REAL ANALYSIS MATH 607 HOMEWORK 5

Problem 1. (30 points) Throughout this problem let $f: X \to Y$ be a function.

- (1) (5 points) If \mathcal{M} is a σ -algebra on X, is it true that $f(\mathcal{M}) \stackrel{\text{def}}{=} \{f(A) : A \in \mathcal{M}\}$ is a σ -algebra on Y?
- (2) (5 points) (Pushforward or direct-image σ -algebra) If \mathcal{M} is a σ -algebra on X, show that $\Sigma \stackrel{\text{def}}{=} \{B \subset Y : f^{-1}(B) \in \mathcal{M}\}$ is a σ -algebra on Y.
- (3) (5 points) (Transport Lemma) Let $\mathscr{C} \subset \mathscr{P}(Y)$. Show that $f^{-1}(\mathcal{M}(\mathscr{C})) = \mathcal{M}(f^{-1}(\mathscr{C}))$.
- (4) (5 points) Let \mathcal{M}_X be a σ -algebra on X and $\mathscr{C} \subset \mathscr{P}(Y)$. Use the transport lemma to show that f is $(\mathcal{M}_X, \mathcal{M}(\mathscr{C}))$ -mesurable if $f^{-1}(\mathscr{C}) \subset \mathcal{M}_X$.
- (5) (5 points) (Trace σ -algebra) Show that if $X \subset Y$, \mathcal{M} is a σ -algebra on Y, and f is the identity function, then $f^{-1}(\mathcal{M}) = \{X \cap A : A \in \mathcal{M}\}.$
- (6) (5 points) Show that if $X = Y \times Z$, \mathcal{M} is a σ -algebra on Y, and f is the canonical projection from $Y \times Z$ onto Y (i.e., f(y, z) = y), then $f^{-1}(\mathcal{M}) = \{A \times Z : A \in \mathcal{M}\}$.

Problem 2. (15 points) Let $f, g: (X, \mathcal{M}) \to (\mathbb{R}, \mathscr{B}(\mathbb{R}))$ be measurable and $\alpha \in \mathbb{R}$.

- (1) (1 points) Show that $\alpha \cdot f$ is measurable.
- (2) (2 points) Show that f^2 is measurable.
- (3) (7 points) Show that f + g is measurable.
- (4) (5 points) Show that $f \cdot g$ is measurable.

Hint: For (3) us the density of the rationals.

Problem 3. (15 points)

- (1) (5 points) For all $n \ge 1$, let $f_n: (X, \mathcal{M}) \to (\overline{\mathbb{R}}, \mathscr{B}(\overline{\mathbb{R}}))$ be measurable. Show that $\inf_n f_n$, $\sup_n f_n$ and $\limsup_n f_n$ are measurable.
- (2) (5 points) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. Show that f' is a Borel function.
- (3) (5 points) For all $n \ge 1$, let $f_n: (X, \mathcal{M}) \to (\overline{\mathbb{R}}, \mathscr{B}(\overline{\mathbb{R}}))$ be measurable. Show that $L \stackrel{\text{def}}{=} \{x \in X : \lim_{n \to \infty} f_n(x) \in \overline{\mathbb{R}}\} \in \mathcal{M}$. What measurability property can you deduce for the map $g: L \to \overline{\mathbb{R}}$ defined by $g(x) = \lim_{n \to \infty} f_n(x)$?

Problem 4. (20 points) Assume (X, \mathcal{M}, μ) is a complete measure space.

- (a) (10 points) If $f: (X, \mathcal{M}, \mu) \to \mathbb{R}$ is measurable and $f = g \mu$ -almost everywhere (i.e. $\mu(\{f \neq g\}) = 0$ and we simply write μ -a.e.), then g is also measurable.
- (b) (10 points) If $f_n: (X, \mathcal{M}, \mu) \to \mathbb{R}$ is measurable for $n \in \mathbb{N}$, and $\lim_{n\to\infty} f_n = f \mu$ -a.e., then f is measurable.

Problem 5. (Approximation of Borel functions by step functions) (20 points)

(1) (8 points) Let $A \in \mathscr{B}(\mathbb{R})$ with finite Lebesgue measure. Show that for all $\varepsilon > 0$ there exists a subset a finite collection of disjoint open intervals $\{I_i\}_{i=1}^k$ such that $\lambda(A\Delta \cup_{i=1}^k I_i) \leq \varepsilon$.

- (2) (4 points) Let $A \in \mathscr{B}(\mathbb{R})$ with finite Lebesgue measure. Show that for all $\varepsilon > 0$ there exists a measurable subset $N_{\varepsilon} \subset \mathbb{R}$ with $\lambda(N_{\varepsilon}) \leq \varepsilon$ and a step function $\psi_{\varepsilon} \colon \mathbb{R} \to \mathbb{R}$ such that $\psi_{\varepsilon}(x) = \mathbf{1}_{A}(x)$ for all $x \notin N_{\varepsilon}$.
- (3) (4 points) Show that for any measurable simple function $\varphi \colon \mathbb{R} \to \mathbb{R}$ with finite support, i.e $\lambda(\{\varphi \neq 0\}) < \infty$ and any $\varepsilon > 0$ there exists a Borel subset N_{ε} with $\lambda(N_{\varepsilon}) \leq \varepsilon$ and a step function ψ_{ε} such that $\psi_{\varepsilon}(x) = \varphi(x)$ for all $x \notin N_{\varepsilon}$.
- (4) (4 points) Show that for any measurable function $f : \mathbb{R} \to \overline{\mathbb{R}}$ there exists a sequence of step functions that converges a.e. to f.

Hint: For (4) use a truncation argument to reduce the problem to simple functions with finite support.