurable subset $C \subset B$ with $r \mu(A) / 3 \leqslant \mu(C) \leqslant r \mu(A)$.
(e) Show that for each $A \in \mathcal{M}$, there exists a sequence $\left(B_{n}\right)_{n \geqslant 1}$ of measurable disjoint subsets of A such that for all $n \geqslant 1, \mu\left(\bigcup_{i=1}^{n} B_{i}\right) \leqslant \mu(A) / 2$ and $\mu\left(B_{n}\right) \geqslant \frac{1}{3}\left[\mu(A) / 2-\mu\left(\bigcup_{i=1}^{n-1} B_{i}\right)\right]$.
(f) Show that for all $A \in \mathcal{M}$ there exists $B \subset A$ such that $\mu(B)=\mu(A) / 2$
(g) Show that there exists a collection $\left\{A_{n}\right\}_{n \geqslant 1}$ of disjoint sets satisfying $\mu\left(A_{n}\right)=2^{-n}$.
(h) Show that for all $r \in[0,1]$ there exists $A \in \mathcal{M}$ such that $\mu(A)=r$.

Hint:[For the hints!]
$(b),(e),(g)$: use recursive procedures.
(c): Observe that is it sufficient to find a set such that $\mu(A) / 3 \leqslant \mu(B) \leqslant 2 \mu(A) / 3$ and proceed by contradiction by considering the parameter $r \stackrel{\text { def }}{=} \sup \{\mu(B): B \in \mathcal{M}, B \subset A, \mu(B) \leqslant \mu(A) / 3\}$. (d): use (c)

