REAL ANALYSIS MATH 607 HOMEWORK 4

Problem 1. (5 points) If $E \in \mathscr{L}(\mathbb{R})$ (the Lebesgue σ -algebra) and $\lambda(E) > 0$ (λ is the Lebesgue measure), show that there is for any $\alpha \in (0, 1)$ an open interval I such that $\lambda(E \cap I) > \alpha \lambda(I)$.

Hint: First show that you can assume that *E* has finite measure and then use the definition of the Lebesgue measure as an outer measure.

Problem 2. (15 points) Let

$$\mathcal{A}^{(\mathbb{Q})} \stackrel{\text{def}}{=} \left\{ \bigcup_{i=1}^{n} [a_i, b_i) \cap \mathbb{Q} : \frac{n \in \mathbb{N}, \{a_i, b_i : 1 \leq i \leq n\} \subset \mathbb{Q} \cup \{\pm \infty\}}{and \ a_1 < b_1 < a_2 < \dots b_n} \right\}.$$

For $A = \bigcup_{i=1}^{n} [a_i, b_i) \cap \mathbb{Q}$ with $-\infty \leq a_1 < b_1 < a_2 < \dots > b_n \leq \infty$ put

$$\mu_0(A) \stackrel{\text{def}}{=} \sum_{i=1}^n (b_i - a_i).$$

(a) (5 points) Show that $\mathcal{A}^{(\mathbb{Q})}$ is an algebra on \mathbb{Q}

(b) (5 points) Show that μ_0 is a finitely additive measure on $\mathcal{R}^{(\mathbb{Q})}$.

(c) (5 points) Show that μ_0 is **not** a premeasure.

1.6 (

Problem 3. (20 points) Let μ be a finite measure on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$. Given $A \in \mathscr{B}(\mathbb{R})$, show that for all $\varepsilon > 0$, there exist K compact and U open such that $K \subset A \subset U$, and $\mu(U \setminus K) < \varepsilon$.

Hint: Introduce the set

$$\mathcal{D} \stackrel{\text{def}}{=} \Big\{ A \in \mathscr{B}(\mathbb{R}) : \forall \varepsilon > 0, \exists K \text{ compact}, \exists U \text{ open}, K \subset A \subset U, \mu(U \setminus K) < \varepsilon \Big\}.$$

Problem 4. (20 points)

- (1) (10 points) Let $A \in \mathscr{L}(\mathbb{R})$ be bounded. Suppose there is a bounded countably infinite set $\Gamma \subset \mathbb{R}$ for which $\{\gamma + A\}_{\gamma \in \Gamma}$ is a disjoint collection. Show that $\lambda(A) = 0$.
- (2) (10 points) Show that any set $A \subset \mathbb{R}$ with $\lambda(A) > 0$ contains a subset B that is not in $\mathcal{L}(\mathbb{R})$.

Problem 5 (Cardinality of $\mathscr{L}(\mathbb{R})$). (20 points) Let $\mathscr{L}(\mathbb{R})$ be the collection of Lebesgue sets.

- (1) (5 points) Show that if there exists a Borel set C with $\operatorname{card}(C) = \operatorname{card}(\mathbb{R})$ and $\lambda(C) = 0$, then $\operatorname{card}(\mathscr{L}(\mathbb{R})) = \operatorname{card}(\mathscr{P}(\mathbb{R}))$
- (2) (15 points) Construct a Borel set C such that $\operatorname{card}(C) = \operatorname{card}(\mathbb{R})$ and $\lambda(C) = 0$.

Hint: You might want to look at Cantor middle-third set.

Problem 6 (One-dimensional Lyapunov theorem). (20 points) Let (X, \mathcal{M}, μ) be a measure space. We say that $A \in \mathcal{M}$ is an atom, if it satisfies the two properties below:

- (1) $\mu(A) > 0.$
- (2) If $A = A_1 \cup A_2$, with $A_1, A_2 \in \mathcal{M}$ disjoint, then $\mu(A_1) = 0$ or $\mu(A_2) = 0$.

Assume now that (X, \mathcal{M}, μ) is an atomless measure space, i.e. there are no atoms, with $\mu(X) = 1$. Show that for all $r \in [0, 1]$ there exists $A \in \mathcal{M}$ such that $\mu(A) = r$.

Hint: A solution of the problem goes along the following lines:

- (a) Show that for all $A \in \mathcal{M}$ with $\mu(A) > 0$ there exists $B \in \mathcal{M}$ satisfying $B \subset A$ and $0 < \mu(B) < \mu(A)$.
- (b) Show that for all $A \in \mathcal{M}$ with $\mu(A) > 0$ and all $\varepsilon > 0$ there exists a measurable set $B \subset A$ such that $0 < \mu(B) < \varepsilon \mu(A)$.
- (c) Show that if $A \in \mathcal{M}$, then there is a measurable subset $B \subset A$, so that $\mu(A)/3 \leq \mu(B) \leq \mu(A)/2$
- (d) Show that for each $0 \le r \le 1/2$, each $A \in \mathcal{M}$, and each measurable subset $B \subset A$ with $\mu(B) \ge \mu(A)/2$ there is a measurable subset $C \subset B$ with $r\mu(A)/3 \le \mu(C) \le r\mu(A)$.
- (e) Show that for each $A \in \mathcal{M}$, there exists a sequence $(B_n)_{n \ge 1}$ of measurable disjoint subsets of A such that for all $n \ge 1$, $\mu(\bigcup_{i=1}^{n} B_i) \le \mu(A)/2$ and $\mu(B_n) \ge \frac{1}{3}[\mu(A)/2 \mu(\bigcup_{i=1}^{n-1} B_i)]$.
- (f) Show that for all $A \in \mathcal{M}$ there exists $B \subset A$ such that $\mu(B) = \mu(A)/2$
- (g) Show that there exists a collection $\{A_n\}_{n \ge 1}$ of disjoint sets satisfying $\mu(A_n) = 2^{-n}$.
- (h) Show that for all $r \in [0, 1]$ there exists $A \in \mathcal{M}$ such that $\mu(A) = r$.

Hint:[For the hints!]

(b), (e), (g): use recursive procedures.

(*c*): Observe that is it sufficient to find a set such that $\mu(A)/3 \le \mu(B) \le 2\mu(A)/3$ and proceed by contradiction by considering the parameter $r \stackrel{\text{def}}{=} \sup\{\mu(B) \colon B \in \mathcal{M}, B \subset A, \mu(B) \le \mu(A)/3\}$.

(*d*): use (*c*)