REAL ANALYSIS MATH 607 HOMEWORK #7

Problem 1 (20 points).

- (1) (5 points) Let $\{x_n\}_{n=1}^{\infty} \subset \mathbb{R}$. Show that $\liminf_n (-x_n) = -\limsup_n x_n$.
- (2) (5 points) Show that if for all $n \ge 1$, $f_n: (X, \mathcal{M}, \mu) \to \overline{\mathbb{R}}$ are measurable functions such that $f_n \ge 0$ μ -a.e., then

$$\int_X \liminf_n f_n d\mu \leq \liminf_n \int_X f_n d\mu.$$

- (3) (5 points) (Scheffé's Theorem) Let $(f_n)_n \subset \mathscr{L}^1_{\mathbb{R}}(X, \mathcal{M}, \mu)$ that converges μ -a.e. to $f \in \mathscr{L}^1_{\mathbb{R}}(X, \mathcal{M}, \mu)$ and such $\lim_n \int_X f_n d\mu = \int_X f d\mu$. Show that if for all $n \ge 1$, $f_n \ge 0 \mu$ -a.e. then $\lim_n \int_X |f_n - f| d\mu = 0$.
- (4) (5 points) Does Scheffé's Theorem remain true if the functions are not nonnegative μ -a.e.?

Problem 2 (15 points). Let $f : \mathbb{R} \to \mathbb{R}$ be Lebesgue integrable and λ denote the Lebesgue measure (i.e. $f \in \mathcal{L}^1(\lambda)$).

- (1) (5 points) Show that for all $a \in \mathbb{R}$, the map $\tau_a(f) \colon \mathbb{R} \to \mathbb{R}$, defined by $x \mapsto f(x+a)$ is Lebesgue measurable and $\int_{\mathbb{R}} \tau_a(f) d\lambda = \int_{\mathbb{R}} f d\lambda$.
- (2) (5 points) Show that for any $A \in \mathscr{L}(\mathbb{R})$ and $c \neq 0$, $\lambda(cA) = |c|\lambda(A)$.
- (3) (5 points) Show that for all $c \neq 0$, the map $\delta_c(f) \colon \mathbb{R} \to \mathbb{R}$, defined by $x \mapsto f(cx)$ is Lebesgue measurable and $\int_{\mathbb{R}} \delta_c(f) d\lambda = \frac{1}{|c|} \int_{\mathbb{R}} f d\lambda$.

Problem 3 (20 points).

- (1) (10 points) Show the following version of the Dominated Convergence Theorem. For all $n \ge 1$, let $f_n: (X, \mathcal{M}, \mu) \to \mathbb{R}$ be measurable functions satisfying :
 - (a) $(f_n)_n$ converges pointwise μ -a.e..
 - (b) There exists a map $g \in \mathscr{L}^{1}_{\mathbb{R}_{+}}(X, \mathcal{M}, \mu)$ such that for all $n \ge 1$, $|f_{n}| \le g \mu$ -a.e..

Then, there exists $f \in \mathscr{L}^1_{\mathbb{R}}(X, \mathcal{M}, \mu)$ such that

(i) $f_n \xrightarrow{p.w.} f \mu$ -a.e..

(*ii*)
$$\lim_{n \to \infty} \int_{X} |f_n - f| d\mu = 0$$

- (2) (5 points) Show that if $\lim_{n \to \infty} \int_{X} |f_n f| d\mu = 0$ then $\lim_{n \to \infty} \int_{X} f_n d\mu = \int_{X} f d\mu$.
- (3) (5 points) Does the DCT remain true if (b) is satisfied but not (a)?

Hint: You can use the version of the DCT proved in class.

Problem 4 (25 points). Let $f: (X, \mathcal{M}, \mu) \to \overline{\mathbb{R}}_+$ measurable.

(1) (2 points) Show that for all C > 0,

$$\mu(\{f \ge C\}) \le \frac{1}{C} \int_X f d\mu.$$

(2) (5 points) Show that if $\int_X f d\mu < \infty$, then $\mu(\{f = \infty\}) = 0$

- (3) (3 points) For all $n \ge 1$, let $\varphi_n : (X, \mathcal{M}, \mu) \to \overline{\mathbb{R}}$ be measurable functions such that $\sum_{n=1}^{\infty} \int_X |\varphi_n| d\mu < \infty$.
- Show that $\sum_{n=1}^{\infty} \varphi_n$ is well-defined μ -a.e. and that $\int_X (\sum_{n=1}^{\infty} \varphi_n) d\mu = \sum_{n=1}^{\infty} \int_X \varphi_n d\mu$. (4) (5 points) (Borel-Cantelli Lemma) Let $(A_n)_{n \ge 1} \subset \mathcal{M}$. Show that if $\sum_{n=1}^{\infty} \mu(A_n) < \infty$, then $\mu(\limsup_n A_n) = \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \mu(A_n) < \infty$. 0.
- (5) (5 points) Let $(A_n)_{n\geq 1} \subset \mathcal{M}$ such that $\sum_{n=1}^{\infty} \mu(A_n) < \infty$ and $f \in \mathscr{L}^1_{\mathbb{R}}(\mu)$. Show that $\lim_{n \to \infty} \int_{A_n} |f| d\mu = 0$.
- (6) (5 points) ("Continuity" of the integral with respect to the measure) Let $f \in \mathscr{L}^1_{\mathbb{R}}(\mu)$. Show that for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all $A \in \mathcal{M}$, if $\mu(A) \leq \delta$, then $\int_A |f| d\mu \leq \varepsilon$.

Problem 5 (20 points). Let (X, \mathcal{M}, μ) be a measure space with finite measure (i.e. $\mu(X) < \infty$) and $f_n: (X, \mathcal{M}, \mu) \rightarrow \infty$ \mathbb{R} , $n \ge 1$, be measurable functions.

(1) (2 points) Show that the set of point where $(f_n)_n$ converges is

$$C \stackrel{\text{def}}{=} \bigcap_{k \ge 1} \bigcup_{n \ge 1} \bigcap_{i,j \ge n} \{ |f_i - f_j| \le \frac{1}{k} \}.$$

(2) (5 points) Assume that $(f_n)_n$ converges μ -a.e. to f, and for all $n, k \ge 1$ let

$$A_n^k \stackrel{\text{def}}{=} \bigcup_{r=1}^n \bigcap_{i=r}^\infty \{ |f_i - f| \le \frac{1}{k} \}.$$

Show that for all $\varepsilon > 0$ and for all $k \ge 1$, there exists $n_{k,\varepsilon} \ge 1$ such that $\mu((A_{n_k\varepsilon}^k)^c) < \frac{\varepsilon}{2^k}$.

- (3) (5 points) (Egoroff's Theorem) Show that for all $\varepsilon > 0$, there exists $A \in \mathcal{M}$ such that $\mu(A^c) < \varepsilon$ and $(f_n)_n$ converges uniformly on A to f.
- (4) (3 points) Does Egoroff's Theorem remain true if $\mu(X) = \infty$?
- (5) (5 points) Assuming that $\mu(X) < \infty$, show that if $(f_n)_n$ converges μ -a.e. then $(f_n)_n$ converges in measure.