REAL ANALYSIS MATH 607 HOMEWORK #6

Problem 1 (20 points). Let (X, \mathcal{M}, μ) be a measure space such that $\mu(X) = 1$.

- (1) (5 points) Show that $\mu(A \cap B) \mu(A)\mu(B) \leq \min\{\mu(A)(1-\mu(B)), \mu(B)(1-\mu(A))\}$.
- (2) (7 points) Show that $\mu(A)\mu(B) \mu(A \cap B) \leq \min\{\mu(A)(1-\mu(A)), \mu(B)(1-\mu(B))\}$.
- (3) (8 points) Show that $|\mu(A \cap B) \mu(A)\mu(B)| \le \sqrt{\mu(A)(1 \mu(A))\mu(B)(1 \mu(B))} \le \frac{1}{4}$.

Problem 2 (15 points). Let $f: X \to (\mathbb{R}, \mathscr{B}(\mathbb{R}))$ and $\mathcal{M}(f) \stackrel{\text{def}}{=} f^{-1}(\mathscr{B}(\mathbb{R}))$ the smallest σ -algebra that makes f measurable.

- (1) (2 points) Let $h: \mathbb{R} \to \mathbb{R}$ be a Borel map. Show that $g \stackrel{\text{def}}{=} h \circ f$ is $(\mathcal{M}(f), \mathscr{B}(\mathbb{R}))$ -measurable.
- (2) (13 points) Show that if $g: (X, \mathcal{M}(f)) \to (\mathbb{R}, \mathscr{B}(\mathbb{R}))$ is measurable, then there exists a Borel map h such that $g = h \circ f$.

Problem 3 (20 points). For all $n \ge 1$, let $f_n: (X, \mathcal{M}, \mu) \to [0, \infty]$ be measurable.

(1) (10 points) Show that $\int_X \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} \int_X f_n d\mu$. (2) (10 points) Let $(a_{n,m})_{n \in \mathbb{N}, m \in \mathbb{N}} \subset [0, \infty)$. Show that $\sum_{n=1}^{\infty} \sum_{i=1}^{\infty} a_{n,m} = \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} a_{n,m}$.

Problem 4 (20 points). For all $n \ge 1$, let $f_n: (X, \mathcal{M}, \mu) \to [0, \infty]$ be measurable and such that $\{f_n\}_n$ decreases pointwise to f, and $\int_X f_1 d\mu < \infty$. Show that $\int_X f d\mu = \lim_{n \to \infty} \int_Y f_n d\mu$.

Problem 5 (25 points). Let $-\infty < a < b < \infty$ and $f: [a,b] \to \mathbb{R}$. Recall that f is Riemann integrable if and only if there exist step functions $\{\phi_n\}_{n\geq 1}$ and $\{\psi_n\}_{n\geq 1}$ on [a,b] such that

- (1) $\forall n \ge 1, |\phi_n f| \le \psi_n$,
- (2) $\lim_{n \to \infty} \int_{a}^{b} \psi_n(x) dx = 0,$

and the Riemann integral of f is given by $\int_a^b f(x) dx \stackrel{\text{def}}{=} \lim_{n \to \infty} \int_a^b \phi_n(x) dx$.

- (1) (10 points) Show that if $f: [a,b] \to \mathbb{R}$ is Riemann integrable, then f is Lebesgue measurable and that $\int_{a}^{b} f(x)dx = \int_{[a,b]} fd\lambda$, where λ is the Lebesgue measure. (2) (15 points) Show that

$$\lim_{n \to \infty} \int_0^n \left(1 - \frac{x}{n}\right)^n e^{\alpha x} dx = \int_{[0,\infty)} e^{(\alpha - 1)x} d\lambda(x).$$

Hint: For (1), you might want to introduce $\alpha_n \stackrel{\text{def}}{=} \phi_n - \psi_n$, $\beta_n \stackrel{\text{def}}{=} \phi_n + \psi_n$, $\tilde{\alpha}_n \stackrel{\text{def}}{=} \max\{\alpha_1, \dots, \alpha_n\}$, and $\tilde{\beta}_n \stackrel{\text{def}}{=} \min\{\beta_1, \dots, \beta_n\}.$